CHAPTER

9

BALANCED FAULT

9.1 INTRODUCTION

Fault studies form an important part of power system analysis. The problem con-
sists of determining bus voltages and line currents during various types of faults.
Faults on power systems are divided into three-phase balanced faults and unbal-
anced faults. Different types of unbalanced faults are single line-to-ground fault,
line-to-line fault, and double line-to-ground fault, which are dealt with in Chapter
10. The information gained from fault studies are used for proper relay setting and
coordination. The three-phase balanced fault information is used to select and set
phase relays, while the line-to-ground fault is used for ground relays. Fault studies
are also used to obtain the rating of the protective switchgears.

The magnitude of the fault currents depends on the internal impedance of the
generators plus the impedance of the intervening circuit. We have seen in Chapter
8 that the reactance of a generator under short circuit condition is not constant.
For the purpose of fault studies, the generator behavior can be divided into three
periods: the subtransient period, lasting only for the first few cycles; the transient
period, covering a relatively longer time; and, finally, the steady state period. In
this chapter, three-phase balanced faults are discussed. The bus impedance ma-
trix by the building algorithm is formulated and is employed for the systematic
computation of bus voltages and line currents during the fault. Two functions are
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354 9. BALANCED FAULT

developed for the formation of the bus impedance matrix. These function are Zbus
= zbuild(zdata) and Zbus = zbuildpi(linedata, gendata, yload). The latter one
is compatible with power flow input/output files. A program named symfault is
developed for systematic computation of three-phase balanced faults for a large
interconnected power system.

9.2 BALANCED THREE-PHASE FAULT

This type of fault is defined as the simultaneous short circuit across all three phases.
It occurs infrequently, but it is the most severe type of fault encountered. Because
the network is balanced, it is solved on a per-phase basis. The other two phases
carry identical currents except for the phase shift.

In Chapter 8 it was shown that the reactance of the synchronous generator
under short-circuit conditions is a time-varying quantity, and for network analysis
three reactances were defined. The subtransient reactance X"/, for the first few
cycles of the short circuit current, transient reactance X}, for the next (say) 30
cycles, and the synchronous reactance X, thereafter. Since the duration of the
short circuit current depends on the time of operation of the protective system, it
is not always easy to decide which reactance to use. Generally, the subtransient
reactance is used for determining the interrupting capacity of the circuit breakers,
In fault studies required for relay setting and coordination, transient reactance is
used. Also, in typical transient stability studies, transient reactance is used.

A fault represents a structural network change equivalent with that caused by
the addition of an impedance at the place of fault. If the fault impedance is zero,
the fault is referred to as the bolted fault or the solid Jault. The faulted network can
be solved conveniently by the Thévenin’s method. The procedure is demonstrated
in the following example.

Example 9.1

The one-line diagram of a simple three-bus power system is shown in Figure
9.1. Each generator is represented by an emf behind the transient reactance. All
impedances are expressed in per unit on a common 100 MVA base, and for sim-
plicity, resistances are neglected. The following assumptions are made.

(i) Shunt capacitances are neglected and the system is considered on no-load.
(¢1) All generators are running at their rated voltage and rated frequency with
their emfs in phase.

Determine the fault current, the bus voltages, and the line currents during the
fault when a balanced three-phase fault with a fault impedance Z; = 0.16 per unit
occurs on
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(a) Bus 3.
(b) Bus 2.
(c) Bus 1.

7}@;‘01 jO.ZO \3
B,

FIGURE 9.1
The impedance diagram of a simple power system.

The fault is simulated by switching on an impedance Z; at bus 3 as shown
in Figure 9.2(a). Thévenin’s theorem states that the changes in the network volt-
age caused by the added branch (the fault impedance) shown in Figure 9.2(a) is
equivalent to those caused by the added voltage V3(0) with all other sources short-
circuited as shown in Figure 9.2(b).

Z; = j0.16

FIGURE 9.2
(a) The impedance network for fault at bus 3. (b) Thévenin’s equivalent network.
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(a) From 9.2(b), the fault current at bus 3 is

V3(0)

I = —
3(F) Z33 + Zf

where V3(0) is the Thévenin’s voltage or the prefault bus voltage. The prefault bus
voltage can be obtained from the results of the power flow solution. In this example,
since the loads are neglected and generator’s emfs are assumed equal to the rated
value, all the prefault bus voltages are equal to 1.0 per unit, i.e.,

V1(0) = V2(0) = V3(0) = 1.0 pu

Z33 is the Thévenin’s impedance viewed from the faulted bus.
To find the Thévenin’s impedance, we convert the A formed by buses 123 to
an equivalent Y as shown in Figure 9.3(a).

70.24
30.1 Z33 = §0.34
3 3
L(F){() Vi I3(F) |(3) Vin
70.16 §0.16
(b) = (o) =

FIGURE 9.3
Reduction of Thévenin’s equivalent network.

(70.4)(0.8) . (70.4)(j0.4) .
s =Fne = 7MW "7/ . =00 = i
1s 2s 716 J0.2 Z3s 71.6 Jjo
Combining the parallel branches, Thévenin’s impedance is
(50.4)(50.6)

0.1
704+ 406 17
= j0.24+ j0.1 = j0.34

433

From Figure 9.3(c), the fault current is

Va(F) 1.0 ,
T = = = —42.
3(F) Zw+ Z; ;03415016 20
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With reference to Figure 9.3(a), the current divisions between the two generators
are

0.6 .

1= 5T 706 3(F)=—j pu
j0.4 .

T = —2"  _I.(F) = —40.8

G2 7044506 3(F) 70.8 pu

For the bus voltage changes from Figure 9.3(b), we get

AV =0- (j0.2)(—j1.2) =-0.24 pu
AVy =0 - (j0.4)(—j0.8) = —0.32 pu
AV = (§0.16)(—j2) — 1.0 = —0.68 pu
The bus voltages during the fault are obtained by superposition of the prefault

bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.2(b), i.e.,

VA(F) = V1(0) + AV; = 1.0 — 0.24 = 0.76 pu
Va(F) = V3(0) + AV, = 1.0 — 0.32 = 0.68 pu
Va(F) = V3(0) + AV = 1.0 — 0.68 = 0.32 pu

The short circuit-currents in the lines are
VA(F) — Va(F) _ 0.76 — 0.68

Lio(F) = - I ~j0.1 pu
Vi(F) — Va(F 0.76 - 0.32 .

Ls(F) = 1 )Z13 3(F) _ YR —j1.1 pu
Vo(F) — V3 (F 0.68 — 0.32 :

I23(F) = 2( )z23 3( ) = ]04 = —]09 pu

(b) The fault with impedance Z; at bus 2 is depicted in Figure 9.4(a), and its
Thévenin’s equivalent circuit is shown in Figure 9.4(b). To find the Thévenin’s
impedance, we combine the parallel branches in Figure 9.4(b). Also, combining
parallel branches from ground to bus 2 in Figure 9.5(a), results in

Dy = SO6)G04) _

~ j0.6 +j0.4
From Figure 9.5(b), the fault current is

V4(0) 1.0 .
LF) =77, = j02d+j016 ~ %0 P
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FIGURE 9.4
(2) The impedance network for fault at bus 2. (b) Thévenin’s equivalent network.

70.2 j0.4 70.24
§0.4
YY)
1 2 2
Vin Vin
IQ(F) l I2(F)l
Z;=34016  Z;=;0.16
(@ = (b) =
FIGURE 9.5

Reduction of Thévenin’s equivalent network.

With reference to Figure 9.5(a), the current divisions between the generators are

0.4 .

Igt= —>" __IL(F)=—1l.

“1= 5044506 2(F) =-j1.0 pu
§0.6 .

%2~ 504+ 506 2(F) =-j1.5 pu

For the bus voltage changes from Figure 9.4(a), we get

AVi =0 - (j0.2)(—j1.0) = —0.2 pu
AVy =0 — (j0.4)(—j1.5) = —0.6 pu

AVy = —0.2 — (jo.4)(l21'9) — 04 pu
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The bus voltages during the fault are obtained by superposition of the prefault
bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.4(b), i.e.,

Vi(F)=V1(0) + AV} =1.0-0.2=08 pu

Vo(F) = V5(0) + AV, =1.0-06 =04 pu

Va(F) =V3(0)+ AV3 =1.0-04=0.6 pu
The short circuit-currents in the lines are

Vi(F) — Va(F) _ 0.8—04

La(F) = — o8 = —450.5 pu
Vi(F) - V3(F 0.8—-0.6 .

Lia(F) = s )z13 - 04 - J05 pu
Va(F) - V3(F 0.6 —-04 .

Iso(F) = 3( )z32 3(F) - o4 =—3j0.5 pu

(c) The fault with impedance Z; at bus 1 is depicted in Figure 9.6(a), and its
Thévenin’s equivalent circuit is shown in Figure 9.6(b).

Vin
n(r)|
= Z; = j0.16

(@) = (b)

FIGURE 9.6
(a) The impedance network for fault at bus 1. (b) Thévenin’s equivalent network.

To find the Thévenin’s impedance, we combine the parallel branches in Figure
9.6(b). Also, combining parallel branches from ground to bus 1 in Figure 9.7(a),
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Z; = 40.16 Z; = j0.16
= (@) ) —

FIGURE 9.7
Reduction of Thévenin’s equivalent network.

results in
(70.2)(50.8) ,
==— = = 40.16
1= 024508 70
From Figure 9.7(b), the fault current is
Vi (0 1.
L(F) = 10 _ 0 ~j3.125 pu

Zn+2;  j0.16+40.16

With reference to Figure 9.7(a), the current divisions between the two generators
are

s i

0.8 .

Igy = —22° _ L(Fy= —i2.50

&1 = S5 08 2F) = —j250 pu
0.2 .

Tgp = — 0% [(F) = —i0.625

62 = 5ot 082 F) =~ pu

For the bus voltage changes from Figure 9.6(b), we get
AVy =0 - (j0.2)(—j2.5) = —0.50 pu
AVy = 0~ (j0.4)(—70.625) = —0.25 pu

AV3 = ~0.5 + (j0.4)(_702‘625

Bus voltages during the fault are obtained by superposition of the prefault bus volt-
ages and the changes in the bus voltages caused by the equivalent emf connected

)=—0.375 pu
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to the faulted bus, as shown in Figure 9.6(b), i.e.,

Vi(F) = Vi(0) + AV; =1.0—0.50 = 0.50 pu
Va(F) = V3(0) + AVa =1.0—025= 0.75 pu
Va(F) = V3(0) + AV3 = 1.0 — 0.375 = 0.625 pu

The short-circuit currents in the lines are

Va(F) = VA(F) _ 0.75—05 _

Izl(F) = o 108 = —j0.3125 pu
Iy (F) = Va(F)z;Vl(F) _ 0.62;’;) :4- 0.5 _ 03125 pu
La(F) = V2(F)z-2'3V3(F) _ 0.753;).2.625 — _j03125 pu

In the above example the load currents were neglected and all prefault bus
voltages were assumed to be equal to 1.0 per unit. For more accurate calculation,
the prefault bus voltages can be obtained from the power flow solution. As we have
seen in Chapter 6, in a power system, loads are specified and the load currents are
unknown. One way to include the effects of load currents in the fault analysis is to
express the loads by a constant impedance evaluated at the prefault bus voltages.
This is a very good approximation which results in linear nodal equations. The
procedure is summarized in the following steps.

e The prefault bus voltages are obtained from the results of the power flow
solution.

e In order to preserve the linearity feature of the network, loads are converted
to constant admittances using the prefault bus voltages.

e The faulted network is reduced into a Thévenin’s equivalent circuit as viewed
from the faulted bus. Applying Thévenin’s theorem, changes in the bus volt-
ages are obtained.

e Bus voltages during the fault are obtained by superposition of the prefault
bus voltages and the changes in the bus voltages computed in the previous

step.

e The currents during the fault in all branches of the network are then obtained.
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9.3 SHORT-CIRCUIT CAPACITY (SCC)

The short-circuit capacity at a bus is a common measure of the strength of a bus,
The short-circuit capacity or the short-circuit MVA at bus k is defined as the prod-
uct of the magnitudes of the rated bus voltage and the fault current. The short-
circuit MVA is used for determining the dimension of a bus bar, and the interrupt-
ing capacity of a circuit breaker. The interrupting capacity is only one of many
ratings of a circuit breaker and should not be confused with the momentary duty of
the breaker described in (8.63).

Based on the above definition, the short-circuit capacity or the short-circuit
MVA at bus & is given by

SCC = V3V I (F) x 1073 MVA ©.1)

where the line-to-line voltage V7, is expressed in kilovolts and I x(F') is expressed
in amperes. The symmetrical three-phase fault current in per unit is given by

Vi(0)

Ik(F)pu = X1k 9.2)

where V;(0) is the per unit prefault bus voltage, and Xy, is the per unit reactance to
the point of fault. System resistance is neglected and only the inductive reactance
of the system is allowed for. This gives minimum system impedance and maximum
fault current and a pessimistic answer. The base current is given by

In = SB X 103
B V3Vp

where Sp is the base MVA and V3 is the line-to-line base voltage in kilovolts.
Thus, the fault current in amperes is

%5.3)

I(F) = IL(F)plp
Vi(0) Sp x 10°

9.4
Xwe V3Vp
Substituting for Iy, (F") from (9.4) into (9.1) results in
Vi(0)Sp Vi
SCC =222~ 9.5)
Xk VB (
If the base voltage is equal to the rated voltage, i.e., Vi = Vp
Vi (0)S
scc = Ye0)Ss (9.6)

Xkk
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The prefault bus voltage is usually assumed to be 1.0 per unit, and we therefore
obtain from (9.6) the following approximate formula for the short-circuit capacity
or the short-circuit MVA.

SCC = —S-B— MVA 9.7
Xkk

9.4 SYSTEMATIC FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

The network reduction used in the preceding example is not efficient and is not
applicable to large networks. In this section a more general fault circuit analysis
using nodal method is obtained. We see that by utilizing the elements of the bus
impedance matrix, the fault current as well as the bus voltages during fault are
readily and easily calculated.

Consider a typical bus of an n-bus power system network as shown in Fig-
ure 9.8. The system is assumed to be operating under balanced condition and a
per phase circuit model is used. Each machine is represented by a constant voltage
source behind proper reactances which may be X7, X, or X4. Transmission lines
are represented by their equivalent 7 model and all impedances are expressed in
per unit on a common MVA base. A balanced three-phase fault is to be applied at
bus & through a fault impedance Z¢. The prefault bus voltages are obtained from
the power flow solution and are represented by the column vector

O o m— ;
[
L

Zys

FIGURE 9.8
A typical bus of a power system.
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[ 11(0) ]

Vis(0) = | V4(0) ©8)

%) |

As already mentioned, short circuit currents are so much larger than the steady-
state values that we may neglect the latter. However, a good approximation is to

represent the bus load by a constant impedance evaluated at the prefault bus volt-
age, i.e.,

2

Zir, = O 99)

L

The changes in the network voltage caused by the fault with impedance Z; is

equivalent to those caused by the added voltage V, (0) with all other sources short-

circuited. Zeroing all voltage sources and representing all components and loads

by their appropriate impedances, we obtain the Thévenin’s circuit shown in Fi gure

9.9. The bus voltage changes caused by the fault in this circuit are represented by
the column vector

~ -

AVy
AV, = A.V,c (9.10)
| AV, ]
i -- |
|| Y Y Y —.——
— - - k
Vin = V(0
r@z,- z, I th = Vi(0)
Lz Tl<|um
Zs

FIGURE 9.9
A typical bus of a power system.
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From Thévenin’s theorem bus voltages during the fault are obtained by superposi-
tion of the prefault bus voltages and the changes in the bus voltages given by

Vius(F) = Vius(0) + AVipys 9.11)

In Section 6.2, we obtained the node-voltage equation for an n-bus network. The
injected bus currents are expressed in terms of the bus voltages (with bus 0 as
reference), i.e.,

Tous = Yous Vius (9.12)

where I, is the bus current vector entering the bus and Y gy is the bus admittance
matrix. The diagonal element of each bus is the sum of admittances connected to
it, i.e.,

m
Y= i Jj#i 9.13)
i—0

The off-diagonal element is equal to the negative of the admittance between the
buses, i.e.,

Yi; =Y = —yi5 (9.14)

where y;; (lower case) is the actual admittance of the line i-j. For more details
refer to Section 6.2. )

In the Thévenin’s circuit of Figure 9.9, current entering every bus is zero
except at the faulted bus. Since the current at faulted bus is leaving the bus, it is
taken as a negative current entering bus k. Thus the nodal equation applied to the
Thévenin’s circuit in Figure 9.9 becomes

[0 1 (v o vk - v || AV
—Ik:(F) = y;cl yl:ck y;cn A:Vk (9.15)
] 5 | Ly;u . yr.zk - yr.m_ _AVn_
or
Tpus(F) = YiusAVipus 9.16)

Solving for AVy,s, we have

A\,bus = ZbusIbus(F) (917)
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where Zipyus = Y, is known as the bus impedance matrix. Substituting (9.17) into
(9.11), the bus voltage vector during the fault becomes

Vius (F) = Vius(0) + Zipy s Xpys(F) (9.18)
Writing the above matrix equation in terms of its elements, we have
(Vi(F)] [V [Zu - Zu - Zn 1T 0 ]
Ve(F) | = [ Vi(0) |+ | Za -+ Zin -+ Zin | | ~Iu(F) | (9.19)
_Vn(F)_ _Vn(O)J _an o Tk "‘Zn'nJ L 0 ]

Since we have only one single nonzero element in the current vector, the kth equa-
tion in (9.19) becomes

Vie(F) = Vi(0) — Zer Iy (F) (9.20)
Also from the Thévenin’s circuit shown in Figure 9.9, we have
Vi(F) = Zi I (F) 9.21)

For bolted fault, Z; = 0 and V;,(F) = 0. Substituting for Vi(F') from (9.21) into
(9.20) and solving for the fault current, we get

74(0)

L(F) = Zkk + Zy

(9.22)

Thus for a fault at bus k we need only the Zj;, element of the bus impedance matrix.
This element is indeed the Thévenin’s impedance as viewed from the faulted bus.
Also, writing the ith equation in (9.19) in terms of its element, we have

Vi(F) = Vi(0) — ZyIr(F) (9.23)

Substituting for Iy,(F'), bus voltage during the fault at bus i becomes
Zin
Vi(F) = V;(0) — =——Vi(0 9.24
(F) = Vi(0) = 5 vi(0) 029

With the knowledge of bus voltages during the fault, we can calculate the fault
current in all the lines. For the line connecting buses i and J with impedance z;;,
the short circuit current in this line (defined positive in the direction i — ) is

Vi(F) — Vi(F)

Lij(F) = —
ij

(9.25)
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We note that with the knowledge of the bus impedance matrix, the fault cur-
rent and bus voltages during the fault are readily obtained for any faulted bus in the
network. This method is very simple and practical. Thus, all fault calculations are
formulated in the bus frame of reference using bus impedance matrix Zpys.

One way to find Zy,; is to formulate Y3, matrix for the system and then find
its inverse. The matrix inversion for a large power system with a large number of
buses is not feasible. A computationally attractive and efficient method for finding
Zous Matrix is “building” or “assembling” the impedance matrix by adding one
network element at a time. In effect, this is an indirect matrix inversion of the
bus admittance matrix. The algorithm for building the bus impedance matrix is
described in the next section.

Example 9.2

A three-phase fault with a fault impedance Z; = j0.16 per unit occurs at bus 3 in
the network of Example 9.1. Using the bus impedance matrix method, compute the
fault current, the bus voltages, and the line currents during the fault.

In this example the bus impedance matrix is obtained by finding the inverse
of the bus admittance matrix. In the next section, we describe an efficient method
of finding the bus impedance matrix by the method of building algorithm.

To find the bus admittance matrix, the Thévenin’s circuit in Figure 9.2(b) is
redrawn with impedances converted to admittances as shown in Figure 9.10. The
ith diagonal element of the bus admittance matrix is the sum of all admittances
connected to bus 7, and the 7jth off-diagonal element is the negative of the admit-
tance between buses ¢ and j. Referring to Figure 9.10, the bus admittance matrix

by inspection is
—58.75 4125 325
Yeus = | 7125 —36.25 3j2.5

72.5 j2.5 —3j5.0
Using MATLAB inverse function inv, the bus impedance matrix is obtained
40.16 ;0.08 ;0.12
Zys = | 70.08 30.24 50.16
70.12 j0.16 ;0.34

From (9.22), for a fault at bus 3 with fault impedance Z; = j0.16 per unit, the
fault current is

Vs(0) 10 .
I = = - 2.0
(W) =7+ Z; ~ josdtgoie o P
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FIGURE 9.10
The admittance diagram for system of Figure 9.2 b).

From (9.23), bus voltages during the fault are
Vi(F) = V4(0) — Z1313(F) = 1.0 — (70.12)(—52.0) = 0.76 pu

%(F) = V2(O) - Z23I3(F) =1.0- (]016)(—]2.0) = (.68 pu
V3(F) = V3(0) ~ Zs3I3(F) = 1.0 — (j0.34)(—j2.0) = 0.32 pu

From (9.25), the short circuit currents in the lines are

VA(F) — Va(F) _ 0.76 — 0.68

Ilz(F) = 12 ]08 =—-JO]. pll E;
Vi(F) = V5(F) 0.76-032

Ls(F) = YA )Z13 3(F) _ 21
Vao(F) - V3(F) 0.68—032

I3(F) = 2 )Z23 () _ 704 =—350.9 pu

The results are exactly the same as the values found in Example 9.1(a). The reader
is encouraged to repeat the above calculations for fault at buses 2 and 1, and com-
pare the results with those obtained from parts (b) and (c) in Example 9.1.

Note that the values of the diagonal elements in the bus impedance matrix
are the same as the Thévenin’s impedances found in Example 9.1, thus eliminating




