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Parameter Estimation of Vehicle Batteries in V2G
Systems: An Exogenous Function-Based Approach

Haris M. Khalid, Member, IEEE, Farid Flitti, S. M. Muyeen, Senior Member, IEEE,
M. S. El Moursi, Senior Member, IEEE, Tha’er O. Sweidan, and Xinghuo Yu, Fellow, IEEE

Abstract—The rapid introduction of electric vehicles (EVs) in the trans-
portation market has initiated the concept of vehicle-to-grid (V2G) technol-
ogy in smart grids. However, where V2G technology is intended to facilitate
the power grid ancillary services, it could also have an adverse effect on the
aging of battery packs in EVs. This is due to the instant depletion of power
during the charge and discharge cycles, which could eventually impact the
structural complexity and electrochemical operations in the battery pack.
To address this situation, a median expectation-based regression approach
is proposed for parameter estimation of vehicle batteries in V2G systems.
The proposed method is built on the property of uncertainty prediction
of Gaussian processes for parameter estimation while considering the cell
variations as an exogenous function. Firstly, a median expectation-based
Gaussian process model is derived to predict the fused and individual cell
variations of a battery pack. Secondly, a magnitude-squared coherence
model is developed by the error matrix to detect and isolate each variation.
This is obtained by extracting the cross-spectral densities for the measure-
ments. The proposed regression-based approach is evaluated using exper-
imental measurements collected from lithium-ion (Li-ion) battery pack in
EVs. The parametric analysis of the battery pack has been verified using D-
SAT Chroma 8000ATS hardware platform. Performance evaluation shows
an accurate estimation of these dynamics even in the presence of injected
faults.

Index Terms—Aging analysis, ancillary services, battery degradation,
bidirectional charging, electric transportation, electric vehicles (EVs), es-
timation, grid-to-vehicle, Li-ion batteries, median filter, prediction, recur-
sive, regression, renewable energy, smart grid, vehicle-to-grid.

Notations: In this paper, a structure is followed to define
notations. IEµ1/2

is the median expectation operator. µ1/2

is denoted as the sample size median. A hat over a variable
represents an estimate of the variable, e.g. Î is an estimate
of I. When any of the variables become a function of time,
the time index t and its covariates appear as a subscript (e.g.
It,It+1,It|t,It|t−1).

I. INTRODUCTION

THE exhaustion of oil reserves and fossil fuels has alarmed
the world with a possibility of source shortage eventually

leading to drainage of these natural reservoirs. This has steered
us to environmental awareness and devotion to finding clean and
sustainable energy resources [1]. In order to promote integra-
tion of renewable resources in the energy sector and its support
function to provide a clean carbon-free energy, the concept of
smart grid has been introduced. Smart grid brings an integrated
system of communication and power. It promotes bi-directional
communication infrastructure to improve the efficiency, stabil-
ity and control of optimized power delivery [2].

Recently, EVs have comprehensively contributed towards
smart grid by operating in: a) consumer mode, and b) pro-
sumer mode. The consumer mode is implied as grid-to-vehicle
(G2V). In G2V technology, EVs behave as an electrical load
where the battery charging current is consumed from the utility.
The prosumer mode is signified as vehicle-to-grid (V2G). The
V2G mode acts as an injecting source where EV participates

in obligatory and ancillary services such as demand response
(DR) management, peak power supply, power smoothing, volt-
age stability, etc [3–8]. Note that since the smart grid has es-
sentially no significant storage [9], the operations of generation
and transmission have to be simultaneously managed to match
the variable load demand.

During the operation of V2G technology, electric drive-based
vehicles (EDVs) can generate and feed power to the smart grid.
This is due to their property of electric drive motors which are
powered by either: 1) a Li-ion battery pack, 2) a fuel cell or a 3)
hybrid drive train [10, 11]. The battery-based EVs provide the
luxury of charge and discharge functions in ancillary and oblig-
atory services mentioned above. However, to maintain high en-
ergy density, Li-ion battery packs comprises hundreds of cells
connected in a circuit of series or parallel. This complicated
structure becomes more complex when equipped with numer-
ous parametric sensors that are deployed for the measurement
of various dynamics such as voltage, temperature, power capac-
ity [12], etc. A sudden variation of these measurements could
result in several malfunctions and failures, such as production
of combustible gases, thermal runaway [13, 14], etc. To avoid
such situations, an effective battery management system (BMS)
is required [15–17]. Though BMS has been used to provide
function both at component-level and system-level [15, 16, 18],
fewer studies have been made about the impact made by grid an-
cillary services on vehicle battery [19–22]. These studies have
focused on practical wear cost model for EVs charge schedul-
ing applications in V2G programs [19], the effect of a vehicle-
to-grid (V2G) strategy on the lifetime of different lithium-ion
batteries [20], impact of bidirectional charging of V2G technol-
ogy on commercial li-ion cells used in EVs [21], in-cell varia-
tion analysis of vehicle batteries and their impact of propagation
with each involved component [22]. The rapid charging and dis-
charging operation of EVs during ancillary services could lead
to severe variations and deviations in connections and compo-
nents of BMS [23]. These variations should be modeled as an
exogenous variable to enhance robustness of BMS. Adequate
handling while reducing these variations is an essential issue
for improving the profile and accuracy of BMS, and thus the
motivation of this paper. It is essential to devise a model that
could provide resilience towards these variations by system-
level identification. A failure to notice these variations could
result in amplifying the breakdown of battery-pack.

Therefore, the main contribution in this work is to enhance
the parametric access of the vehicle battery pack in a V2G envi-
ronment. This is obtained by proposing a median-based Gaus-
sian processed regression model to capture the model uncer-
tainty. This is achieved by generating a time series-based recur-
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Fig. 1. Vehicle-to-grid technology interaction with smart grid1
1In this figure, MRM and PEC are the acronyms of median-based regression model approach and power electronics converter respectively.

rence while considering an exogenous regressor function. How-
ever, the proposed scheme is not built on an expectation opera-
tor which calculates the weighted average between noisy obser-
vations and prior measurements [24, 25]. Instead, a fused and
individual prediction is calculated by re-deriving median-based
expectation. This is to secure the best possible approximation
of the true system, while ensuring a better measure of central
tendency in the presence of outliers and small sample size.

To understand the methodology of the proposed model into
the BMS of EV battery, an overview of the technology setup
is represented in Fig. 1. It shows a V2G technology interac-
tion with smart grid through power electronic converter (PEC),
where it exploits the energy provided by the indigenous EV
communities and is traded to the power grid via management
and control of set of local aggregators and a central aggrega-
tor. The main ingredients of this duplex power flow between
electrical power grid and EV battery are: 1) consumer’s EV bat-
tery eligible to be utilized for bi-directional energy flow through
charging and discharging, 2) communication between the po-
tential consumers and the grid, 3) instant energy management of
utility load. The focus of this article is on the analysis2 of these
EV batteries during the V2G interaction with variable consumer
load. This is achieved by demonstrating the proposed scheme

2 Generally, the analysis of EV batteries is made using battery dynamics,
which are modeled using the equivalent circuit models and electro-chemical
models for simplicity. However, in this paper, an approximate state space model
has been used as a part of parameter estimation scheme. Moreover, in this
paper, the electromechanical dynamics of the cells are not considered in the
formulation. Instead, cells are considered as conducting bodies only.

at a single frequency point, i.e. at a constant operating environ-
ment temperature of 200C and state-of-health (SOH). Only two
parallel cells connected in a thread of series are considered here,
which is the standard structure used in Li-ion battery packs [26].
This configuration of each set of two parallel cells is called as
the floor.

The formation of paper is as follows: The proposed for-
mulation and scheme is presented in Section II and III respec-
tively. The implementation and evaluation of the scheme is built
in Section IV. Finally, conclusion and future work are drawn in
Section V. Fig. 2 provides the framework of the paper.

II. PROBLEM FORMULATION: CELL VARIATIONS IN A
BATTERY PACK

The problem formulation of cell variations in a battery pack
is derived in this section. An overview of the formulation is rep-
resented in Fig. 3. Consider a discrete time dynamical model of
a battery pack in an EV connected to the grid for providing an-
cillary services. A standard structure of two-parallel cells con-
nected in a thread ofN number of series is considered here [26].
Let the two parallel cells be denoted by c1 and c2 respectively.
Let symbol C represents the fused form of this configuration,
such that C = c1 + c2. The dynamics of each cell are repre-
sented by current It, temperature Tt, and impedance zt at time-
instant t, such that t = 0,1, ..., T , where T refers to the number
of time-instants. A voltage Vt is supplied to this configuration.

The problem formulation begins with the state representation
of current state in (1). This is followed by its observation model
in (2). The function of the current state is defined in (3)–(7).
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Fig. 2. Framework of the paper

A. State Representation of Current State of a Battery Pack

A state representation of current It of a battery pack can be
described as:

ICt+1 = f(Iε,t)C+αC
t T C

t +βC
t z

C
t +G

C
t w

C
t (1)

where IC0 ∈ IRr represents an initial condition of fused current
state. Ideally ICt = Ic1t + Ic2t , such that each individual cell
current is the difference between input voltage VC

1,t and out-
put voltage VC

2,t. This difference is with respect to individual

cell impedances as Ic1t =
(VC

1,t−VC
2,t)

zc1
t

and Ic2t =
(VC

1,t−VC
2,t)

zc2
t

.
Here zc1t , zc2t ∈ IRr are the impedances of cell c1 and c2 re-
spectively. f(ICε,t) ∈ IRr is an exogenous regressor function
of current state representing dynamic variations in cells. αC

t ∈
IRr×r is the transition matrix of the fused temperature T C

t ∈ IRr.
Ideally T C

t =
T c1
t +T c2

t

2 , such that each individual cell temper-

ature can be stated as: T c1
t =

zc1
t

αC
t z

c1
0,t
− 1

αC
t
+ T c1

0,t , and T c2
t =

zc2
t

αC
t z

c2
0,t
− 1

αC
t
+T c2

0,t . Here zc10,t and zc20,t are the standard values of

impedance at room temperature T c1
0,t and T c2

0,t respectively. βC
t ∈

IRr×r is the transition matrix of impedances zc1t and zc2t respec-
tively. Ideally, zCt = zc1t + zc2t , such that each individual cell

impedance can be stated as: zc1t = zc10,t+
[
1+αC

t (T c1
t −T c1

0,t )
]

and zc1t = zc20,t+
[
1+αC

t (T c2
t −T c2

0,t )
]

respectively. GC
t ∈ IRr×r

is the noise transition matrix, which can be defined as a proba-
bility vector p(Gk,t) such that

∑n
k=1 p(Gk,t) = 1, where each

individual component: 1) is a non-negative real number, 2) must
have a probability between 0 and 1 as 0 ≤ |p(Gk,t)| ≤ 1, 3) has
sum of all numbers equal to 1. wC

t ∈ IRr is the random process
noise.

B. Observation Model
Let the current state of battery pack described in (1) has an

observation model at time-instant t as:
yCt =HC

t FC
t ICt + vCt (2)

where yCt ∈ IRm is the observation output of current state, m
is the simultaneous observations for estimations made at time-
instant t. HC

t ∈ IRm×r is the observation matrix and vCt ∈ IRm

is the observation noise. The noises wt and νt are all initially
uncorrelated zero-median white Gaussian such that IEµ1/2

[wt]

= IEµ1/2
[νt] = 0, ∀ t. Also IEµ1/2

[wpν
′

q] = 0 for two instants
p and q. Meanwhile, IEµ1/2

[wpw
′

q] = Rtδpq when considering
the noise process to be a serially uncorrelated, zero-mean, con-
stant, and finite variance process. The variable Rt represents
the covariance matrix, and δpq is a Kronecker delta function
used for shifting the integer variable after the presence or ab-
sence of noise. Similarly, IEµ1/2

[νpν
′

q] = Qtδpq with Qt being
the process noise correlation factor.

Once the state and observation model is formulated, function
of current state is modeled.

C. Function of Current State: An Exogenous Regressor
The function of current state is represented in the current state

model as an exogenous regressor variable, such that f(ICε,t) ∈
IRr, It represents dynamic variations in cells for any of its fused
form as C, or individual cells c1 and c2 respectively. f(ICε,t)
represents a non-linear mapping function, such that:

IEµ1/2

[
f(ICε,t)|ICt+1

]
= 0 (3)

Also, for any two i-th and j-th fused floor of cells,

IEµ1/2

[
f(IC

i

ε,t)f
′(IC

j

ε,t)
]
= 0, i ̸= j (4)

where superscript ‘′’ represents the transpose operator.
Let f(I, y, ε) = g(I, ε)− h(I, y), where g(.) and h(.) are

non-linear vector functions. The exogenous property satisfies:
f(ICε,t) = arg max

IC
ε,t∈{0,1}

IEµ1/2
[f(I,y,ε)|H,y] (5)

= arg max
IC
ε,t∈{0,1}

[
IEµ1/2

[g(I,ε)|H,y]−h(I,y)
]

(6)

=


1 if IEµ1/2

[g(I,ε)|H,y]−h(1,y)≥
IEµ1/2

[g(0,ε)|H,y]−h(0,y)
0 ,Otherwise

(7)

Once the exogenous function of current state is modeled on
extracted measurements, the proposed scheme is formulated.

III. PROPOSED SCHEME: MEDIAN-BASED
REGRESSION APPROACH

The proposed scheme is built on the problem formulation. An
overview of the framework can be seen in Fig. 3. The geometric
properties of median-based Gaussian Process (MGP) model is
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Fig. 3. Formulation framework of the proposed scheme

Fig. 4. Median gradient-based convergence diagram

made in (8)–(12). The fused and individual cell variations are
derived in (13)–(16) and (17)–(23) respectively. The diagnosis
of these variations are made by generating and evaluating the
residual at (24)–(25) and (26) respectively.

A. Geometric Properties of MGP Model

The Bayesian inference of the fused current state is made us-
ing the MGP model. This requires some additional properties
of expectation operator from [18]. Moreover, a realization is re-
quired using geometric properties. Let X and Y be two random
variables with a Gaussian distribution. The following properties
can be stated:

Property 1: If X,Y ∈ IRn, then limX→Y IEµ1/2
[|X − Y |2]=

0.
p
(
X,Y ≤ µ1/2

)
= p

(
X,Y ≥ µ1/2

)
= IEµ1/2

[
(X)2 +(Y )2− 2(X)(Y )

]
=

(µ1/2∑
−∞

xf(x)
)2

+
(µ1/2∑

−∞
yf(y)

)2

(8)

where f(x) is the probability mass function of X . Simplifying
it further, with f(x) to be symmetric gives:

p
(
X,Y ≤ µ1/2

)
= −2

(µ1/2∑
−∞

xf(x)
)(µ1/2∑

−∞
yf(y)

)
=

(1
2

)2
+
(1
2

)2− 2
(1
2

)(1
2

)
= 0 (9)

The whole process X,Y is called median-square continuous if
it is median-square continuous for all X,Y ∈ IRn.

Property 2: A Guassian process-based function f is said to be
median-based differentiable on IRr if for every sequence {Xn}
for i = 1, ....,n converges ∥Xn−X∥ → 0.

Considering the gradient property in [18] and as shown in
Fig. 4, let I1,I2,I3, .....,In ∈ H . Also z ∈ H . r is the radius
with ∥µ1/2− z∥ > Φr and γ > 0. Considering the derivative in
the direction of z−µ1/2 for ḟ(Xn) gives:

∂f(µ1/2,n,z−µ1/2,n)

= lim
t→0

f(µ1/2,n + t(z−µ1/2,n))− f(µ1/2,n)

t
(10)

Similarly for the derivative in the direction of z − µ1/2 for
ḟ(X) gives:

∂f(µ1/2,z−µ1/2)

= lim
t→0

f(µ1/2 + t(z−µ1/2))− f(µ1/2)

t
(11)

Since µ1/2 minimizes the function f , this indicates that:
∂f(µ1/2,n,z−µ1/2,n),∂f(µ1/2,z−µ1/2)≥ 0 (12)

Based on (10)–(12), IEµ1/2
[
(
ḟi(Xn)− ḟi(X)

)2
] = 0 holds.

Note the geometric properties remain the same for symmet-
ric error distributions as well. Once the geometric proper-
ties are defined, cell variations are further derived. This is a
challenging task due to: 1) prioritizing a data-based approach
over a convenient battery model to determine the parametric in-
teractions between cells, 2) introducing a regression property,
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and its structural transformation from a conventionally utilized
tool for data analysis, forecasting and computer vision to an
a-priori knowledge-based filter approach, 3) deriving the recur-
sive structure by considering the median-based expectation over
the classic weighted average-based expectation.

B. Fused Cell Variations: Inference Using Log-Likelihood Ex-
pectation Function

The inference is calculated using the log-likelihood function.
This is to get an estimate of unknown parameters of current state
as: L(Θ) = logp

(
ICt ,f(ICε,t)

)
= IEµ1/2,Ht|IT

0,t,yt
logp

(
ICt ,f(ICε,t)

)
+ IEµ1/2

logp
(
f(ICε,t)|ICt

)
(13)

where Θ is the vector of all involved parameters.
The computation of the derivatives of L with respect to each

of the parameters is made as:
∂L(Θ)

∂ΘIC
t ,f(IC

ε,t)

=argmax
It

IEµ1/2,Ht|IT
0,t,yt

logp(yt,Ht|It)

p(It)+ argmin
Ivar
t

(
Ivart−1−µ1,2.t−1

)
=argmax

It

IEµ1/2,Ht|IT
0,t,yt

∑
Ht∈Ω

(
yt log(btICt

)
−γJ(It)+ argmin

Ivar
t

(Ivart−1−µ1/2, t− 1)

=argmin
It

∑
Ht∈Ω

(btICt −IEµ1/2,Ht|IT
0,t,yt
Ht log(btICt )

+γJ(ICt )+ argmin
Ivar
t

(Ivart−1−µ1/2,t−1) (14)

where Ω denotes the possible realization of ICt . btICt is the re-
alization of the observation matrix HC

t . J is a positive energy
function and γ is a positive parameter.

Taking the difference between (1) and (14) gives the covari-
ance matrix, such that ICt − ÎCt|t−1 = P C

t|t−1. It is presented as:

P C
t|t−1=f(I

C
ε,t)+α

C
t T C

t +βC
t z

C
t+G

C
t w

C
t−argmin

IC
t

∑
HC

t ∈Ω

(btICt )

+ IEµ1/2,Ht|IT
0,t,yt
Ht log(btICt )− γJ(ICt )

− argmin
Ivar
t

(
Ivart−1−µ1/2,t−1

)
(15)

(15) can be further simplified as:

P C
t|t−1 = FC

t ICt − argmin
IC
t

∑
HC

t ∈Ω

(btICt )

+ IEµ1/2,Ht|IT
0,t,yt
Ht log(btICt )− γJ(ICt )+ f(ICε,t)

(αC
t T C

t+β
C
t z

C
t )−argmin

Ivar
t

(Ivart−1−µ1/2,t−1)+G
C
t w

C
t (16)

The covariance matrix P C
t|t−1 is derived here using the inno-

vation process and first principles. However, it is assumed here
that both cells have the same dynamics, which is not the situa-
tion since the individual cell dynamics are dependent on: 1) the
position of cells in the array of pack, 2) heat dissipation, and
3) load handling of cells. This gives motivation to derive the
covariance representing the individual cell variations of floor of
cells.

C. Individual Cell Variations: Covariance using Weights
The individual cell covariance can be represented by assign-

ing weights among the parallel connection. Let Ψ c1
t and Ψ c2

t

be the assigned weights for cells c1 and c2 respectively. This
makes the presentation of ÎCt|t as:
ÎCt|t = P C

t|t

(
Ψ c1
t P c1−1

t|t
[
αC
t T c1

t βC
t z

c1
t btf(ICε,t)(Ivart−1

− µ1/2,t−1)
]
+Ψ c2

t P c2−1

t|t
[
αC
t T c2

t βC
t z

c2
t btf(ICε,t)

(Ivart−1−µ1/2,t−1)
])

(17)

where the difference between Îc1t and Îc2t can be expressed by
ζCt as follows:

ζCt = Îc1t|t− Î
c2
t|t (18)

The expression (18) can be normalized further. This is done by
using median-based expectation operator as:

IEµ1/2

[
ζCt ζ

C
′

t

]
= IEµ1/2

[
Îc1t|t−I

C
t|t− (Îc2t|t−I

C
t|t)

][
Îc1t|t

− ICt|t− (Îc2t|t−I
C
t|t)

]′
(19)

and is equivalent to:
IEµ1/2

[ζCt ζ
C
′

t ]=P c1
I,t|t+P

c2
I,t|t−P

C
I,t|t−P

C
′

I,t|t (20)
Using the calculation from (17) to (20), the weighted matrices

for cells c1 and c2 can be expressed in closed-form as:

ψc1
t =

(ÎC
t|t

PC
t|t
−ψc2

t P
c2−1

t|t
[
αC
t T c2

t βC
t z

c2
t btf(ICε,t)Ξ

])
P c1−1

t|t
[
αC
t T c1

t βC
t z

c1
t btf(ICε,t)Ξ

] (21)

ψc2
t =

(ÎC
t|t

PC
t|t
−ψc1

t P
c1−1

t|t
[
αC
t T c1

t βC
t z

c1
t btf(ICε,t)Ξ

])
P c2−1

t|t
[
αC
t T c2

t βC
t z

c2
t btf(ICε,t)Ξ

] (22)

where Ξ = (Ivart−1−µ1/2,t−1).
Considering (21) and (22), the covariance matrix for fused

current state can be stated as:

P C
t|t=Î

C
t|t

( ÎCt|t
P C
t|t
−ψc2

t P
c2−1

t|t
[
αC
t T c2

t βC
t z

c2
t btf(ICε,t)Ξ

]
+
ÎCt|t
P C
t|t
−ψc1

t P
c1−1

t|t
[
αC
t T c1

t βC
t z

c1
t btf(ICε,t)Ξ

])
=ÎCt|t

(2ÎCt|t
P C
t|t
−Pc1

t|t−P
c2
t|t

)
(23)

where Pc1
t|t = ψc1

t P
c1−1

t|t
[
αC
t T c1

t βC
t z

c1
t btf(ICε,t)Ξ

]
, and Pc2

t|t =

ψc2
t P

c2−1

t|t
[
αC
t T c2

t βC
t z

c2
t btf(ICε,t)Ξ

])
represents the covariance

matrices for cell c1 and c2 respectively. Note the covariance ma-
trices of temperature, impedance and voltage can also be calcu-
lated using the state representation and the relationships of (1)
and (2).

The output of the individual cell will determine the residual
generation.

D. Residual Generation using Error Matrix

The generated residual eres is usually calculated to detect
any 1) unusual dynamic variations, 2) biased signatures, and
3) system-faults. Considering cell c1 these variations can be
detected as:
ec1res,y,t = Hc1

t e
c1
I,t+1

= Ht

(
Fc1

t − [IEµ1/2
Ic1t+1(y

c1
t − vt)′]R−1

e,tHc1
t

)
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Fig. 5. Setup for V2G bi-directional charging system

(Ic1t − Îc1t )+Ξ[ξtf(y
c1
t ,Ic1t )−ξf,tf(yc1t ,Ic1t )](24)

where Fc1
t ∈ IRr×r is the modal matrix of the exogenous func-

tion, Re,t is the covariance of observation noise having a zero-
mean multivariate normal distribution N , such that Re,t: vt ∼
N (0,Re,t), f(yc1t ,Ic1t ) ∈ IRr is a non-linear vector function of
yc1t and Ic1. ξt, ξf,t ∈ IR are the parameters that shows a change
due to fault-injection f .

The generated residual is asymptotically convergent when
the parameters show no change due to the injected fault, such
that ξt, ξf,t, limt→∞ ec1res,y,t = 0, where the difference between
residual generation can be represented by a Lyapunov variable
V , such that:

∆V = IEµ1/2

[
V(eI,t+1|eI,t,Ic1t − Îc1t )

]
≤ −ec1res,y,tℵtec1I,t +2∥(ec1res,y,t∥|Re,tξf,t|V∥ec1I,t∥
≤ −ρ∥ec1res,y,t∥2−V(ec1res,y,t)

< 0 (25)
where ρ is defined to minimize the positive definite matrix ℵt.

Once the residual is computed, the evaluation of residual is
made.

E. Residual Evaluation using Magnitude-Squared Coherence

The evaluation of residual requires a selection of threshold
to determine a false data injection. This was made using test
statistic Γstat computed by magnitude-squared coherence as:

Γstat =
|StSf,t|2

S2
t S

2
f,t

,

{
≤ ηth no attack
> ηth attack (26)

where St and Sf,t are the cross-spectral densities of fault-free
and fault-injected parameters respectively. ηth is a computed
threshold value. Note that the threshold value is chosen to en-
sure a low false alarm probability during the course of an accu-
rate residual evaluation.

Once the formulation has been defined, the pseudo code is
represented for the implementation.

Algorithm 1 Pseudo code of the proposed schemes
1: N→ number of series,
2: T→ number of time-instants,
3: SP→ state representation,
4: OM→ observation model,
5: CSF→ current state function,
6: GP→ geometric properties,
7: MGP→ median-based gaussian process filter,
8: FCV→ fused cell variation,
9: ICC→ individual cell covariance,
10: RG→ residual generation,
11: RE→ residual evaluation,
12: for i=1 to N
13: SPi←measurements(Ni);
14: OMi←measurements(Ni);
15: CSFi←extract(SPi,OMi);
16: end for
17: for i=1 to N
18: FCVi←median-expectation(GPi);
19: end for
20: for i=1 to N
21: ICCi←median-expectation(GPi);
22: end for
23: fori=1 to N
24: MGPi←estimation-performance(Residual-Generationi);
25: MGPi←estimation-performance(Residual-Evaluationi);
26: end for
27: Parametric-Estimation←extract(SP,OM)
28: Residual←extract(SP,OM)
29: Threshold←extract(SP,OM)

F. Summary of Pseudo Code Representation:

The proposed method built on MGP filter for parametric esti-
mation can also be transformed into a pseudo code as seen in Al-
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gorithm 1. The variables used in the code are defined from Line
1 to 11. A for loop is applied for assigning measurements to
state representation and observation model, followed by extrac-
tion of model from the measurements for current state function,
median expectation for fused cell variation, median expectation
for individual cell covariance, residual generation and residual
evaluation. These loops can be seen in Line 12 to 16, 17 to 19,
20 to 22, and 23 to 26 respectively. The calculation of para-
metric estimates, residual, and threshold are extracted in Line
27–29.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation of the Proposed Scheme

The proposed scheme was implemented3 on a Li-ion battery
pack of an EV. It was further evaluated by conducting test case-
based experiments which were performed using the guidelines
issued by the United States Department of Energy battery test
manual [27, 28]. The evaluation was conducted under differ-
ent operating conditions. The evaluated profiles of battery-pack
analysis were further verified using D-SAT Chroma 888 ATS
hardware platform.

1) Test Case Specifications: The test case designed for this
implementation and evaluation can be seen in Fig. 5. It rep-
resents a V2G bi-directional charging environment, which is
composed of: 1) a D-SAT Chroma battery cell simulator, which
comprises of 2160 KWh of charging capacity, 2) an NXP BMS
controller, 3) a DC motor, 4) a labVIEW-based compaqRIO
controller (for DC motor), 5) a DC generator, 6) a boost DC-DC
converter, which contains a resonant circuit for a soft-switching
and operation, 7) a programmable electronic load, 8) a data ac-
quisition unit, which is utilized for collecting measurement sig-
nals, 9) data storage, and 10) a computer, which is required for
controlling the current load and supply.

2) Battery Pack Configuration: The battery pack configura-
tion considered for this test case is a floor combination of four
sets of parallel cells which are connected in a string of series.
Each battery cell has a nominal capacity of 2.3 Ah and a nomi-
nal voltage of 3.2 V.

3) Sample Measurement Profiles: The sample measurement
profile of the cells connected in this configuration are plotted in
Fig. 6, where Fig. 6(a)–(c) shows the standard plots of voltage,
temperature, and total current respectively. The sampled cur-
rent profile during charging operation of a duty cycle is shown
in Fig. 6(d).

4) Referencing with Main Stream Techniques: Since, the pro-
posed scheme is built on a recursive structure, it is referenced
as follows. Firstly, it is referenced with mainstream techniques
of 1) EKF [29, 30], and 2) UKF [31]. Secondly, it is refer-
enced with [22] for highlighting the property of exogenous re-
gressor. Thirdly, it is referenced comprehensively with other
regression methods [32–34]: 1) linear regressions, 2) standard
Gaussian processes, 3) support vector machine (SVM), 4) neu-

3 The test was conducted with a frequency of 10 Hz at 20 0C. The implemen-
tation was tested offline because of: 1) an injected fault, and 2) other sensitive
battery parameters. These reasons could challenge the performance of BMS
leading to system shutdown and other potential damages. Note that the focus of
this paper is to make pack-level analysis of vehicle batteries in V2G systems.

ral networks (NN), 5) regression trees, 6) boosted trees, and 7)
bagged trees. The later are regression methods, and they are
not originally designed to estimate the current variations on the
floor of cells in a battery pack.

B. Evaluation of the Proposed Scheme

The objective of this study is to evaluate the estimation per-
formance of the proposed scheme.

1) Standard Estimation Analysis: A standard estimation anal-
ysis was conducted on cell c2 and voltage V2 supplied to the
floor of cells c3 and c4 respectively. The idea is to analyze the
initial performance of the proposed scheme towards handling
the individual cell dynamics without an external injection. An
estimation comparison of cell c2 current measurement between
the mainstream EKF, UKF, and the proposed median-based re-
gression approach is made. Fig. 6(e)–(g) shows the zoomed
version of the sets highlighted in black rectangular boxes. It can
be seen that there is a huge over-shoot spike at the beginning of
the current profile and a delayed sag from 5.6 h–10.1 h. This re-
quired an abrupt initialization procedure to estimate these varia-
tions. All the techniques performed reasonably well. However,
EKF started the tracking slowly in the initial time windows.
This is due to its linear property of calculating the difference
between the state and its estimate at every iteration. This was
not the case with UKF which performed reasonably well. How-
ever, the proposed scheme gives more accurate results than both
EKF and UKF. This was due to its Gaussian processes-based
Bayesian inference system. Similarly, an estimation compari-
son of voltage V2 measurement between [22] and the proposed
scheme is made. Fig. 6(h)–(k) shows the zoomed version of
the sets outlined in black rectangular boxes. Both techniques
performed well. However, the proposed scheme took lead in
6h–11h by capturing the model uncertainty and providing more
access to instant dynamic variations.

2) Estimation Comparison of the Charging Operation: An
estimation comparison of the charging operation is also made
with seven regression methods. The profile of Fig. 6(h) was
considered for this comparison without any external injection.
Since the regression methods work on the concept of curve-
fitting to best fit the series of data-points, the data-set is divided
into two subsets for testing and training purposes. This is also
due to their property of learning the relationship between sev-
eral independent or particular variables and a set of dependent
variables. The two subsets are: 1) a data-set of first 9 h for train-
ing the regressors, 2) a sample of remaining 11 h for testing the
measurements. Fig. 7(a)–(f) and Fig. 7(g)–(l) show the phases
of train-fit and test-fit respectively. Here Fig. 7(a) shows the full
profile of train-fit. Fig. 7(b)–(f) shows the zoomed version of
the sets of the same training profile outlined in black rectangu-
lar boxes. Fig. 7(g)-(l) shows the phases of test-fit. Fig. 7 (g)
shows the full profile of test-fit. Fig. 7(h)-(l) shows the zoomed
version of sets of full test-fit profile. Note the data analysis and
forecasting property of the proposed scheme is built on a recur-
sive engine, and it does not require any training and testing of
best fit. Instead, it estimates using the a-priori knowledge of
time sequence. Generally, all the techniques show very good
fits during the training phase. However, linear regression per-
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Fig. 6. Measurements of a) voltage, b) temperature, and c) total current. d) Sample current profile during charging operation of a duty cycle. (e–g) Zoomed
version of various phases of the current estimates for cell c2. (h–k) Zoomed version of various phases of the estimates for voltage V2.

formed the least with apparent misfits in the zoomed windows
of Fig. 7(b)-(f). One can specifically notice at 0.17 h in Fig.
7(b) and 7.5 h–8.3 h in Fig. 7(f) that linear regression failed
to estimate the sharp transitions with a misfit that reaches up to
12 A. Less prominent misfits of approximately 0.5 A are also
visible around 0.07 h in Fig. 7(b). The misfits are due to the
linear nature of the regression technique which utilizes the least
square for these situations. The shortcoming of this utilization
is that it could not hold the situation with complex I/O relation-
ships. On the contrary, the performance of the remaining re-
gression methods was quiet decent especially during the quasi-
periodic variations in Fig. 7(d) and (e). This was due to their
non-linear nature of the structure. Bagged trees have their test
performances deteriorated in the test fit (See Fig. 7(b)–(f)). The
trees showed spikes that reached 0.4 A–0.9 A for very low val-
ues of the individual cell variation. Similarly, neural networks
(NN) also showed apparent misfits in the test phase. Despite of
a feedback forward structure utilized with a back propagation
algorithm to optimize the network, the misfit for NN reached
up to 0.3 A. This could be due to the dependency on the train-

ing data-set with less adaptivity towards sparse representation
of an instant variation. In contrast, the proposed scheme was
fast enough to capture all the variations.

3) Performance of the Proposed Scheme in the Presence of
Injected Faults: Once a fault-free standard analysis was made,
a test case was developed to evaluate the performance in the
presence of injected faults. On the top of dynamic variations
of duty cycle of current profile, three data-injection scenarios
are included as follows: 1) an added energy variation at 12.3
h–13.2 h, 2) A spike variation at 15.0 h–16.0 h, 3) a random
noise injection at 16.8 h–19.1 h. All these injections can be
seen in Fig. 7 (m). An estimation comparison of cell variation
in the presence of fault-injection is made with the regression
methods. The comparison was made using the mean-square er-
ror (MSE). The profile comparison of all the methods can be
seen in Fig. 7(n). The low performance of linear regression
compared to other methods is expected as it represents the least
complex model among all tested techniques. After linear re-
gression, bagged trees and NN showed the most inconsistent
performances with increased MSEs in the testing window. The
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Fig. 7. (a) Training data-set for estimation of cell variations for 0 h–9 h. (b–f) Zoomed version of various phases of the estimated training data-set. (g) Testing
data-set estimation of cell variations for 11 h–20 h. (h–l) Zoomed version of various phases of the estimated testing data-set. m) Fault injections in current duty
cycle, n) its MSE comparison, and o) Evaluation of residual signal.

performance obtained with bagging may be explained by the
fact that bagging technique relies on randomly sampling the

training data-set to train tree regressors. NN test performance
degradation may be explained by its limitation towards overfit-
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ting. Trees and SVM have also shown a minor degradation in
their test performances. Boosted trees achieved the most con-
sistent performances with almost similar MSE for training and
testing. Similarly, Gaussian Processes method also showed a
decent performance for both training and test. However, there
is notable difference between its training and test phase. On the
contrary, the proposed scheme was consistent with high accu-
racy in both windows. Due to its recursive structure, it also did
not require any training or testing. Furthermore, injected fault
evaluation has been made by structuring a residual vector be-
tween fault-free and faulty profile of current charging operation.
This is achieved by generating the error matrix and magnitude-
squared coherence. The injected faults were detected and eval-
uated properly as shown in Fig. 7(0). The threshold selected for
the residual was ± 0.1.

V. CONCLUSION AND FUTURE WORK

In this paper, the cell variations of a vehicle battery in-
volved in V2G technologies have been analyzed with a pa-
rameter estimation approach. This is achieved by considering
these variations as an exogenous regressor. The proposed me-
dian expectation-based Gaussian process model is built on this
concept to estimate the fused and individual cell variations in
the floor of arrays of cells while improving the service life of
the battery packs in battery-based EVs. To enhance the anal-
ysis of these variations at local level, the Bayesian inference-
based structure is supported by an error matrix-based residual
vector and a magnitude-square coherence model. The proposed
scheme has been demonstrated to eventually uplift the effec-
tiveness of duplex power flow in power grid ancillary services.
Estimation comparison of the scheme has been made with the
existing mainstream techniques of automotive Li-ion batteries
as well as with the standard regression methods.

In the future, studies will be conducted to quantitatively ana-
lyze the aging analysis of these battery packs and their structural
impact on the fused and individual cell dynamics. Moreover,
methods to support near real-time estimation for deploying pre-
ventive maintenance of battery packs will be proposed.
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