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Bi-directional Charging in V2G Systems: An
In-Cell Variation Analysis of Vehicle Batteries

Haris M. Khalid, Member, IEEE, and Jimmy C.-H. Peng, Member, IEEE

Abstract—Vehicle-to-Grid (V2G) technology enables bi-directional
charging of electric vehicle (EV) and facilitates power grid ancillary ser-
vices. However, battery pack in EV may develop in-cell dynamic variations
over time. This is due to the structural complexity and electrochemical
operations in the battery pack. These variations may arise in V2G sys-
tems due to 1) additional charging and discharging cycles to power grid,
2) external shocks, and 3) long exposures to high temperatures. A partic-
ular source of these variations are due to faulty sensors. Therefore, it can
be argued that the battery packs in EV are highly reliant on the monitor-
ing of these in-cell variations and their impact of propagation with each
involved component. In this paper, a prediction-based scheme to moni-
tor health of variation induced sensors is proposed. Firstly, a propagation
model is developed to predict the in-cell variations of a battery pack by
calculating the covariance using a median-based expectation. Secondly, a
hypothesis model is developed to detect and isolate each variation. This is
obtained by deriving a conditional probability-based density function for
the measurements. The proposed monitoring framework is evaluated us-
ing experimental measurements collected from Li-ion battery pack in elec-
tric vehicles. The in-cell variation profiles have been verified using D-SAT
Chroma 8000ATS hardware platform. The performance results of the pro-
posed scheme shows accurate analysis of these emerged variations.

Index Terms—battery degradation, battery pack voltage, bi-directional
charging, cell-to-cell variations, electric vehicles, estimation, expected
value, grid-to-vehicle, hypothesis testing, in-cell, Li-ion batteries, median
filter, prediction, recursive, smart grid, variation propagation, vehicle-to-
grid.

I. INTRODUCTION

VEHICULAR technologies such as V2G and G2V can
smooth the generation ripples of intermittent renewable

energy in the electric power grids [1–5]. In particular, the bat-
tery packs in electric vehicles (EVs) can be utilized to partici-
pate in ancillary services such as demand response (DR) pro-
gram [6–8]. This owes to the high energy density provided
by the mainstream Li-ion batteries, which are facilitated by ef-
ficient grid-connected chargers [9, 10]. However, Li-ion bat-
tery packs have a complicated structure, and comprises of hun-
dreds of cells. These cells are connected in a circuit combina-
tion of series or parallel. The structure becomes more compli-
cated when these arrays of cells-based batteries are equipped
with numerous parametric indicators like power capacity, volt-
age, current, temperature, etc. As a result, the battery pack of
an EV is a very sensitive entity as small variations can affect
their complicated hierarchy. For instance, the temperature vari-
ation serves as an alarming indicator. A rise in temperature due
to the frequent charging and discharging may rupture the bat-
tery electrolytes, resulting in their decomposition and produc-
tion of combustible gases. This may also cause fire and ther-
mal runaway [11, 12]. Similarly, a sudden drop in temperature
may cause a failure and malfunction of the cathode, leading
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ACRONYMS AND ABBREVIATIONS OF MATHEMATICAL FORMULATIONS
BMS Battery Management System
DR Demand Response
EKF Extended Kalman filter
EV Electric Vehicle
KF Kalman filter

G2V Grid-to-Vehicle
Li-ion Lithium ion
MSE Mean Square Error
PAR peak-to-average ratio
SoC State-of-Charge
SoH State-of-Health
UKF Unscented Kalman filter
V2G Vehicle-to-Grid

IEµ1/2
median expectation operator

c1 cell 1
c2 cell 2
C fused form of cells
N number of in-series connections
I state of current
F modal matrix
α transition matrix of temperature
Γ temperature
var dynamic variations
β transition matrices of impedance
z impedance
z0 standard value of impedence
G transition matrices of noise
w random process noise
t time-instant
y observations output
H observation matrix
ν observation noise
T number of time-instants
p number of simultaneous observations
V1 input voltage
V2 output voltage
P covariance matrix
ω weight
δ difference between individual current estimates

CR correlated component
UC uncorrelated component
Υ innovation
∆ perturbation
θ gradient
ψ data-vector
M hypothesis model
S variance
g(.) conditional probability density function
j number of corrupted cells
D Mahalanobis distance
m elements in measurement vector

to a short-circuit [11, 13, 14]. This may also result in an im-
precise calculation of State-of-Charge (SoC), thus amplifying
the problems by triggering the overcharge or discharge mecha-
nism [15,16]. Therefore, an effective Battery Management Sys-
tem (BMS) is required to protect Li-ion battery packs from these
issues [17–19]. BMS has also been used to provide diagnostic
and prognostic functions at the component-level [18,19], and at
the system-level [20].

Among the published work, data given by sensors to the BMS
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Fig. 1. Proposed in-cell variation and propagation analysis scheme for Li-Ion battery packs

are assumed to be correct. However, this gives rise to the follow-
ing intriguing questions: 1) Will the installed sensors be able to
accurately monitor the incipient in-cell variations happening at
pack-level? 2) Do the conventional battery model-based meth-
ods [21, 22] take into account the dynamic variations between
the composition of two parallel cells, that are connected in a
string? Despite of the claimed BMS accuracy in the literature,
fewer studies have tested the impact of grid ancillary services
on vehicle battery [23, 24]. V2G systems and the ancillary ser-
vices could introduce performance imperfections in cells, such
as: 1) create errors of capacity and power efficiency fade due
to cyclic aging, SoC saturation limits, temperature variations,
etc. [25], 2) cause random dynamic deviations and offsets of
in-cell measurements, and 3) propagation of faults due to these
errors and variations. Since each battery pack contains arrays
of cells, these deviations will be cultivated and accumulated.
This may lead to large differences in the charging capacity of
the battery pack, and possibly severe interferences in connec-
tions and components of BMS. Reducing these variations is an
essential issue for improving the profile and accuracy of BMS,
and thus the motivation of this paper. It is beneficial to devise a
system-level strategy for variation reduction, which could moni-
tor the consistency of in-cell dynamics and identify the variation
sources. This would also promote a data-based solution based
on the available online measurements without a conventional
battery model. An overlook to incomplete variation analysis
can result in oversight of material contamination, voltage leak-
age and other variations of temperature and conductance.

Therefore, the main contribution is to enhance the observ-
ability of the vehicle battery at pack-level in a V2G environ-
ment. This is obtained by proposing a prediction-based in-cell
variation and propagation analysis. A recursive method is used
here to iteratively approximate the distribution of unobserved
data. This is achieved by generating recurrence in time series
for a more accurate signal analysis. However, unlike the classic
recursive filters, which are widely applied for monitoring and
estimation applications [20, 26–28], the proposed methodology

does not take into account the weighted average between the
noisy observations and the prior measurements. Instead, a pre-
diction of cell-dynamics is calculated by re-deriving a median-
based expectation. This is to secure the best possible approx-
imation of the true system, while ensuring a better measure of
central tendency in the presence of outliers and small sample
size.

To understand the integration of the proposed in-cell varia-
tion and propagation analysis into BMS, an overview of the
proposed scheme is given in Fig. 1. It shows a V2G system
technology setup, where the vehicle battery is utilized for bi-
directional charging. In the vehicle battery pack, each set of two
parallel cells is called as the floor. The considered scenario as-
sumed that: 1) due to the network of arrays of hundreds of cells,
there is no access to the internal states of system, and 2) there
is no electromechanical battery model available for the system.
The proposed scheme is able to provide the dynamic aspects of
component interactions. Note the main focus of this paper is
to propose an in-cell variation and propagation analysis for a
vehicle battery pack. This has been achieved by demonstrating
the proposed scheme at a constant operating environment tem-
perature of 200C with a single frequency. Moreover, only two
parallel cells connected in a thread of series are considered here,
which is the standard structure used in Li-ion battery packs [29].

The formation of paper is as follows: The proposed scheme
is discussed in Section II. The implementation and evaluation
of the scheme is made in Section III. Finally, conclusions are
drawn in Section IV.
Notations: In this paper, a structured notation scheme is de-
fined. IEµ1/2

is the median expectation operator. A symbol ˜
over a variable denotes the sample median of the variable, e.g.
Ĩ is the median of I . A hat over a variable represents an estimate
of the variable, e.g. Î is an estimate of I . µ1/2 is denoted as the
sample size median. The individual entries of a variable like I
are denoted by I(l). When any of these variables becomes a
function of time, the time index t appears as a subscript (e.g. It,
Ht, yt). The notation IT0 is used to represent the sequence (e.g.
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Fig. 2. Seven step-based formulation framework of the proposed scheme

Fig. 3. Variation and propagation in a time-variant process

I0, I1, ...., IT ).

II. PROPOSED SCHEME

The proposed scheme comprises of a formulation framework
which involves seven steps.

A. Seven-Step Based Formulation Framework

The seven-step based formulation framework is illustrated in
Fig. 2. It summarizes the formulation and equations involved
at each step as follows: 1) The proposed methodology begins
with developing an in-cell variation propagation model. The as-
sumed system model considered an array of parallel cells con-
nected in a string of series. 2) A relationship between battery
parameters in a battery pack is developed. The prediction-based
estimation methodology is then built on it for calculating both
the 3) fused, and the 4) in-cell current variations respectively.
The diagnosis of vehicle battery pack is made by 5) extracting
the residual vector, 6) conditional probability-based hypothesis
testing, and 7) validation gate.

Note that a standard Li-ion vehicle battery-pack structure of

two parallel cells connected in a thread ofN number of series is
considered [29]. In this structure, the in-cell variations are de-
pendent on the split of current between two parallel cells. Thus,
the variation model is built on the state current It.

1) Step 1 - Variation and Propagation Model: Consider a
discrete-time dynamical model of a vehicle battery-pack in-
volving cells c1 and c2. These cells are connected in paral-
lel with a voltage supply to N number of in-series connections
at time-instant t. The cell dynamics always have variations in
a time-variant process. This can be further expressed in Fig.
3. At time-instant t, the cell dynamics are represented by state
of current It, and the observations output yt. As it is a time-
variant process, the cell-dynamics will show variations at each
instant. The main variation inputs consist of αt, βt and Gt,
which present the transition matrices of temperature, impedance
and noise respectively. It is related to the deviation of measure-
ments in yt with Ft and Ht, which represents the modal matrix
and mapping observation matrix respectively. T refers to the
number of time-instants. A state difference equation can be fur-
ther described in the deviation propagation as:

ICt+1=F
C
t I

C
t+
αC
t

2
(Γ c1

t +Γ c2
t )Ivart +βC

t (z
c1
t +z

c2
t )Ivart +GC

tw
C
t (1)

yCt =H
C
t F

C
t I

C
t +ν

C
t (2)

where the superscript c1 represents cell 1, and superscript c2
denotes cell 2. The symbol C is used to present the fused form
of cells c1 and c2, i.e. C = c1 + c2, whereas C′

presents the
transpose of this fused form. The symbol var presents the dy-
namic variations in cells. The IC0 ∈ IRr represents an initial
condition of the current state, F C

t ∈ IRr×r is a modal matrix of
the state response of current, such that it depends on covariates,
αC
t ∈ IRr×r is the transition matrix of temperatures Γ c1

t ∈ IRr

and Γ c2
t ∈ IRr of cells c1 and c2 respectively. Also, βC

t ∈ IRr×r

is the impedance transition matrix of impedances zc1t ∈ IRr and
zc2t ∈ IRr respectively. GC

t ∈ IRr×r is the noise transition matrix,
which can be defined as a probability vector, whose elements
are non-negative real numbers and sum to 1. wC

t ∈ IRr is the
random process noise. In the observation model (2), yCt ∈ IRp is
the observation output of state of current, p is the number of si-
multaneous observations for estimation made at time-instant t,
HC

t ∈ IRp× r is the observation matrix of current state, ICt is the
current state matrix, and νCt ∈ IRp is the observation noise. Note
the noises wt and νt have been assumed initially uncorrelated
zero-median white Gaussian1.

2) Step 2 - Relationship between Battery Parameters: Once
the observation model is extracted, the battery parameters and
their interrelations collected from sensors are formulated. Note
the battery cells are considered here as conducting bodies only.
The known parameters of floor of parallel cells connected in a
series string are: 1) string voltages, 2) string temperature, and
3) string current.

At time-instant t, current of individual cells c1 and c2 can
be represented as the difference between input voltage V C

1,t

and output voltage V C
2,t, with respect to the individual cell

1 White Gaussian is used as an additive to represent a basic noise model. It
is represented as Gaussian to portray the effect of random processes. To cover
the domain of all possible random processes, it has a normal distribution and
uniform power frequency (white) [30]. The median time-domain value for such
a distribution is considered here to be zero.



4 SUBMITTED TO IEEE SYSTEMS JOURNAL

impedance, respectively as:

Ic1t =
V C
1,t −V C

2,t

zc1t
, Ic2t =

V C
1,t −V C

2,t

zc2t
(3)

where Ic1t and Ic2t are the individual readings from the current
sensor at cells c1 and c2 respectively. Also, impedances zc1t and
zc2t for cells c1 and c2 are:

zc1t = zc1
0

t +
[
1+αC

t (Γ
c1
t −Γ c10

t )
]
, (4)

zc2t = zc2
0

t +
[
1+αC

t (Γ
c2
t −Γ c20

t )
]

(5)

where zc1t
0 and zc2t

0 are the standard values of impedance at
room temperature Γ c1

t
0 and Γ c2

t
0 respectively. αC

t is the transi-
tion matrix of temperature at cells c1 and c2.

Note Γ C
t is assumed here as an average value of temperature

for cells c1 and c2. Thus, the general relation between battery
parameters can be expressed as:

Γ C
t =

zc1t
2αC

t z
c10
t

+
zc2t

2αC
t z

c20
t

+
Γ c10

t

2
+
Γ c20

t

2
− 1

αC
t

(6)

Once the dynamic relationships between the parameters of
the vehicle battery are determined, variation and propagation
model is further derived to calculate the covariance matrix. This
is a challenging task due to 1) the absence of a battery model,
where accuracy of the variation estimation is dependent on the
parameters of interaction between cells, and 2) considering the
median-based expectation over the classic weighted average to
calculate the noisy observations and prior measurements.

3) Step 3 - Prediction of Fused Current Variations: Based on
the formulated propagation and observation models, the fused
current prediction can be derived by the covariance between the
cells c1 and c2. This required some additional properties of me-
dian expectation from [20].

Assume ÎCt|t as the estimated state at time-instant t for the
time-sequence T . Given the observation model of (2) and time-
sequence T − 1, the state prediction of current can be defined.
This definition is linearly expressed with a conditional proba-
bility as:
ÎCt|t−1=IEµ1/2

[ICt |yCT−1] + IEµ1/2
[Ivart |ICt ]

= F C
t argmin

IC
[ICt−1 −µ1/2,t−1] +

(αC
t

2
(Γ c1

t +Γ c2
t )

+ βC
t (z

c1
t + zc2t )

)
argmin

Ivar
[Ivart−1 −µ1/2,t−1] (7)

Taking the difference between (1) and (7) gives:
ICt −ÎCt|t−1

= F C
t I

C
t+
αC
t

2
(Γ c1

t +Γ c2
t )Ivart +βC

t (z
c1
t +zc2t )Ivart +GC

t w
C
t

− F C
t argmin

IC
[ICt−1 −µ1/2,t−1]

− αC
t

2
(Γ c1

t +Γ c2
t )argmin

Ivar
[Ivart−1 −µ1/2,t−1]

− βC
t (z

c1
t + zc2t )argmin

Ivar
[Ivart−1 −µ1/2,t−1]

=F C
t (I

C
t−1−argmin

IC
[ICt−1−µ 1

2 ,t−1])+G
C
t w

C
t

+
αC
t

2
(Γ c1

t +Γ c2
t )(Ivart − argmin

Ivar
[Ivart−1 −µ1/2,t−1])

+ βC
t (z

c1
t + zc2t )(Ivart − argmin

Ivar
[Ivart−1 −µ1/2,t−1]) (8)

Here ICt − ÎCt|t−1 = P C
I,t|t−1, where P C

I,t|t−1 represents the co-
variance matrix. Taking the median-based expected value for
(8) gives:

P C
I,t|t−1 = F C

t P
C
µ1/2,t−1|t−1

F C
′

t +
αC
t

2
P var,Γ
µ1/2,t−1|t−1

αC
′

t

2

+ βC
t P

var,z
µ1/2,t−1|t−1

βC
′

t +GC
tQ

C
tG

C
′

t (9)

The estimated state ÎCt and the covariance matrix P C
I,t rep-

resent the measurement updated equations, which were derived
from the first principles based on (7) to (9). However, P C

I,t as-
sumes that both cells have the same dynamics, i.e. the same 1)
impedance, 2) operating temperature, and 3) other cell dynam-
ics. This motivates to consider the problem for vehicle battery
pack with dynamic in-cell variations.

4) Step 4 - Prediction of in-Cell Current Variations: The
in-cell variations narrate the dynamics of the individual cells.
These are primarily due to the factors, such as: 1) total ca-
pacity of cell, 2) internal resistance of cell, and 3) the ini-
tial value of SoC, which gives an adequate reason to de-
rive a covariance matrix. This covariance matrix can fur-
ther represent the dynamical situation of in-cell current estima-
tion. Let P c1

I,t|t be the conservative covariance estimate of cell
c1, such that P c1

I,t|t ≥ IEµ1/2

[(
µc1
1/2,t|t−IEµ1/2,t|t(I

C
t|t)

)(
µc1
1/2,t|t−

IEµ1/2,t|t(I
C
t|t)

)′]
, where µc1

1/2,t|t is the median vector for current
at cell c1. Note to achieve convergence, the estimated covari-
ance of cell c1, P c1

I,t|t follows a behavior as: 1) to always cal-
culate an over-estimate of the median-based expected squared
difference between the true median of the unknown distribu-
tion function of cell c1, µc1

1/2, and its estimate argmin[Ic1t−1 −
µc1
1/2,t−1], 2) to assign a weight ω to calculate the split of in-cell

current variations among the parallel connection, 3) this weight
is then computed in order to determine the trace of split of cur-
rent, thereby assigning an estimate value to the individual cur-
rent estimates Îc1t|t and Îc2t|t respectively.

ÎCt|t = P C
I,t|t

(
ωP c1−1

I,t|t (F
C
t Î

c1
t|t
αC
t

2
Γ c1
t βC

t z
c1
t )

+ (1−ω)P c2−1

I,t|t (F
C
t Î

c2
t|t
αC
t

2
Γ c2
t βC

t z
c2
t )

)
(10)

where the difference between Îc1t and Îc2t can be expressed by
δCt as follows:

δCt = Îc1t|t − Îc2t|t (11)
The expression (11) can be normalized further. This is done by
using median-based expectation operator as:

IEµ1/2
[δCt δ

C
′

t ] = IEµ1/2
[Îc1t|t − ICt|t − (Îc2t|t − ICt|t)][Î

c1
t|t

− ICt|t − (Îc2t|t − ICt|t)]
′

(12)
and is equivalent to:

IEµ1/2
[δCt δ

C
′

t ]=P c1
I,t|t+P

c2
I,t|t−P

C
I,t|t−P

C
′

I,t|t (13)
The term P C

I,t|t denotes the associated covariance of fused cur-

rent with its estimate ÎCt|t. Also,

P C
I,t|t=IEµ1/2

[(Îc1t|t−I
C
t )(Î

c2
t|t−I

C
t )

′
]=IEµ1/2

[Ĩc1t|tĨ
c2
t|t]=P

C
′

I,t|t (14)
where P C

I,t|t is the correlation between the two current estimates

Îc1t and Îc2t , respectively. Similarly, according to (10), P C
I,t|t can
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Fig. 4. Setup for V2G bi-directional charging system

be represented in the form of P c1
I,t|t and P c2

I,t|t as:

P C
I,t|t =

2P c1
I,t|tP

c2
I,t|t

F C
t α

C
t β

C
t

(
ωΞc1

t +(1−ω)Ξc2
t

) (15)

where Ξc1
t = P c1

I,t|tÎ
c1
t|tΓ

c1
t zc1t and Ξc2

t = P c2
I,t|tÎ

c2
t|tΓ

c2
t zc2t .

However, there is a value for trace of split of current, which
is dependent on variants of 1) change in temperature, 2) volt-
age fluctuation, and 3) external disturbances. Let the current
at cell c1, Ic1 consists of a correlated component Ic1CR and an
uncorrelated component Ic1UC with respect to cell c2, such that
Ic1 = Ic1CR + Ic1UC , then the estimated covariance matrices for
Ic1CR and Ic1UC will be P c1

I,CR and P c1
I,UC respectively. This gives

a new definition of covariance matrices for cells c1 and c2 as:

P c1
I,t|t=

P c1
I,CR,t|t

ω
+P c1

I,UC,t,P
c2
I,t|t=

P c2
I,CR,t|t

1−ω
+P c2

I,UC,t (16)

Here ω can also be determined by optimizing an objective func-
tion in terms of ω, such that ω ∈ [0,1]. One of the possibilities
of such an occurrence could be as the determinant of new co-
variance [31]. This gives the fused form of covariance matrices
for cells c1 and c2. Representing in the form of correlated and
uncorrelated current estimate measurements, it can be written
as:

P C
I,CR,t|t=P

C
I,t|t −P C

I,CR,t|t (17)

P C
I,UC,t|t=P

C
I,t|t

(
P c1−1

I,t|t P
c1
I,UC,t|tP

c1−1

I,t|t

+ P c2−1

I,t|t P
c2
I,UC,t|tP

c2−1

I,t|t
)
P C
I,t|t (18)

Considering the correlated and uncorrelated measurements
from cells c1 and c2 in (16), (10) becomes:

ÎCt|t=P
C
I,t|t

[
ω(

ω

P c1
I,CR,t|t+P

c1
I,UC,t|t

)Îc1t|t

+(1−ω)( 1−ω
P c2
I,CR,t|t+P

c2
I,UC,t|t

)Îc2t|t

]
(19)

(19) can be further developed as:

ÎCt|t=
( ω2F C

t|tÎ
c1
t|tP

C
I,t|t

P c1
I,CR,t|t+P

c1
I,UC,t|t

)
+
( (1−ω)2F C

t|tÎ
c2
t|tP

CR
I,t|t

P c2
I,C,t|t +P c2

I,UC,t|t

)
(20)

Taking the feedback for the update of current-split estimate
gives,

P C−1

I,t|t Î
C
t|t = −(N − 1)P C−1

I,t|t Î
C
t|t +

( ω2F C
t|tÎ

c1
t|tP

C
t|t

P c1
I,CR,t|t +P c1

I,UC,t|t

)
+

( (1−ω)2F C
t|tÎ

c2
t|tP

C
I,t|t

P c2
I,CR,t|t +P c2

I,UC,t|t

)
(21)

where in-cell current variations can be iteratively updated at
each time-instant t. N = 2 denotes the number of cells. The
proof of convergence for covariance of in-cell current variations
(20)-(21) are as follows.
Proof: This is proved in the Appendix.

Once the prediction of fused and in-cell variations have been
calculated for estimation, a residual vector is generated to detect
the variations.

5) Step 5 - Determination of Residual Vector: The residual
of the estimated parameters is usually calculated to detect any
1) system-bias variation, and 2) sensor faults. These deviants
could be detected for each measurement by (2). The represen-
tation for cells c1 and c2 can be made as:

yc1t = Hc1
t F

c1
t Ic1t + νc1t (22)

yc2t = Hc2
t F

c2
t Ic2t + νc2t (23)

Based on (22)-(23), a number of observations for N number of
cells can be taken. Considering cell c1, the difference between
the predicted output and the observations is calculated as:

Υ c1
t+1 = [yc1t+1 − ŷc1t+1] =ΣT

t=1ψ
′

t−1θ
c1(1)

t ∆Ic1t + νc1t (24)
where, the vector Υ c1

t+1 is the innovation calculated for cell c1.
∆It = Ift − It is the perturbation in Ic1. yc1t is the fault-free
(nominal) output. yc1

f

t is the faulty output. θc1
(1)

t = δθt
δIc1

t
, and ψ
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is the data vector formed of the past outputs and past reference
inputs of cell c1. The gradient θt was estimated by performing a
number of offline experiments for the cell c1. The input-output
data from all the perturbed parameter experiments were then
used to identify the gradients of cell c1, θc1

(1)

t . The outcome
could be represented in the form of a density function between
the faulty data and fault-free data. The variance St+1 of this
innovation can be found from (22) for cell c1 as:

Sc1
t+1 = IEµ1/2

(yc1t+1y
c1

′

t+1)

= F c1
t P c1

µ1/2,t−1|t−1
F c1

′

t +
αc1
t

2
P var,Γ
µ1/2,t−1|t−1

αc1
′

t

2

+ βc1
t P

var,z
µ1/2,t−1|t−1

βc1
′

t +Gc1
t Q

c1
t G

c1
′

t (25)
which shows the innovation covariance for cell c1.

Once the residuals vector Υ c1
t+1 = yc1t+1 − ŷc1t+1 is yielded by

comparing the estimation vector ŷc1t with the measurements
vector yt, the fault isolation module is processed using the hy-
pothesis model.

6) Step 6 - Conditional Probability-based Hypothesis Model:
The conditional probability is developed using the hypothesis
model Mt. The model represents the nominal (fault-free) oper-
ating mode of the cells at time t+1 given the expression for cell
c1 as:

pI,t(y
C
t ) =

g(yCt+1|M c1
t , [yt...yT ])pIt(y

c1
t )∑n

j=0(g(y
C
t+1|M

cj
t , [yt...yT ])pIt(y

cj
t )

(26)

In (26), g(.) is the conditional probability density function of
the measurement yt+1, which is conditioned on the model Mt

and the previous measurements. j is the number of corrupted
cells from 0 to n. This function is determined by the expression

for cell c1 as:

g(yCt+1|M c1
t , [yt, ....,yT ]) =

e−
1
2D

c1
t+1

(2π)
m
2 |Sc1

t+1|
1
2

(27)

Dt+1 is the Mahalanobis distance at time t+ 1, which can be
defined as the dissimilarity measure between the nominal (fault-
free) and the faulty operating mode. m is the number of ele-
ments in the measurement vector.

The hypothesis model helps to process a validation gate for
fault location.

7) Step 7 - Validation Gate: At each measurement collected
from cells c1 and c2, a validation gate can be generated. It can
be expressed for cell c1 as:

Υ c1
t+1S

c1−1

t+1 Υ
c1

′

t+1 =Qc1
t (28)

where (28) can be used to test observations for each cell in the
circuit in order to determine the fault location.

III. IMPLEMENTATION AND EVALUATION

The proposed scheme was evaluated on a vehicle Li-ion
battery-pack. The scheme was operated under different oper-
ating conditions. The experiments were conducted based on the
guidelines issued by United States Department of Energy bat-
tery test manual [32,33]. The profiles of fault propagation were
verified using D-SAT Chroma 8000ATS hardware platform. In
order to evaluate the proposed methodology, a test case has been
designed as shown in Fig. 4. The test case represents V2G bi-
directional charging environment. The test case is dependent
on the setup of floor combination of parallel cells, which are
connected in a string of series. The online values of all the cells
connected in this structure are plotted in Fig. 5, where Fig. 5 (a-
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Fig. 6. Evaluation of fault a) isolation, and b-i) localization for injected reverse
polarity fault in cell c2

c) shows the profiles of total voltage, total temperature and total
current respectively. Fig. 5 (d-g) represents the current values
of each cell in the floor. The test case considered a propagated
reverse polarity fault in Fig. 1 with effect on cell c2. The pro-
posed method is referenced with two mainstream techniques:
1) Extended Kalman filter (EKF) [34, 35], and 2) Particle fil-
ter (PF) [36]. The characterized battery cell considered has a
nominal capacity of 2.3 Ah and a nominal voltage of 3.2 V. The
experimental setup for verifying the fault propagation during bi-
directional charging is composed of: 1) a D-SAT Chroma bat-
tery cell simulator with charging capacity of 2160 KWh, 2) an
NXP BMS controller, 3) a DC motor, 4) a labVIEW-based com-
paqRIO controller for the motor, 5) a DC generator, 6) a boost
DC-DC converter with a resonant circuit for a soft-switching
and operation, 7) a programmable electronic load, 8) a data ac-
quisition unit for collecting measurement signals, 9) data stor-
age, and 10) a computer for controlling the current load and
supply. The following tests were conducted with a frequency of
10 Hz at 20 0C: 1) characterization test, and 2) driving cycle
test. The current is considered to be positive at discharge and
negative at charge. Note the implementation was tested offline.
This is because of two main reasons: 1) An injected fault can
be detected by a BMS, which may result in compensation of
the fault or system shutdown. 2) If the BMS is unable to de-
tect the fault, the injected fault may result in potential damage
to vehicle battery. These reasons may provide hinderance to the

proposed scheme while testing the whole set of considered fault
situations. Therefore, the off-line approach has been chosen.
Note the focus of this paper is to make an in-cell variation prop-
agation analysis.

The purpose of this study is to examine the estimation and
propagation analysis capability of the proposed scheme. A stan-
dard estimation analysis with no faults was made on the floor of
cells c1 and c2. This was an initial analysis made to evaluate
the performance of the proposed scheme towards estimating the
regular cell dynamics without any injection. The current pro-
files of cells c1 and c2 were estimated. A comparison of mean
square error (MSE) between the main stream EKF [34, 35],
PF [36], and the proposed filter is shown in Fig. 5 (h)-(i). All
the techniques performed reasonably well. However, the EKF
started with a slow time tracking response, causing it to have a
higher MSE value in the initial time windows. This is due to
the lack of abrupt response in updating the covariance matrix at
every iteration. This was due to the initialization procedure of
EKF. This is not the case for PF. It performed better than EKF.
However, the initial overshoot was not well-captured by the PF.
This is due to its non-deterministic nature towards abrupt varia-
tions. In contrast, the proposed filter was fast enough to capture
the dynamics well from the start.

Once a standard estimation analysis has been made, a test
case was generated to evaluate the performance of the proposed
filter in the presence of an injected fault. Cell c2 suffered from
a reverse polarity fault in the middle of the charging cycle from
6.0–9.0 h as shown in Fig. 5 (j). This could be possibly due
to an operational fault in BMS caused by a shorted diode inside
the cell. This may also reverse the electro-mechanical process
and an acceleration in current flow, resulting in high electrical
leakage among the cells and the circuit. This could possibly
lead to burnout due to a thermal run-away chain reaction and
a shorted capacitor [37]. A comparison of estimates between
the main stream PF [36] and the proposed scheme can be seen
in Fig. 5 (k). The proposed method gives more accurate results
than PF. It also managed to estimate the deviations of the profile
with precision. This is due to its predictive nature using the in-
novation process used for the initialization. Furthermore, fault
detection has been made by generating a residual vector to cal-
culate variations between the fault-free and faulty profile of the
cell c2. The threshold selected for current was ±1. Referring
to Fig.5 (l), the fault was detected using the threshold selection.
Fault isolation and localization can be observed in Fig. 6 (a) and
Fig. 6 (g-i) respectively. By applying conditional probability-
based hypothesis model and validation gate, the operator can
clearly analyze the fault occurrence in cell c2.

The faulty cell c2 also made a propagation impact on other
parameters of the circuit as follows:

• First Propagation: A step-like rise in voltage V2,t is no-
ticed from 6.0 to 9.1 h.

• Second Propagation: A spike variation in temperature Γ2,t

is seen from 13.6 to 15.5 h respectively.
• Third Propagation: A step-like variation is observed in

voltage V4,t from 6.0 to 9.2 h respectively.
The first propagation illustrates a step-like variation of voltage
V2,t collected from the floor of cells c1 and c2. The second
propagation represents a rise in temperature Γ4,t. This is the
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impact of resilience shown by the impedance of cells c7 and c8
towards the faulty cell c2. The third propagation imitates a sim-
ilar fluctuation pattern in voltage V4,t like the propagated V2,t.
This is the reaction of temperature Γ2,t and the floor of cells c5
and c6. All the propagations can be seen in Fig.7 (a)-(c).

First Propagation: The variation propagation of the reverse
polarity in cell c2 was estimated. The first propagation consisted
of a large variations across 8.0–14.2 h monitoring window. As a
result, the estimation accuracy is impacted. While the window
of 8.0–14.2 h could represent the impact of fault propagation, an
effect due to the dynamic variations can be seen in a window of
1.0–1.5 h. However, the proposed method was able to estimate
the variations with adequate precision. The PF [36] was slow
in estimating the sharp variations as shown in Fig. 7 (d). The
reverse polarity fault was detected and isolated appropriately as
shown in Fig.7 (e)-(f). The threshold selected for residual was
±1.

Second Propagation: In the second propagation, the tem-
perature sensor generated a large number of wiggles affecting
window 16.2–19.8 h. Due to the high magnitude of variations,
a semi-logarithmic plot was selected to monitor the estimation
accuracy. The proposed scheme still computed accurate estima-
tions. On the other hand, PF failed to capture the wiggles. This
might be due to the congregation of sample measurements while
predicting instant variations. The estimation comparison can be
seen in Fig. 7 (g). Fault detection and isolation was proposed
by using an interval-based adaptive threshold. As observed, the
high variations in temperature are observed only in the positive
values of temperature. Therefore, the threshold was active only
in the positive scale. The evaluation can be seen in Fig.7 (h)-(i).

Third Propagation: Next, the third propagation was exam-
ined. Since, the propagation contained amplitudes and charac-
teristics similar to first propagation, a semi-logarithmic plot was
considered to monitor the variations as shown in Fig. 7 (j). The
main stream PF lost the track assuming the independence of the
observations without gaining any new information. The thresh-
old selection algorithm was adequate to detect the variations by
selecting a threshold of ±2 while avoiding any false alarms.
Subsequently, accurate detection signal was generated for fault
isolation. The evaluation can be followed in Fig.7 (k)-(l).

IV. CONCLUSIONS

In this paper, an in-cell variation and propagation of a vehicle
battery involved in V2G technologies has been analyzed. This
is achieved by median expectation-based prediction approach to
estimate the in-cell variations and split of current in the floor of
arrays of cells. To enhance the analysis of these variations at the
local level, the prediction structure is supported by the residual
vector and hypothesis model. The proposed scheme has been
demonstrated to improve the service life of the battery pack in
EV, and thereby boost the effectiveness of power grid ancillary
services. Estimation comparison of the scheme was made with
two existing mainstream techniques of automotive lithium-ion
batteries, extended Kalman filter and particle filter. In the fu-
ture, studies will be conducted to quantitatively analyze the ve-
hicular technology operations while considering the developed
in-cell variations as an exogenous variable.

APPENDIX

Proof of Convergence for (20) and (21): Since the current-
split estimates of cell c1 and c2 are defined in (16), the estima-
tion shall be converging if:

P c1
I,CR,t|t ≥ IEµ1/2

[(Ic1CR,t|t−Î
c1
CR,t|t)(I

c1
CR,t|t−Î

c1
CR,t|t)

′
](29)

P c1
I,UC,t|t ≥ IEµ1/2

[(Ic1UC,t|t − Îc1UC,t|t)(I
c1
UC,t|t − Îc1UC,t|t)

′
](30)

P c2
I,CR,t|t ≥ IEµ1/2

[(Ic2CR,t|t−Î
c2
CR,t|t)(I

c2
CR,t|t−Î

c2
CR,t|t)

′
](31)

P c2
I,UC,t|t ≥ IEµ1/2

[(Ic2UC,t|t−Î
c2
UC,t|t)(I

c2
UC,t|t−Î

c2
UC,t|t)

′
](32)

Considering (18), the difference between the fused uncorrelated
covariance for cells c1, c2 and IE[(ICUC,t|t − ÎCUC,t|t)(I

C
UC,t|t −

ÎCUC,t|t)
′
]:

=P C
I,t|t(P

c1−1

I,t|t P
c1
I,UC,t|tP

c1−1

I,t|t +P c2−1

I,t|t P
c2
I,UC,t|tP

c2−1

I,t|t )P
C
I,t|t

−P C
I,t|t(P

c1−1

I,t|t IEµ1/2
[(Ic1UC,t|t−Î

c1
UC,t|t)(I

c1
UC,t|t−Î

c1
UC,t|t)

′
]P c1−1

I,t|t

+P c2−1

I,t|t IEµ1/2
[(Ic2UC,t|t−Î

c2
UC,t|t)(I

c2
UC,t|t−Î

c2
UC,t|t)

′
]P c2−1

)P C
I,t|t

=P C
I,t|t(P

c1−1

I,t|t (P
c1−1

I,UC,t|t−IEµ1/2
[(Ic1UC,t|t−Î

c1
UC,t|t)(I

c1
UC,t|t

−Îc1UC,t|t)
′
]P c1−1

I,t|t +P c2−1

I,t|t (P
c2−1

I,UC,t|t − IEµ1/2
[(Ic2UC,t|t−Î

c2
UC,t|t)

(Ic2UC,t|t−Î
c2
UC,t|t)

′
]P c2−1

)P C
I,t|t ≥ 0 (33)

Similarly, considering (16) for correlated covariance, the con-
vergence for the P C

I,C,t|t−IEµ1/2
[(ICC,t|t− Î

C
C,t|t)(I

C
C,t|t− Î

C
C,t|t)

′
]

can be achieved.
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