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Abstract—In recent years, there has been a growing interest in
intelligent and adaptive vehicles. They have installed information
and support systems, which may involve several applications and
gadgets. A foremost reason on such an initiative could be for
an adequate prevention of highway crashes and fatal accidents.
Literature shows most of these accidents happen when the vehicle
fail to estimate the sharp turns with steering angle. In this work,
the focus is on an adequate estimation of the steering angle
to minimize these accidents. Firstly, dynamics of vehicle have
been derived. Secondly, an Unscented Kalman smoother (UKS)
has been built to estimate the nonlinear parameters. Numerical
evaluations were made on a vehicle model. Results ensure a better
performance and accuracy of the proposed scheme.
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smoother, unscented transformation, vehicle dynamics, wheels.

I. INTRODUCTION

The trend of renewable energy has introduced the concept
of electric vehicles (EVs). The EVs have the Lithium-ion
battery packs as their main source of energy. Since they are the
only source of energy, the battery packs have hundreds of cells
aligned in various structures, which are monitored to ensure
accuracy and efficiency [1]–[3]. In order to facilitate these
battery packs, the EV technology has been further enhanced by
having intelligent and adaptive systems, which may provide a
support function towards an efficient fuel consumption. Despite
of having several gadgets and support functions, the number of
road accidents are still a point of concern for the automobile
industry [4].

These road accidents are usually due to the vehicle han-
dling at sharp turns, which question the stability and maneu-
verability of the yaw angle and side-slip angle. Several works
have been done for the control of yaw-angle [5], [6]. Yaw angle
also plays a key role in handling of combination vehicles [5],
[7]. It is also believed that the yaw angle and side-slip angle
majorly contribute towards the stability of vehicle [5], [6].
Where the control of yaw angle is recommended for stability,
some works have also recommended to estimate these two
angles (yaw angle and side-slip angle) [7]–[11]. However, most
of these works are based on the tire model, where the direct
access to the steering wheel angle was not made using the in-
vehicle sensor data. Note that the in-vehicle sensor data access
is emphasized over here since in other direct measurements, the
readings become meaningless. For example, many of the safety
systems such as collision avoidance system, the lane keeping
assistance system stop functioning normally if the information
from steering wheel sensor is cut or being able to process due
to a fault.

This paper proposes a vehicle steering angle estimation
while considering the side-slip angle and steering wheel angle

(yaw angle). It is shown that the side-slip angle is derived from
the lateral motion of vehicle. And steering angle of vehicle
is derived from the yaw motion of vehicle. An unscented
smoother built on UKF has been proposed to estimate the
steering dynamics. This is due to the unscented and non-linear
property of the filter. Furthermore, a smoother is introduced
here to smooth out any of the noises during the estimation
process and accuracy of capturing all the variations could be
enhanced. [12] proposed an estimation of steering angle using
extended Kalman filter (EKF). The estimation was based on
the direct measurements from in-vehicle sensor data. However,
the non-linearity of the dynamics was compromised due to the
Jacobian nature of EKF.

The write-up of this paper is made as follows: The pro-
posed structure is for estimation of vehicle steering wheel an-
gle is formulated in Section II. Implementation and evaluation
of the scheme is made in Section III. Conclusions are made
in Section IV.

II. PROBLEM FORMULATION

The problem formulation of this paper follows follows the
structure of the following framework.

A. Estimation of Vehicle Steering Wheel Angle

The focus of this framework is to have an accurate calcula-
tion of the steering wheel angle. This can be further explained
by Fig. 1. A nonlinear state model of a formulated vehicle
is defined in (1), An observation model based on an i-th in-
built vehicle sensor is built on the state model in (2), sensor
model (3), dynamics of electric ground vehicle are derived in:
lateral motion motion (4), side-slip angle (5)-(10), yaw motion
of the vehicle (11), and steering angle (12)-(14) respectively.
A re-defined system model is expressed in (15). An unscented
Kalman filter (UKF) is then built with steps of initialization,
sigma points, time update, and measurement update in (16)-
(28).

1) Nonlinear State Model: Consider a nonlinear system
of a four-wheeled vehicle. It is represented by a Gaussian
approximate state distribution considering: 1) lateral motion,
2) yaw motion, 3) tire side-slip angle, and 4) steering angle.
The longitudinal motion is neglected here. The state model
considering all variables can be represented as:

x(t+ 1) = f
(
x(t),Vy(t),Ωz(t),Fyf (t),Fyr(t)

)
+ G(t)w(t) (1)

where f(.) is the known nonlinear function representing the
state transition model. x0(t) ∈ Rn×1 is the initial condition
of the state of vehicle at time-instant t. Vy(t) ∈ Rn×1 is the



Fig. 1. Proposed framework of steering wheel angle estimation

variable for lateral motion. Ωz(t) ∈ Rn×1 is the variable for
yaw motion. Fyf (t) ∈ Rn×1 is the force variable of tire for
front lateral motion, and Fyr(t) ∈ Rn×1 is the force variable
of the tire for rear lateral motion. G(t) ∈ Rn×n is the noise
transition matrix, which can be defined as a probability vector
whose elements are non-negative real numbers and sum to 1.
w(t) ∈ Rn×1 is the random process noise, t is the time instant,
and T refers to the number of time instants.

2) Observation Model: Let the electric vehicle described
in (1) be observed by the i-th in-vehicle sensor at time-instant
t as:

yi(t) = Hi(t)x(t) + ν(t) (2)

where yi(t) ∈ Rm×1 is the observation output of state of
vehicle at the i-th in-vehicle sensor, m is the number of
simultaneous observations for estimation made at time instant
t, H(t) ∈ Rm × n is the observation matrix of state, and ν(t)
∈ Rm×1 is the observation noise. Note that the noises in w(t)
and ν(t) in both the nonlinear state model and observation
model have been assumed initially correlated zero-mean, and
white Gaussian.

Once the observation model is extracted from the i-th in-
vehicle sensor, the sensor model is defined for each vehicle
dynamics.

3) Sensor Model: A sensor is modeled by a gain and an
additive noise, as given below:

Υs,i(t) = GsiΥ
0
s,i + νs,i (3)

where Υs,i, Υ 0
s,i, and νs,i are the measured sensor output, true

or fault-free output and additive sensor noise, respectively for
an i-th sensor. Here i is equal to 1, 2, 3, or 4 for the lateral
motion, side-slip angle, yaw motion and steering-wheel angle

respectively. The gain Gsi is such that 0 ≤ Gs,i ≤ 1, with the
degree of the fault ranging from no fault at all for Gs,i = 1
to a complete failure for Gsi = 0.

Once the sensor model is defined, the dynamics of the
vehicle along with motion equations are expressed.

4) Lateral Motion of Vehicle: Vehicle equations of motion
can be expressed in detail in [13]. Note the longitudinal
interaction of dynamics is neglected here. The lateral motion
Vy(t) can be represented as:

V̂y(t) = −Vx(t)Ωz(t) +
1

M(t)

[(
Fyfl(t) + Fyfr(t)

)
cosσ

+ Fyrl(t) + Fyrr(t)
]

(4)

where M(t) is the mass of vehicle, Fyfl(t), Fyfr(t), Fyrl(t),
and Fyrr(t) are the lateral forces of front left tire, front right
tire, rear left tire, and rear right tire respectively.

5) Side-Slip Angle of Vehicle: Let Fy =
(
Fyfl(t) +

Fyfr(t)
)
cosσ + Fyrl(t) + Fyrr(t). This makes (4) as:

V̂y(t) = −Vx(t)Ωz(t) +
1

M(t)
Fy(t) (5)

Taking M(t) and Vx(t) common makes (5) as:

Fy(t) = M(t)Vx(t)
( V̂y(t)

Vx(t)
+Ωz(t)

)
(6)

In (6), let 1
Vx(t)

≈ 1, V̂y(t) = β, Ωz(t) = γ. This makes (6)
as:

Fy(t) = M(t)Vx(t)
(
β̂ + γ

)
(7)



where M(t)Vx(t)
(
β̂+ γ

)
≈ Fyf (t)+Fyr(t). This makes (7)

as:

Fy(t) = Fyf (t) + Fyr(t) (8)

Since the lateral forces for front Fyf (t) and rear Fyfr(t) can
be expressed in directions, (8) can be written as:

Fy(t) =
(
Fyfl(t) + Fyfr(t)

)
cos δ

+
(
Fyrl(t) + Fyrr(t)

)
sin δ (9)

Let cos δ = αf = δ− θvf = δ−β− lfγ
Vx

. Also, let sin δ = αr

= −θvr = −β + lrγ
Vx

. This gives the representation of β̂ from
(7)-(9) as:

β̂ = − 1

M(t)Vx(t)

[(
Fyfl(t) + Fyfr(t)

)
+
(
Fyrl(t)

+ Fyrr(t)
)]
β −

[
1 +

1

M(t)Vx
2

((
Fyfl(t) + Fyfr(t)

)
× lf (t) +

(
Fyrl(t) + Fyrr(t)

)
× lr(t)

)]
γ

+
[Fyfl(t) + Fyfr(t)

M(t)Vx(t)

]
δ (10)

where lr(t) and lf (t) are the longitudinal distances from the
center-of-gravity of vehicle to rear and front wheels respec-
tively.

6) Yaw motion of Vehicle: The yaw motion of vehicle is
shown as:

Ω̂z(t) =
1

Iz(t)

[(
Fyfl(t) sinσ−Fyfr(t) sinσ

)
ls(t)−

(
Fyfr(t)

+ Fyrr(t)
)
lr(t)+

(
(Fyfr(t)) cosσ

)
lf (t)

]
(11)

where Iz(t) is the yaw inertia. ls(t) is the longitudinal
distances from the center-of-gravity of vehicle to side.

7) Steering Angle of Vehicle: Let Mz(t) =[(
Fyfl(t) sinσ − Fyfr(t) sinσ

)
ls(t) −

(
Fyfr(t) +

Fyrr(t)
)
lr(t) +

(
(Fyfr(t)) cosσ

)
lf (t)

]
. This makes (11) as:

Mz(t) = IzΩ̂z(t) (12)

where IzΩ̂z(t) ≈
(
Fyfl(t) + Fyrf (t)

)
lf (t) −

(
Fyrr(t) +

Fyrl(t)
)
lr(t). This makes (12) as:

Mz(t) =
(
Fyfl(t) + Fyrf (t)

)
lf (t)−

(
Fyrr(t)

+ Fyrl(t)
)
lr(t) (13)

Let γ be defined as the steering wheel angle, which can
give representation of γ from (11)–(13).

γ̂ =
1

Iz(t)

[
−
(
Fyfl(t) + Fyfr(t)

)
lf (t) +

(
Fyrl(t)

+ Fyrr(t)
)
lr(t)

]
β (14)

Thus the system model can be defined from vehicle dy-
namics in (10) and (14) as:

x(t) = [β̂ γ̂] (15)

8) Parameter Estimation using UKF-Based Smoother
(UKS): The purpose now is to individually estimate the
nonlinear dynamics of measurements from each local sensor.
This is achieved by UKS. Although UKF can perform well
in calculating the nonlinear dynamics of the system and
upgrading its covariance at each iteration. It is applied here to
find x̂t|T . This will result in obtaining better optimal estimates,
as compared to the estimates obtained when the final sub-
optimal UKF estimate is extrapolated backwards in time.

The proposed UKS scheme is outlined as follows. It starts
with an initial distribution of the latent variable, and the first
observation px(x1|z1) = px(z1|x1)px(x1). Note that UKS
assumed z1 has a Gaussian distribution, where px(z1) is
approximately N(µ0, σ

2
0) with a mean µ0 and a variance σ2

0 .
While calculating the output, χ(t) was generated from sigma
vectors transformation. For the forward recursion, the initial
condition starts from P0|−1 = var(zT0 ), and x0|−1 = 0. This
shows the availability of a−priori information at the previous
instant of time. For t= 1, ....T , the vehicle state and covariance
can be determined by the standard UKF [14] as. Let χi(t) be
the computed state as:

χi(t) =
[
[β̂ γ̂] w(t)

′
v

′
(t)

]
(16)

Let W be T = 2n+1 number of sigma-points. Here n is the
dimension in which the state space model is defined. Sigma
points are the sample points here which are chosen to represent
a state distribution. It facilitates the filter to generate a non-
linear initialization process. Each sigma-point is propagated to
compute mean and covariance in the prediction step for the
state model as follows:

x̂i(t+ 1) =
T∑

t=1

W (t)χi(t|t+ 1) (17)

P̂i(t+ 1) =
T∑

t=1

W (t)[χ̂i(t+ 1)− x̂i(t+ 1)]

[χ̂i(t+ 1)− x̂i(t+ 1)]
′

(18)

where P (t+1) represents the covariance of vehicle state. Once
the state model is propagated, the sigma-points are propagated
towards the observation model, followed by the respective
mean and covariance as:

yi(t+ 1) = Hi(t)χi(t+ 1) + wi(t) (19)

ŷi(t+ 1) =
T∑

t=1

W (t)yi(t+ 1) (20)

P̂i,ŷŷ(t|t+ 1) =

T∑
t=1

W (t)[yi(t+ 1)− ŷi(t+ 1)]

[yi(t+ 1)− ŷi(t+ 1)]
′

(21)

P̂i,x̂ŷ(t|t+ 1) =
T∑

t=1

W (t)[χ̂i(t+ 1)− x̂i(t+ 1)]

[yi(t+ 1)− ŷi(t+ 1)]
′

(22)

A gain K(t) is introduced here, which represents as:

K(t+ 1) = Pi,x̂ŷ(t+ 1)P−1
i,ŷŷ(t+ 1) (23)
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Fig. 2. Evaluation of side-slip angle and its estimate
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Fig. 3. Evaluation of steering angle and its estimate

This makes the updated state, covariance and posterior state
covariance as:

x̂i(t|t) = x̂i(t+ 1|t)+K(t+ 1)
(
y(t+ 1)

− ŷ(t+ 1)
)

(24)

P̂i(t|t) = P̂i(t+ 1|t)−Ki(t+ 1)Pi,yŷ(t|t+ 1)

K
′

i(t+1) (25)

P̂i(t+ 1|t) = F (t)P̂i(t|t)F
′
(t)+Q(t) (26)

The forward run, i.e. UKF, is calculated from (16) to (26).
To implement the smoother run, i.e. the backward recursion,
the sequence of T observations from UKF is required. This is
based on the principle that the smoothed property of the latent
variable is the probability at time instant t after a sequence of
T observations, i.e. p(x(t)|yT0 ). Note initial values of the state

and a − posteriori estimate covariance in (27)-(28) are final
values of x̂(t) and P (t|t) in the sequence calculated by UKF,
respectively. This is when t = T . Moreover, assume that the
function f(.) can be simplified to ∂f(x(t))

∂x(t) |x(t)=x′ (t) in (1) and
f(.) is linearized around x

′
(t). Thus, x(t|t − 1) = Fx̂(t|t).

For t = T, T − 1, ...., 0, the smoothed error covariance and
states are:

PS
i (t|T ) = F (t)PS

i (t− 1|T )F
′
(t) +

(
K(t)Hi(t)

PS
i (t− 1|T ) +Ki(t)Ri(e, t)

)(
Ki(t)Hi(t)

PS
i (t|T − 1) +Ki(t)Ri(e, t)

)′

(27)

x̂i(t|T ) = x̂i(t|t− 1) + PS
i (t|T ) (28)

Meanwhile, the desired initial estimate is x̂i(t|T ), which
estimates the state at t instants of time while the time sequence
T is known.

One minor limitation is the computational complexity of
the formulated UKS requires a considerable amount of storage
and latency. This is due to the simultaneous execution of
iteration for T + 1 instances both in forward and backward
run respectively. An optional standby option can be applied
to reduce the time size T . To avoid latency, the filter can be
run in the forward direction only, i.e. run (16)–(26) for the
parameter estimation.

III. NUMERICAL RESULTS

The numerical results have been generated here. The
derived vehicle dynamics of lateral motion of vehicle (4),
side-slip angle (5)-(10), yaw motion of vehicle (11), and
steering wheel angle of vehicle (12)-(14) are considered here
for simulation. The following parameters are considered here:
mass of vehicle M is 1410 kg, yaw moment of inertia Ωz

is 1800 kgm2, longitudinal distances from center-of-gravity
to side ls, front lf and rear lr are: 1000 m, 1100 m and
1500 m respectively. Fig. 2 and 3 show the evaluation of side-
slip angle and steering wheel angle respectively. A comparison
has been made with EKF [12]. The EKF was unable to
estimate the profiles in the beginning. This is due to its
slow initialization procedure, which resulted in a slow time-
tracking response. Likewise was case between 180−240 s time
window, where EKF lost the track. EKF may have suffered
here due to its property of using predefined model for adequate
approximation. This was not the case with UKS due to: 1)
sigma-points based non-linear initialization of the filter, 2)
unscented transformation, and 3) noise smoothing property of
the smoother, thereby capturing all the minor details of the
profile.

IV. CONCLUSIONS

Estimation of steering wheel angle of a four-wheeled
independently driven (FWID) electric vehicle is analyzed here.
Since side-slip angle plays a role in stability of vehicle steering
angle, both angles have been firstly derived by the vehicle
dynamics, and then being estimated using UKS. The UKS was
able to capture the dynamics thoroughly. Future work would
involve an adaptive steering wheel system, which considers a
hardware-in-loop (HIL) real-time estimation and safe control
of the vehicle steering.



REFERENCES

[1] H. M. Khalid, Q. Ahmed and J. C.-H. Peng, “Health monitoring of Li-
ion battery systems: A median expectation-based diagnosis approach
(MEDA)”, IEEE Transactions on Transportation Electrification, vol. 1,
no. 1, pp. 94–195, June 2015.

[2] H. M. Khalid, Q. Ahmed, J. C.-H. Peng and G. Rizzoni, “Current-split
estimation in Li-ion battery pack: An enhanced weighted recursive filter
method”, IEEE Transactions on Transportation Electrification, vol. 1,
no. 4, pp. 402–412, December 2015.

[3] H. M. Khalid, Q. Ahmed, J. C.-H. Peng and G. Rizzoni, “Pack-
level current-split estimation for health monitoring in Li-ion batteries”,
American Control Conference (ACC), Boston, MA, USA, 6-8 July,
2016.

[4] M. Paine, D. Paine, J. Ellway, C. Newland, S. Worden, “Safety
precautions and assessments for clashes involving electric vehicles,”
Proceedings of the 11th International Technical Conference on Exper-
imental Safety Vehicles, paper no. 11-0107, Washington DC: National
Highway Traffic Safety Administration, 2011.

[5] F. Tahami, S. Farhangi, “A Fuzzy-logic direct yaw moment control
system for all-wheel-drive electric vehicles,” Taylor and Francis, vol.
41, no. 3, pp. 203–221, 2004.

[6] B. L. Boada, M. J. L. Boada, and V. Diaz, “Fuzzy-logic applied to yaw
moment control for vehicle stability,” Taylor and Francis, vol. 43, no.
10, pp. 753–770, 2005.

[7] N. Matsumoto, and M. Tomizuka, “Vehicle lateral and yaw rate control
with two-independent control inputs,” ASME Transactions Journal of
Dyanmic System, Measurement and Control, vol. 114, pp. 606–613,
1992.

[8] R. Kazemi, M. K. Bahaghigat, K. Panahi, “Yaw moment control of
four wheel steering vehicle by fuzzy approach,” IEEE International
Conference on Industrial Technology, 21-24 April 2008, China.

[9] Y. Shibahata, “Progress and future direction of chassis control tech-
nology,” El-Sevier Annual Reviews in Control, vol. 29, pp. 151–158,
2005.

[10] M. Abe, Y. Kano, K. Suzuki, Y. Shibahata, Y. Furukawa, “Side-Slip
control to stabilize vehicle lateral motion by direct yaw moment,” JSAE
Review, vol. 22, no. 4, pp. 413–419, 2001.

[11] A. Niasar, H. Moghbeli and R. Kazemi, “Yaw moment control via
emotional adaptive neuro-fuzzy controller for independent rear wheel
drives of an electric vehicle,” IEEE Conference on Control Applications,
23-25 June, 2003, Istanbul, Turkey.

[12] G. Kim, J. Yoon, B. Kim, “Estimation of the steering angle based
on extended Kalman filter,” International Journal of Multimedia and
Ubiquitous Engineering, vol. 11, no. 12, pp. 295–306, Dec. 2016.

[13] R. Wang, and J. Wang, “Fault tolerant control with active fault di-
agnosis for four-wheel independently-driven electric ground vehicles,”
American Control Conference, pp. 3954–3959, Jun. 29–Jul. 01, 2011,
USA.

[14] G. A. Terejanu, “Unscented Kalman filter tutorial,” Technical Paper,
pp. 1–6, University of Buffalo, New York, USA.


