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Abstract—False Data Injection (FDI) is one of the most 
dangerous attacks on cyber-physical systems as it could lead to 
disastrous consequences in the operation of the power grids. In 
this paper, a comprehensive investigation of the (FDI) attacks in 
smart grids is presented. A detection algorithm is utilized in 
analyzing the FDI attacks in real-time environment based on the 
Principle Component Analysis (PCA). It provides an adequate 
solution to the FDI problem for its ability to extract information 
about the correlation of the collected measurements. This 
provides a more accurate and sensitive response than the 
previous FDI detection techniques. Furthermore, the light 
computations associated with this algorithm make it a very good 
candidate for real-time environment testing. The results 
concluded in the paper illustrate a very promising future for the 
PCA-based real-time FDI attack detection schemes. 
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I. INTRODUCTION 
The recent years have witnessed the introduction of 

various smart grid technologies which aim to 1) improve the 
assets of the grid, 2) increase its utilization, 3) raise its 
capability to react to and resolve the problems of the grid in a 
faster and a more efficient manner. Though these continually 
evolving technologies have opened the door to huge 
advantages to the power grid operations, they have also 
created different challenges to the operation of power grids. 
The complicated smart grid’s functionalities and structures 
necessitate advanced, decentralized, and sophisticated 
monitoring and control schemes. These schemes must be 
employed to ensure a coherent, smooth, and stable grid 
operation [1]. To address these concerns, different information 
technologies and communication systems have been 
integrated with the operation of the smart grid. This digital 
integration has changed the smart grid into a cyber-physical 
system, thereby making it prone to vulnerabilities of data 
injection attacks. The impacts of these attacks are deeply 
investigated in [2], where it can be concluded that cyber and 
physical attacks are deeply connected and shall be addressed 
as one entity.  

Cyber-physical attacks vary in their type, form, and 
impact. Some of these attacks are: time synchronization 
attacks [3], GPS spoofing attacks [4], and Denial-of-Service 
(DOS) attacks [5].  Another very important cyber-physical 
systems attack is the false data injection (FDI) attack, where 
the attacker manipulates or injects false data either in the 
measurements or the control signals to alter the dynamics of 
the power grid [6]. This type of attacks could be very 
hazardous to the operation of the power grid as they are very 
difficult to detect.  

Countermeasures against FDI attacks are classified in 
literature into 1) protection-based schemes, and 2) detection-
based schemes. Protection-based schemes rely on protecting 
the measurements of the power grid from being manipulated. 
This is obtained by increasing the redundancy of the power 
grid measurements [7]. However, the major drawbacks of the 
protection-based schemes are the unguaranteed effectiveness 
with the different operating conditions of the power grid and 
the extreme need for the measurements’ redundancy [8]. On 
the other hand, detection-based schemes utilize the Bayesian 
framework in detecting FDI attacks that would look like an 
anomaly among the set of measurements [9]. The main 
drawback of these schemes is the incapability of detecting FDI 
attacks that closely imitate the normal distribution of the 
measurements of the power grid. These attacks are also known 
as stealthy attacks [8].  

To address the detection of FDI attacks, several studies 
have been carried out using different algorithms and 
techniques. Most of these techniques utilize estimation and 
probability theories as presented in [10]. The authors proposed 
a state estimation-based prediction technique to address the 
FDI attacks in [11]. Graphical methods have been introduced 
in [12] to study defending mechanisms against FDI attacks on 
power system state estimation. An integration between 
historical and forecasted measurements is presented in [13] in 
order to enhance the resiliency of smart grids against FDI 
attacks. Various other techniques have been adopted to detect 
FDI attacks, such as Kalman filter [14], sparse optimization 
[15], and machine learning [16]. However, there is still a 
research gap in the area of real-time implementation of the 
proposed methods in the current FDI attack detection 
techniques. This is due to the massive computations involved 
in these techniques as well as the need for the full and accurate 
power grid model parameters. 

To bridge the research gap, this paper proposes a new 
detection technique built on the Principle Component 
Analysis (PCA). This technique illustrates the covariance 
structure of a set of measurements through straightforward 
linear combinations. The main features of PCA are: 1) 
dimension reduction, and 2) pattern identification of 
association among the measurements of a network [17]. PCA 
has been involved deeply in anomaly detection problems in 
many fields such as: Data Mining [18] and Internet of things 
(IoT) [19]. Through the reduction of the dimension of the 
measurements, PCA provides a fast and efficient method for 
detecting anomalies (FDI attacks) in an online real-time 
environment [20].  This attribute makes PCA a very attractive 
method for detecting FDI attacks. The main contributions that 
differentiate this paper from previously published works are 
stated as: 



 This work demonstrates, to the best of the authors’ 
knowledge, the first study that employs the PCA method 
in real-time FDI attacks detection.  

 It provides key insights into the framework of a real-time 
environment for testing the proposed PCA-based FDI 
attack detection. 

 The rest of the paper is organized as follows: Section II 
presents a background of the FDI attack and the proposed 
PCA-based detection method. Section III demonstrates the 
implementation and the evaluation of the proposed method. 
The concluding remarks are stated in section IV. 

II. PCA METHOD FOR FDI ATTACK DETECTION 
This section describes the problem formation, which is 

built by describing a power system model, followed by the 
convention-based and PCA-based FDI attack detection 
representations respectively.  

A. Power System Model 
In this paper, the voltage measurements are being collected 

via Phasor Measurement Units (PMU). These PMUs are 
installed at each node of the grid. It is initially considered that 
there is no measurement loss from the PMU nodes, and all 
PMUs operate at the same sampling frequency. Therefore, for 
every time instant t a new set of measurements is obtained.  
Consequently, the PMUs within the grid have the capability to 
collect voltage measurements as [11]: 

  (1) 

                (2) 

where  is the initial state, n is the state vector 
dimension in the subspace ,  is a nonlinear function 
which describes the state transition of the model, t represents 
the time step,  is the process noise, and T is the 
overall time steps considered. In (2),  is the 
measurements vector at the ith node, m is the measurements 
vector dimension in the subspace ,  is the 
measurements Jacobian matrix which maps the states to the 
measurements,  is the measurements noise, and N is 
the total number of measurements that are collected from the 
PMUs installed at the grid.  

Equations (1) and (2) represent the main power grid model 
which is concluded by most of the state estimation algorithms. 
It is also the model utilized for the state estimation based FDI 
detection.  

B. Conventional State Estimation based FDI Detection 
Most of the state estimation algorithms depend on the 

residual evaluation to detect and declare FDI attacks. The 
residual (also known as L2-norm) is realized as: 

  (3) 

Here, the residual evaluation  is basically the amount of 
error between the state and the measurement. From this error, 
the conclusion of a FDI attack is drawn by comparing this 
error to a predefined threshold value ; thus, if

, then a FDI attack is noticed.  The 
main drawback of the residual based FDI attack detection is 
the case where stealthy attacks are present in all measurements 
collected as shown in [21]. With this attack, the measurements 
shall have the same dynamics as the normal behavior of the 

grid; therefore, it will not be detected via the normal residual 
test as . An important alarm was triggered 
from the results drawn from [21].  This alarm emphasizes on 
the necessity of revisiting the conventional state estimation 
techniques used to detect possible cyber-physical attacks in 
the power grids. 

C. PCA-based FDI Attack Detection  
PCA is an orthogonal transformation based statistical 

method that transforms a set of measurements of likely 
correlated variables (PMUs in this study) into a set of values 
of linearly-uncorrelated variables called the principal 
components. PCA is also known as the true eigenvector 
analyses. This method could be a technique that reveals the 
internal, hidden, and complex structure of the measurements 
set in a way that best highlights the variance distribution 
among the measurements set. The main advantage of PCA is 
the reduction of the dimension of the measurements sets 
without compromising the variance among the measurement 
points. Thus, PCA can produce a lower dimensional picture of 
the higher dimensional data space where each variable 
corresponds to an axis. This lower dimensional picture is 
basically the projection of measurement points as viewed from 
its most informative point of view that are also known as the 
principle components directions. These principle component 
directions are the dominant eigenvectors of the measurement 
covariance matrix. These dominant eigenvectors are the most 
informative vectors in the original measurements space; 
therefore, they are taken as the principal directions. To find 
these principle components direction, we first need to consider 
the measurements set as shown below: 

  (4) 

where each row of represents a measurement instance in an 
n dimensional space, and m is the overall number of the 
measurement samples collected. From these measurement 
samples, the principle components is deduced as follows [20]: 

 
 (5) 

where  is a k dominant eigenvector matrix, and  is 
the global mean. From here, we can easily figure out that the 
PCA technique is basically a task of finding a subspace where 
the projected measurements points have the largest possible 
variation. The problem in (5) can be solved by deriving the 
singular value decomposition (SVD) of the covariance matrix 
of the measurements which is basically finding the 
eigenvector and the eigenvalues of the covariance matrix as 
follows: 

  , (6) 

where 
 

 (7) 

represents the measurements covariance matrix. Every single 
column of V is an eigenvector of , and  is the diagonal 
matrix that represents the associated eigenvalues. As the SVD 
theorem states, only the first few eigenvectors will have the 
main contribution to the measurements’ distribution; thus, the 
rest eigenvectors shall be neglected for their insignificant 
contribution to the measurements’ distribution. Once the 
principle directions are found, the next step is to utilize them 



ALGORITHM 1: PCA-BASED FDI ATTACK DETECTION 
Input: Measurements Z 
Output: Score of anomalies   
Initialization: covariance matrix  
1. While new measurements set received, do 
2. Calculate the mean  
3. for i = 0 – n, do 
4.      Calculate   
5.      Add  to covariance matrix  
6. end for 
7. Return covariance matrix  
8. Calculate eigenvectors V from  
9. Find the score of anomalies  

10. end While 
11. Return score of anomalies  

 
in detecting FDI attacks. For this purpose, the absolute value 
of the cosine similarity is employed to measure the variations 
in the principle directions of each measurement point  and 
the global principle direction of the whole measurements  as 
shown next: 

 
 (8) 

where  represents the score of anomaly which indicates the 
possibility of a potential attack into that specific measurement 
point. In other word, the higher the value of  the more likely 
that the measurement sample is attacked. By comparing the 
scores of anomaly with a threshold value , we can decide the 
possibility of an FDI attack. The value of  is determined 
based on the range of the score of anomaly of the normal clean 
measurement points. The full algorithm of the PCA based FDI 
attack detection is demonstrated in Algorithm 1. 

III. IMPLEMENTATION AND EVALUATION 
To test the proposed PCA-based FDI attacks detection, a 

real-time experiment environment is adopted. Several test 
cases to investigate the effectiveness of the proposed method 
as employed as follows. 

A. Testbed Description 
The testbed utilized in this study is based on the one 

introduced in [22, 23]. In this testbed, an IEEE 14-bus multi-
machine power grid is employed. It consists of 2 generators 
(G), 3 synchronous condensers (C), 20 transmission lines, 11 
dynamic loads, and 4 transformers. The system operates at a 
base voltage of 138 kV, and the overall complex powers are 
around few hundreds of MVA. Voltage measurements are 
collected from the grid using Phasor Measurement Units 
(PMU) operating with a sampling rate of 5 samples/second. 
This system is simulated in a real-time environment using 
Real Time Digital Simulator (RTDS). PMUs are built within 
RTDS according to IEEE PMU standard C37.118.1-2011 
[24]. However, since the RTDS is designed specifically for 
power systems modeling, it is extremely challenging to have 
the PCA mathematical operations; thus, a MATLAB program 
is employed as a software in the loop (SIL) scheme. This 
program begins with establishing a TCP/IP connection for the 
PMUs within RTDS. Then, it starts receiving the PMU 
measurement messages according to the IEEE PMU standard 

 
Fig. 1. Setup of the proposed testbed. All the busses have PMUs installed, 
but the figure only shows only 4 to simplify the figure. 

 
Fig. 2.  Buses voltages with no FDI  

C37.118.1- 2011. PCA-based FDI detection is then carried 
out. Two special RTDS cards which are GTSYNC and 
GTNETx2 are utilized in the SIL implementation. GTSYNC 
utilizes a 1PPS GPS signal to synchronize the PMUs, and 
GTNETx2 carries out the network communication through 
via GTNET_PMU protocol for PMU data transmission 
according to the IEEE C37.118.1-2011. Figure 1 illustrates 
the full testbed setup. 

B. Test Cases 
 To evaluate the effectiveness of the proposed scheme, 
several test cases have been designed and implemented. These 
test cases include several FDI attacks in the collected PMU 
measurements. Each one of them has a specific purpose and 
importance. Several changes in the loads are made to create a 
dynamic behavior of the power grid to imitate normal 
operations. Figure 2 illustrates the PMU voltage magnitude 
measurements of the power grid dynamics. It is noted that all 
load busses vary in their voltage levels from 0.93pu to 1.03pu. 
In each of the following cases, FDI attacks are illustrated along 
with the PCA analysis using two principle components and the 
score of anomaly. It must be noted that the period for each FDI 
attack is assumed to be 0.2 seconds or 10 samples of the 
system operating at 50Hz. 
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Fig. 3.  Case-I  results: (a) Voltage magnitude-based FDI profile, (b) 2-D 
principle components representation, (c) Score of anomaly illustration 

1) Case I: FDI in one PMU with different magnitudes:  
This case aims at finding the sensitivity of the PCA-based 

FDI attack detection towards the different magnitudes of FDI 
attacks. The case introduces 5 FDI attacks at different time 
steps of voltage magnitude readings of bus 10. The attacks 
are: 20% increase starting at 4s, 10% decrease starting at 20s, 
5% increase starting at 43s, 10% increase starting at 50s, and 
5% decrease starting at 70s. These attacks are illustrated in 
Fig. 3 (a). Fig. 3 (b) illustrates the PCA results of the FDI 
attacks in two principle components space where it is shown 
that the attacks are situated far from the normal measurement 
points. In Fig. 3 (c), the scores of anomaly are illustrated. The 
score of anomaly shows that higher magnitude FDI attacks 
are easily separated from the normal measurement points. 
The results, in this case, show that PCA can be a very 
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Fig. 4.  Case-II  results: (a) Voltage magnitude-based FDI profile, (b) 2-D 
principle components representation, (c) Score of anomaly illustration 

effective method in detecting even a slight change in the 
measurement such as 5%. 

2) Case II: Two 10% FDI attacks in adjacent PMUs:  
The objective of this case is to investigate the response of 

the PCA detection method when multiple adjacent PMUs are 
manipulated. This represents a form of stealthy attacks where 
the attacker manipulates adjacent PMUs’ readings which 
shall make it harder to detect. To illustrate this, we conducted 
two attacks: the first attack decreases the voltage magnitude 
by 10% at busses 12, 13, and 14 starting at 22s. The second 
attack injects a 10% increase in voltage magnitudes at busses 
4, 6, 9, 11, and 13 starting at 50s. These attacks are illustrated 
in Fig. 4 (a). Fig. 4 (b) illustrates the PCA results of these two 
FDI attacks in two principle components space where it is  
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Fig. 5.  Case-III  Results: (a) Voltage magnitude-based FDI profile, (b) 2-D 
principle components representation, (c) Score of anomaly illustration 

clearly shown that the attacks are situated far from the normal 
measurements points. In Fig. 4 (c), the scores of anomaly are 
illustrated. It is clear that both of the attacks were pinpointed 
successfully as they have a much higher score of anomaly 
than the normal measurement points. This illustrates the 
satisfying response of PCA in detecting these kinds of 
stealthy attacks. This represents an advantage of PCA based 
detection method. 

3) Case III: 10% FDI in all PMUs:  
This case illustrates the situation when the whole 

measurements are being manipulated with FDI attacks. This 
hints a very high vulnerability of the system as the attacker 
needs to have a full access to the grid and its parameters. Note 
the test case is designed to analyze an alarming situation. 

Else, an attacker having access to full measurement is a 
problem of national security. To illustrate this type of attacks, 
two FDI attacks are designed: 5-20% random increase and 
decrease in voltage magnitude at all busses starting at 27s and 
20% decrease in voltage magnitude at all busses starting at 
57s. These attacks are illustrated in Fig. 5 (a). The first FDI 
attacks represent the case when the attacker has access to the 
whole measurements of the grid, yet he or she does not have 
the knowledge of the grid topology; thus, he or she just 
changes the measurements randomly. The second FDI attack 
illustrates the case when the attacker has the full knowledge 
of the grid, and thus he or she creates an attack that mimics 
the dynamics of the power grid. Figure 5 (b) illustrates the 
PCA results of these two FDI attacks in two principle 
components space, and the scores of anomaly are illustrated 
in Fig 5 (c). While the first attack is clearly pinpointed, the 
second one is not separable from the normal measurement 
points. This result is since PCA detection algorithm depends 
on the correlation between the measurements points. Thus, if 
the whole system’s measurements are changed with the same 
associated magnitude, then the correlation between the 
measurements will be the same as the normal measurements 
points, and the attack will not be separable. This case is the 
most severe case where the full power grid is breached.  

C. Relative Comparison 
In order to compare the performance of the PCA-based 

FDI attacks detection method with other methods, several 
relative comparison points are considered as follows: 
 Detection of stealthy attacks:  

PCA-based FDI attacks detection has shown a great 
performance in detection such attacks. This makes it one of 
the few algorithms that can pinpoint smart stealthy attacks. 
Other form of algorithms such as [14] and [15] are not able to 
do such work as they do not consider the correlation 
information of the measurements collected. Thus, this cannot 
be feasible for them. On the other hand, machine learning 
based algorithms such as [16] show similar behavior to the 
PCA algorithm in detection stealthy attacks. 
 Detection of full system breach:  

Full system breach remains the main challenge for almost all 
the FDI attack detection algorithms including PCA based 
method. However, the main difference here is that PCA 
method can identify full system attack if the correlation 
between the measurements is not the same as the normal 
measurement points even if the whole measurements are 
change. Other algorithms fail fully when it comes to detection 
any type of full system breaches. 
 Scalability: 

This means the ability to perform the detection algorithm in 
large systems. Unlike most of the detection algorithms, PCA 
provides a light computational border which makes it 
scalable. 
 Real-time compatibility:  

This is the most important attribute because it indicates the 
possibility of conducting the detection algorithm in real time. 
In literature, this is possible only with the machine learning 
based algorithms. However, these algorithms require 
extensive training to be conducted prior to employment. This 
is not the case with the PCA method. Table 1 illustrates a brief 
relative comparison of the main FDI attack detection 
algorithms along with the PCA algorithm.



TABLE 1. BRIEF RELATIVE COMPARISON OF DIFFERENT BAD DATA DETECTION ALGORITHMS 

Reference Algorithm Detection of Stealthy Attacks Detection of full system breach Scalability Real-Time Compatibility 
[14] Kalman Filter Not possible Not possible Not Scalable Not Compatible 

[15] Sparse 
Optimization NA Not possible Not Scalable Not Compatible 

[16] Machine Learning Possible Not possible Scalable Compatible with 
exhaustive training 

The proposed 
work PCA Possible Possible when the system 

dynamics are unknown Scalable Compatible 

IV. CONCLUSION 
A PCA method for detecting FDI attacks in smart grids is 

presented in this paper. This technique utilizes the covariance 
structure of a set of measurements through straight forward 
linear combinations of these measurements. The proposed 
scheme is implemented for the first time, to the best of the 
authors’ knowledge, in a real-time environment. The method 
efficacy is investigated using different case studies.  The 
results presented in case studies show the effectiveness of this 
method in FDI detection. Nevertheless, the method has a 
limitation in detecting attacks when all measurements are 
affected at the same time. Future studies will focus on finding 
solutions to overcome this drawback possibly by integrating 
both voltage magnitude and angle in the PCA based FDI 
attacks detection which shall increase the effectiveness of the 
PCA algorithm. 
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