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Abstract— The system behavior of a dual-axis inverted 
pendulum in the presence of parametric uncertainty could be 
very challenging from the perspective of control handling. It 
becomes more challenging in the presence of model 
uncertainties, external disturbances and chattering 
phenomenon. In this paper, a sliding mode-based control 
design is proposed to handle the dynamics, system disturbances 
and uncertainty effects of an inverted pendulum. This is 
achieved by: a) approximating the discontinuity in the control 
law, b) handling the origin of chatter effect by using a 
continuous function, and c) Euler method with small step size. 
Simulation results show that the sliding mode controller in the 
presence of disturbance can eliminate the chattering 
phenomenon, improve the control precision, and suppress the 
effects of external disturbance and model uncertainties 
effectively. 

Keywords— dynamics modelling, inverted pendulum, 
linear quadratic regulator (LQR), parametric uncertainty, 
proportional integral derivative (PID), sliding mode control 
(SMC).  

I. INTRODUCTION 

The stability of an inverted pendulum is crucial and has 
attracted many control researchers and experts since last 
many years. This is due to its complex and non-linear 
structure with a high order, unstable system dynamics, and 
under-actuated more degrees of freedoms than the number of 
control inputs [1]–[2]. It is due to this reason that inverted 
pendulum are vastly discussed in control and stability design 
applications. This ranges from balancing robots and vehicles 
[3]–[6] to humanoid robots [7]–[8], oscillator 
synchronization [9]–[10], etc. Moreover, most of the 
applications are also commercialized with ready-to-use lab-
based experiments and other educational assets, such as the 
Pendulum and Cart Control Systems [11], the Ball with 
Pendulum suspension system [12], and rotary inverted 
pendulum [13] can be indicated. These applications focus on 
several dynamics such as nonlinearity, rational, single-joint 
and multi-joint systems. This makes the practical 
applications of the inverted pendulum and its study even 
more interesting and important. This may lead to other 
advance applications as well which consider the extended 
dynamics of inverted pendulum, such as rockets, guided 
missiles, and intelligent robots. The main focus of this work 
is on the linear single joint inverted pendulum and its related 
dynamics.  

     The main challenge towards systems stability and 
control of an inverted pendulum is its swinging position 
against gravitational forces while maintaining the 
equilibrium point. In this regard, the inverted pendulum 
system stability problem first solution was introduced 
mechanically in 1960 by Roberge, J. K. [14]. Researchers 
consequentially considered this problem and various control 
systems are implemented to achieve the system stability. 
Traditional controllers are applied like PID controller and 
various configurations [15]-[17]. However, it was not that 
efficient to control such complex systems. It is because it 
was not able to handle system uncertainty and unpredictable 
disturbances adequately [18]. The robustness of the system 
decreases with parametric and structural uncertainties 
consequently while making tuning of gains in PID control 
laws [19]. These challenges highlight the role of more 
advanced and sophisticated control strategies like State 
feedback control [20] and Linear Quadratic Regulator (LQR) 
[21] or its variants, which can provide a systematic way to 
accurately track the desired trajectories. However, both 
techniques and their variants were not efficient with the 
complex systems in the presence of uncertainties and 
disturbances, which is the main motivation of this paper. 

     The contribution of this paper is to derive a sliding 
mode-based control design which could handle the instability 
problem of the inverted pendulum in the presence of 
disturbances. This is specially required in situations where 
the certain parameters are not known and require 
observability. The sliding mode-based control design was 
able to handle these dynamics. Forces summation were 
developed for both cart and the pendulum. A set of 
governing equations were derived on top of these summation 
forces. To handle the parametric uncertainty, a tool for small 
angle approximation was utilized. This was further supported 
by the approximating function of control law and handling 
the chattering phenomenon for any external disturbances.  

   The formation of rest of the paper is built as follows: 
Section II represents the problem formulation of the 
proposed system. The implementation and evaluation of the 
proposed scheme is described in Section III. Finally, 
conclusions are drawn in Section IV. 



II. PROBLEM FORMULATION – INVERTED PENDULUM SYSTEM 

DISTURBANCE AND UNCERTAINTY EFFECTS REDUCTION 

     The problem formulation of the inverted pendulum is 
derived in this section. An overview of framework is 
illustrated in Fig. 1. The system model comprises of an 
inverted pendulum mounted to a motorized cart. The 
inverted pendulum system is an example commonly found in 
control system textbooks and research literature. Its 
popularity derives in part from the fact it is unstable without 
control. This means that the pendulum simply falls over if 
the cart does not move to balance it. Additionally, the 
dynamics of the system are nonlinear. The objective of the 
control system is to balance the inverted pendulum by 
applying a force to the cart that the pendulum is attached to. 
A real-world example that relates directly to this inverted 
pendulum system is the attitude control of a booster rocket at 
takeoff. Fig. 1 summarizes the steps involved in problem 
formulation as follows: The problem formulation begins with 
the forces of the cart (1) and pendulum (2) in the horizontal 
direction. This is following by first (3)--(5) and second 
governing equations (6) respectively. The small angle 
approximation and governing equation is introduced in (7)--
(10). The transfer function of the linearized system equation 
is derived in (11)--(16). The system state space model is 
represented in (17)--(25).  

A. Inverted Pendulum – System Dynamics and Equations of 
Motion 

     Consider a two-dimensional problem in Fig. 1, where the 
pendulum is constrained to move in the vertical plane shown 
in the figure below. For this system, the control input is the 
force 𝐹 that moves the cart horizontally and the outputs are 
the angular position of the pendulum 𝜃 and the horizontal 
position of the cart 𝑥. M is the mass of cart, m is the mass of 
pendulum rod, L is the length of pendulum where l = L/2, 
and I = 1/3 ml2.  

A.1. Forces Summation of the Cart in Horizontal Direction: 
Summing the forces in the free-body diagram of the cart in 
the horizontal direction, the equation of motion would be as 
follows:  

  (1) 

Note the forces can be summed in the vertical direction 
for the cart as well. However, no useful information would 
be gained from that summation.  

A.2. Forces Summation of the Pendulum in Horizontal 
Direction: Summing the forces in the free-body diagram of 
the pendulum in the horizontal direction, the expression for 
the reaction force 𝑁 would be as: 

  (2) 

A.3 First Governing Equation: Substituting (2) in (1) gives 
the following first governing equation for the system as: 

  (3) 

To get the second equation of motion for this system, 
sum the forces perpendicular to the pendulum. Solving the 

system along this axis greatly simplifies the mathematics. 
This would eventually give the following equation: 

     
(4) 

 

Figure. 1 Proposed Scheme for System Disturbance and 
Uncertainty Effects Reduction of Inverted Pendulum 

Sum up the moments along the centroid of the pendulum 
and get rid of the P and N terms in (4) to conclude the 
following equation..  

   (5) 

A.4. Second Governing Equation: Combining the last two 
expressions, the second governing equation is achieved as 
follows: 

  (6) 

Since the considered analysis and control design 
techniques are applied to the linear model, this set of 
equations is required to be linearized.  

 

 

 

 

 

SYSTEM STABILITY AND STEP RESPONSE 

SYSTEM STATE SPACE MODEL 



A.5. Small Angle Approximation and Governing Equations: 
The equations about the vertically upward equilibrium 
position are linearized, 𝜃 = 𝜋, and will assume that the 
system stays within a small neighborhood of this 
equilibrium. This assumption should be reasonably valid 
since under control it is desired that the pendulum should not 
deviate more than 20 degrees from the vertically upward 
position. Let ∅ represent the deviation of the pendulum's 
position from equilibrium, that is, 𝜃 = 𝜋 + ∅. Again, 
presuming a small deviation (∅) from equilibrium, the 
following small angle approximations of the nonlinear 
functions in system equations is used: 

  (7) 

  (8) 

After substituting the above approximations into the 
nonlinear governing equations, it gives the two linearized 
equations of motion. Note it has been substituted for the 
input 𝐹. 

  (9) 

  (10) 

where u is the input force F 

A.6 Transfer Function of the Linearized System Equations: 
To obtain the transfer functions of the linearized system 
equations, it is required to first take the Laplace transform of 
the system equations assuming zero initial conditions. The 
resulting Laplace transforms are shown below: 

  (11) 

  (12) 

Since a transfer function represents the relationship 
between a single input and a single output at a time, 𝑋(𝑠) is 
required to be eliminated for the first transfer function for the 
output  and an input of 𝑈(𝑠). Solve the first equation for 
(𝑠). 

 
 

(13) 

Then substitute the above into the second equation gives: 

 

 

 

 

 

(4) 

Rearranging, the transfer function is then the following: 

 
         
(14) 

where    

From the transfer function above there is both a pole and 
a zero at the origin. These can be canceled, and the transfer 

function becomes the following (which is called the 
pendulum angle transfer function). 

 (15) 

econd, the transfer function with the cart position (𝑠) as 
the output can be derived in a similar manner to arrive at the 
following: 

     (16) 

2.1 System State Space Model 

     Assume   are the system states and =   

,    = ,    = ,    =  and  =   , then 
substitute into Eq. (9)-(10): 

  (17) 

  (18) 

Now substitute value of  gives: 

 

= = -   +  + 

  = -   +  + 

 

(19) 

And substitute value of  gives: 

 
  =   = -   +   + 

 = -  +  +  
(20) 

The matrices A, B and C can be derived as follows: 

 

 

(21) 

 

 

(22) 

 
 

(23) 

Finally the system state space model including four states 
(  ), in which those states are: a) cart velocity, b) 
cart acceleration, c) pendulum angular velocity, and d) 
angular acceleration respectively. Moreover, it has two 
outputs: 1) cart position, and 2) pendulum angle. And one 



input: 1) the force applied to the system. The state space 
model presented as shown below: 

 

 

 

 

 

 

 

 

                                   (24) 

            (25) 

III. IMPLEMENTATION AND EVALUATION 

   Fig. 1 shows the steps involved in implementation and 
evaluation of the proposed scheme and control design on the 
inverted pendulum. The system stability and step response is 
discussed in (26)--(28). The control is deployed in a closed 
loop with PID, LQR, and sliding mode control in (29)--(31), 
(32)--(33), and (34)--(38) respectively. 

A. System Stability and Step Response 

   Stable system have closed-loop transfer functions with 
poles only in the left half-plane. The system parameters are 
listed in Table 2. By using the characteristic equation, the 
poles and poles location can be identified as: 

  (26) 

 

 

(27) 

 =0 (28) 

 So the system poles are: 0, 5.5651, -5.6041 and -0.1428. 
It can be seen there is one pool located in the right half plane. 
It can be seen there is one pool located in the right half plane 
(RHP) (Positive pool which is 5.5651) as shown in Fig. 2(a). 
As it can be seen in Fig. 2(b), the system response is entirely 
unsatisfactory. In fact, it is not stable in open loop. Although 
the pendulum's position is shown to increase by 50 radians. It 
is also noticed that the cart position moves infinitely far to 
the right. So, a proper controller is required to design. When 
a step reference is given to the system, the pendulum should 
be displaced but eventually return to the equilibrium position 
and the cart should move to its new commanded position.   

   Once the system stability and step response are 
calculated, control system design is presented to deal with 
the instability problem of the inverted pendulum in the 
presence of disturbance. 

B. Control Systems 

B.1. PID Controller in a Closed Loop: Generating the 
control system design, a PID controller is placed in a closed-
loop unity feedback system as shown in Fig. 2(c). The 
variable e(t) denotes the tracking error, which is sent to the 
PID controller. 

The PID controller transfer function is given by: 

 
 

(29) 

The pendulum angle transfer function is given by: 

 
 

(30) 

And the cart position transfer function is given by: 

 
 

(31) 

To achieve the design requirements which are firstly, the 
settling time should be less than 5 seconds, rise time for cart 
position should be less than 0.5 seconds and pendulum angle 
𝜃 should never exceeds 20 degrees (0.35 radians) from the 
vertical, tuning the parameter of the PID controller is 
required as shown in Table. 1. The controller is set for two 
situations here: a)  equal to 50, and b)  equal to 50 and 

equal to 20. 

B.1.1  equal to 50: The effect on the system response can 
be seen by increasing  (pendulum angle). The  will be 
set to 50. This gives the system response shown in Fig. 3(a). 
As shown in the Fig. 3(a), settling time is 1.74s, so it is less 
than the system requirements. This will not change the 
integral gain  because the steady state error is already 
approximately equal to zero. It has been also noticed here 
that the pendulum max angle is approximately 0.25 rad. This 
will eventually improve the angle by increasing the 
derivative gain to 20. The system response with the new 
setting can be seen in Fig. 3(a). 

B.1.2  equal to 50, and  equal to 20: In this case,  is 
set equal to 50 and  equal to 20. The required performance 
is achieved as can be seen in Fig. 3(b). The maximum 
pendulum angle is less than 0.05 rad and the settling time is 
1.82 sec. But as shown in Fig. 3(c), the cart (position) moves 
in the negative direction with approximately constant 
velocity. Therefore, although the PID controller stabilizes the 
angle of the pendulum, this design would not be feasible to 
implement on an actual physical system. 

C. LQR Controller in a Closed Loop  

An attempt is required to keep the pendulum vertical while 
controlling the cart's position to move 0.2 meters to the 
right. A state-space design approach is well suited to the 
control of multiple outputs. This problem can be solved 
using LQR controller. The schematic of this type of control 
system is shown Fig. 4(a)-(c) where K is a matrix of control 
gains. Note that here the feedback of all of the system's 
states is deployed rather than using the system's outputs for 
feedback. 

 



C.1. Preliminary Steps before the Controller 
Implementation: The preliminary steps required before the 
application of controller are as follows: 1) Check if the 
system is controllable or not. If the system is satisfactorily 
controllable, this allows to derive the state of the system in 
finite time (under the physical constraints of the system). 2) 

The controllability matrix must have rank n, where the rank 
of a matrix is the number of linearly independent rows (or 
columns). 3) The determinant of the matrix should be not 
equal to zero. The controllability matrix (U) can be 
calculated using below formula: 
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(a)                                                           (b)                                                           (c) 

Figure. 2 System stability (a) pole zero map, (b) system step response, (c) system block diagram using PID 

(a)                                                            (b)                                                           (c) 

Figure.3 (a) Pendulum angle response with , (b) Pendulum angle response with 
, (c) Cart position response with   

   (a)                                                           (b)                                                           (c) 

Figure. 4 (a) System block diagram using LQR, System response using (b) LQR, (c) in the presence of disturbances 

(a)                                                           (b)                                                           (c) 

Figure. 5 (a) Cart position, and b) Pendulum angle response using SMC and LQR, c) SMC control input 



 

 

 

Table 1. Simulation parameters 

Parameter increase Rise time Overshoot Settling time Steady-state error 

 Decrease increase Small change Decrease 

 Decrease increase increase Great reduce 

 Small change Decrease Decrease Small change 

 (32) 

The rank of the matrix is 4 and determinant is equal to 
4.1e04 (which is not zero). So the verified system is 
completely controllable, now will start to implement linear 
quadratic regulator (LQR)-based controller. 

C.2. LQR Implementation: A performance index J (as shown 
below) is a mathematical measure of the quality of system 
behavior. Large J implies poor performance and small J 
implies good performance. 

 
 

(33) 

This requires optimizing J to get a good performance and 
less energy, hence the choices of Q and R allow tradeoffs 
between performance and energy. Here will use 

and  to design an optimal control using 
LQR and after several trials, will set the Q(1,1) element to be 
5000 and Q(3,3) to be 100, the system response shown in 
Fig. 5(a)-(b). 

From Fig. 6(a)-(b), it can be noticed that the rise time and 
settling time achieved the requirements. Moreover, the 
pendulum angle and cart position are both stable and 
achieved the design requirements. LQR controller provide a 
systematic way to accurately track the desired trajectories, 
but it is not efficient with the complex systems where 
uncertainties and disturbances using sinusoidal function are 
present as shown in Fig .6(a)-(b). 

In the formulation of any practical control problem, there 
will always be a discrepancy between the actual plant and its 
mathematical model used for the controller design. These 
discrepancies (or mismatches) arise from unknown external 
disturbances, plant parameters, and parasitic/unmolded 
dynamics as shown in Fig. 4© (disturbance effect).  

 

Designing control laws that provide the desired 
performance to the closed-loop system in the presence of 
these disturbances/uncertainties is a very challenging task in 
control engineering. This gives rise to deploy an efficient 
robust controller (sliding mode control) that provide the 
desired performance of the closed loop system in the 
presence of disturbance and uncertainties. 

C. Sliding Mode Control (SMC) 

 The sliding variable is introduced in sliding mode control 
as shown below: 

  (34) 

Where  

In order to achieve asymptotic convergence of the state 
variables to zero, i.e., 

 and in the presence of the bounded 
disturbance,  , the variable in Eq. (32)-(33) 
is derived to zero in finite time by means of the control input 
(u). 

 
 

(35) 

By selecting  and substitute in Eq. (35) 

  (36) 

Substitute the states ( ) in Eq. (36) and multiply 
tan function by constant (ρ) to reduce the shuttering effect 

 
 

 

(37) 

Finally, the control input u can be determine as in Eq. (37): 

                                  (a)                                                           (b) 

Figure. 6 (a) Sliding surface, and (b) System states 



 
 

 

 

(38) 

D. Results and Discussions 

The simulations involved in the proposed work were 
performed on MATLAB and tools. Then sliding mode 
controller is designed and incorporated to it. Following are 
the plant and controller parameter are listed in Table 2 

Table 2. System parameters 

Parameter Value 

(M) mass of cart                          0.5 kg 

(m) mass of pendulum                     0.2 kg 

(b) friction coefficient of cart          0.1 N/m/sec 

(l) length to pendulum center of mass         0.3 m 

(I)  pendulum mass moment of inertia  0.006 kg.m2 

Initial conditions of the cart and pendulum are ( , ) = 

(0.2, 0), ( , ) = (0.05, 0) and the desired position are set as 
yd = 2, θd = 0 and y˙d = ˙θd = 0. Simulations are done using: 

ρ = 7 and  = -9 for the SMC, = 2 and  = 5. 

In Fig. 5(a)-(b), simulation results for the two controllers 
have been done. The convergence of state variables has been 
established for all controllers.  

Furthermore, system sates for SMC controller converge 
faster than LQR. It has also been noticed that there is a 
robust behavior of the SMC controllers with respect to 
parametric uncertainties (disturbance). Also, it can be 
observed that by using Euler method with small step size, 
SMC is able to effectively compensate the chattering 
phenomenon. 

Fig. 5(c) and Fig. 6(a) show the sliding mode control 
input and sliding surfaces respectively. Fig. 6(b) shows the 
convergence of model states in short time and smoothly 
without shattering. 

IV. CONCLUSION 

Balancing an inverted pendulum in the presence of external 
disturbances and parametric uncertainty was crucial. The 
inverted pendulum was successfully balanced along to and 
from horizontal direction using a sliding mode-based control 
design. It was shown that the pendulum was stabilized. The 
sliding mode-based control design dealt with the modelling 
uncertainties and external disturbances very adequately. In 
addition, the control design of SMC guaranteed the system 
converges in a finite time. Further analysis and work was 
made to reduce the chattering that inherently comes along 
with the sliding mode as shown in the simulation results. 
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