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Abstract—Complex traffic flow is a huge concern towards
achieving an efficient transportation system. It involves handling
all the operational issues and effects while regulating the traffic
system. These operational issues also have situation of uncertain-
ties and vagueness. In this paper, the uncertainties in the form
of perturbation have been the focus of study in the theory of
traffic. To achieve that, the moving-block train model has been
utilized for the perturbation analysis. Firstly, a delay-dependent
moving-block model is represented. This model considered the
dynamics of position and velocity in the perturbation modeling of
system. These dynamics have been extracted from a measurement
sensor. Secondly, an augmented Lyapunov-Krasoviskii function
(ALKF) is built on this model for the realization of feasible
region of stability. Numerical evaluations were made on a moving-
block model. Results showed an effective implementation of the
proposed scheme.
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I. INTRODUCTION

Traffic flow holds a huge stake in the growth of any devel-
oping country. It is an integral component of any transportation
structure. With its importance, it brings a lot of concerns
and factors, which are required to be modeled and analyzed.
These factors include: 1) the traffic control, and modeling,
2) transportation modeling, and planning, 3) rush hours for
pedestrians, vehicles and cyclists, 4) density of vehicles on
specific highways and crossings. An overlook to any of these
factors may adversely hamper the traffic system with severe
congestions, accidents and delays.

In railway traffic, a concept of moving-block train has
been introduced [1]–[3]. This concept has superseded the other
modes of railway traffic systems. This is due to the features it
provides while minimizing the factors which lead to problems
of complex traffic flow. On a track with multiple trains, the
speed and position of each train is kept in-check with way-
side control units, which hold the main key factors for the
bi-directional train to ground communication [4], [5]. This
computes to maintain an adequate headway with other trains
on the same track. This communication holds an inherited
dynamic of time-delay, which is varying to the number and
position of trains on the same track. This time-delay factor can
propagate perturbation while compromising on the stability of
a moving-block train system [6]. Propagation of perturbation
has resulted in chaotic situations particularly in power systems
[7], [8], where an engineered perturbation could also be in the
form of cyber-attacks [9]–[12]. In this paper, the main focus
is to handle the perturbation in the moving-block train.

In the situation of moving-block system, modeling a per-
turbation requires to capture the smallness of errors caused

by the time-delay. This also requires to consider the moving-
block system as a descriptor system, which could provide
access to the dynamical perturbation at any time-instant. While
considering the position and velocity of each train in moving-
block system with the way-side controller, an Augmented
Lyapunov-Krasoviskii function (ALKF) is built to study the
perturbation caused by the time-delay effects of moving-block
system. This function utilizes the L − 2 gain for providing
stability to time-delay based systems [13]–[15]. The property
of constructing the sufficient conditions around the time-delay
has resulted in providing an adequate stability to the system.

The paper is written as follows: The proposed perturbation
filter design is formulated in Section II. In Section III the
implementation and evaluation of the proposed scheme is
made. Conclusions are drawn in Section IV.

II. PROBLEM FORMULATION

The problem is formulated based on the perturbation filter
framework as shown in Fig. 1.

A. Perturbation Filter Framework

The framework is expressed in Fig. 1. It elaborates the
steps involved in the framework. In the 1st step, state model
variable for each train is defined, which is x1,t for train 1, x2,t
for train 2, and x3,t for train 3 respectively. Then, a general
delay-dependent state model for each moving train is repre-
sented. An observation output is representing the simultaneous
observations in the 2nd step. A sensor model for extracting
the simultaneous observation is represented in the 3rd step. A
velocity-based moving block train model is expressed in 4th

step. This model has involved all the three moving trains. This
is followed by computing dynamics of perturbation, position
and velocity in 5th and 6th step respectively. This stride will
analyze the delay-dependent stability of the system in 7th step.
This was followed by deriving ALKF stability criteria in step 8.
In the last step, a performance measure of the stability analysis
is expressed.

1) Delay-Dependent State Representation: Consider a lin-
ear time-variant system with communication delay Cd. These
communication delays are considered to model a moving
block-train. The general state model of the train 1 can be
represented as:

ẋ1(t) = A1(t)x1(t)+

p∑
j=1

A1,j(t)x1(t− Cd,j)+B1(t)u1(t)

+

p∑
j=1

B1,j(t)u1(t− Cd,j)+ϵ(t) (1)



Fig. 1. Train following model for a moving-block train

where x1(t) ∈ Rr is the state variable at time-instant t in
subspace R for train 1. Superscript r is the size of the state
vector in the subspace R, x0 is the initial value of state
variable x(t), A(t) ∈ Rr×r is a model matrix of the state
response, j = 1, 2, 3, ....p is for all constant matrices in Rr×r,
Cd,j = Cd,1, Cd,2, ...., Cd,p ∈ Rp+ of which the elements
are rationally independent from each other. B(t) is an input
transition matrix, and u(t) is the input vector. ϵ(t) represents
the perturbation in the moving block-train. t is the time-instant
such that t = 0, 1, 2, ....T , where T refers to the number of
time-instants.

2) Observation Model: The observation model of the
moving train 1 can be stated as:

Υ1(t) = H1(t)x1(t) +H1(t− Cd,j)x1(t− Cd,j)
+ψ1(t)ω1(t) (2)

In the observation model (2), Υ (t) ∈ R℘ is the observation
output of the moving block-train, ℘ is the number of simulta-
neous observations for estimation made at time-instant t, H(t)
∈ R℘ × r is the observation matrix of the state, ψ ∈ R℘ × r is a

real and known constant matrix. Note the noise w(t) has been
assumed initially uncorrelated zero-median white Gaussian.

Once the observation model is extracted from the dynamics
of electric ground vehicle, the sensor model is defined for each
degree of freedom.

3) Sensor Model: A sensor is modeled by a gain and an
additive noise, as given below:

Υs,k(t) = GskΥ
0
s,k + νs,k (3)

where Υs,k, Υ 0
s,k, and νs,k are the measured sensor output, true

or fault-free output and additive sensor noise, respectively for
a k-th sensor. Here k is equal to 1, 2 or 3 for train 1, 2, and
3 respectively. Here the gain Gsk is such that 0 ≤ Gs,k ≤ 1,
with the degree of the fault ranging from no fault at all for
Gs,k = 1 to a complete failure for Gsk = 0.

4) Velocity-based Moving-Block Train Model: Consider a
specific moving block-train system as shown in Fig. 1. It can be
seen that three trains are moving on a straight line with states
x1(t), x2(t) and x3(t) respectively. The lengths and locations
are consistent with the location and speed of the train [6]. The



moving block concept requires both knowledge of the exact
location and speed of all trains at any given time. The way-
side controller unit is sending command signals to trains. The
linearized model can be expressed as:

3∑
k=1

χ̇k(t) = V(t) +
3∑

k=1

ϵ̇k(t) (4)

where χk(t) represents the position of trains at time-instant t,
ϵ̇k(t) represents the perturbations at the velocity V(t) of the
k-th train.

5) Dynamics of Perturbation: Considering the effects of
position P(t) and velocity V(t) difference between trains, the
dynamics of perturbation can be represented as:

ϵ̈k(t) = − 1

Tk(t)
ϵ̇k(t) + SP,k(t)[ϵk+1(t− Cd,k+1)− ϵk(t

− Cd,k)] + SV,k(t)[ϵk+1(t− Cd,k+1)−ϵk(t−Cd,k)](5)

where Tk(t) is the time-constant that a train changes its
velocity to the velocity of the preceding train, SP,k(t) and
SV,k(t) are the sensitivities of the parameters of train with
respect to position and velocity errors respectively. Cd,k is the
communication delay between the k-th train and the wayside
controller.

6) Delay-based Dynamics of Position and Velocity: The
delay differential equations based on (5) for perturbations at
the position and velocity of the trains are:

ϵ̈1(t) = − 1

T1(t)
ẏ0(t) (6)

ϵ̈2(t) = − 1

T2(t)
ϵ̇2(t) + SP,2(t)[ϵ1(t− Cd,2)− ϵ2(t− Cd,2)]

+ SV,2(t)[ϵ̇1(t− Cd,2)− ϵ̇2(t− Cd,2)] (7)

ϵ̈3(t) = − 1

T3(t)
ϵ̇3(t) + SP,3(t)[ϵ2(t− Cd,2)− ϵ3(t− Cd,3)]

+ SV,3(t)[ϵ̇2(t− Cd,2)− ϵ̇3(t− Cd,3)] (8)

Note that since the train 1 is not following another train, there
is no delay term in (6) for the leading train. However, this is
not the case in train 2 and 3 respectively.

Once the time delay-based dynamic relationships between
the parameters of the moving block-train are determined,
the perturbation involved in the system is further analyzed.
This is due to the time-delay effect, which could further
complicate the system analysis and may affect the system
behavior and performance. To overcome these challenges, an
L2-based performance analysis is used to derive the system,
which would ensure delay-dependent robust stability to the
system.

7) Stability Analysis using Delay-Dependent L2: Let ϱ and
µ be the known constants to define the communication delay
Cd, such that 0 < Cd(t), and Ċd(t) ≤ µ. Given ϱ, µ > 0,
the system with u(.) = 0 is delay dependent asymptotically
stable with L2-performance bound γ if there exist symmetric
matrices, weighting matrices and a scalar γ > 0 satisfying the

following LMI:



Υ01 Υ02 Υ03 ϱMa ϱNa

∗ Υ04 Υ05 ϱMc ϱNc

∗ ∗ Υ06 ϱMs ϱNs

∗ ∗ ∗ −ϱOa 0
∗ ∗ ∗ ∗ −ϱOc

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

OpOΓ O′

G OpA
′

0(Oa +Oc)

0 O′

G,d OpA
′

d(Oa +Oc)
0 0 0
0 0 0
0 0 0

−γ2I Φ
′

0 OpO
′

Γ (Oa +Oc)
∗ −I 0
∗ ∗ −ϱ(Oa +Oc)


(9)

where Υo1 = OpAo + A
′

oOp + OQ + OR + Na + N
′

a +
Ma +M

′

a. Here Op, OQ, OR are the symmetric matrices. Na,
Nc, Ns, Ma, Mc, and Ms are the weighting matrices. Υo2 =
OpAd − 2Na + N t

c + M t
c . Υo3 = Na − Ma + N

′

s + M
′

s,
Υo4 = −(1−µ)OQ − 2Nc − 2N

′

c, Υo5 = Nc − Mc − 2N
′

s,
Υo6 = −OR + Ns + N

′

s − Ms − M
′

s.
However, due to the weighting norms and bounds, there is

a need to enhance the feasible region of stability criteria. This
is achieved by the Augmented Lyapunov-Krasoviskii function
(ALKF) by utilizing additive time-delays.

8) ALKF: Consider now the ALKF as:

V (t) = Vo(t) + Va(t) + Vc(t) + Vm(t) (10)

Vo(t) = e
′

fOP ef (
′) (11)

Va(t) =

∫ 0

−ϱ

∫ t

t+s

ė
′

f (α)(Oa +Oc)ėf (α)dαds (12)

Vc(t) =

∫ t

t−ϱ

e
′

f (s)ORef (s)ds (13)

Vm(t) =

∫ t

t−τ(t)

etf (s)OQef (s)ds (14)

where 0 < Op = O′

p, 0 < Oa = O′

a, 0 < Oc=O′

c, 0 <

OQ = O′

Q, 0 < OR = O′

R are the matrices of appropriate
dimensions. Note that the term V0(t) is representing standard
to nominal system, where there is no delay involved. The terms
Va(t) and Vm(t) correspond to the delay-dependent conditions.
The term Vc(t) is introduced for a relatively large time interval.
This interval can be defined from t−ϱ −→ t to t−Cj −→ t. A
computation gives the time-derivative of V (ef ) with w(t) = 0
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as:

V̇ (t) ≤ e
′

f (t)[OpAo +A
′

o +OQ +OR +Na +N
′

a +Ma

+M
′

a]ef (t) + 2e
′

f [OpAdo − 2Na +M
′

c +N
′

c]ef (t− Cj)
+2e

′

f (t)[Na −Ma +N
′

s +M
′

s]ef (t− ϱ) + 2ef
′
(t− Cj)

[Nc − 2N
′

s −Mc]ef (t− ϱ)− ef
′
(t− Cj)[(1− µ)OQ

+2Nc + 2N
′

c]ef (t− Cj ] + ef
′
(t− ϱ)[−OR +Ns

+N
′

s −Ms −M
′

s]ef (t− ϱ) + ϱėf
′
(t)(Oa

+Oc)ėf (t)−
∫ t

t−ϱ

ėf
′
(s)

(Oa +Oc)ėf (s)ds− 2ξ
′
(t)2N

∫ t

t−τ(t)

ėf (s)ds

−2ξ
′
(t)(−N)

∫ ′

t−ϱ

ėf (s)ds− 2ξ
′
(t)M

∫ t

t−ϱ

ėf (s)ds (15)

In view of (9) with OG = 0, OG,d = 0, OΓ = 0, and
Schur’s compliments, it follows from (15) that V̇ (t) < 0,
which establishes the internal asymptotic stability.

9) Performance Measure: Consider the performance mea-
sure J =

∫∞
0

(z
′
(s)z(s)− γ2w

′
(s)w(s))ds from the function

derived in (10–15). For any w(t) ∈ L2(0,∞) ̸= 0 and zero
initial condition x(0) = 0, it is expressed as:

J =

∫ ∞

0

(
z

′
(s)z(s)− γ2w

′
(s)w(s) + V̇ (x)

)
ds− V̇ (x)

≤
∫ ∞

0

(
z

′
(s)z(s)− γ2w

′
(s)w(s) + V̇ (x)

)
ds (16)

This gives:

z
′
(s)z(s)− γ2w

′
(s)w(s) + V̇ (s) = X̄

′
(s)Ῡ X̄

′
(s),

X̄ (s) = [ef
′
(s) ef

′
(s− Cj) ef

′
(t− ϱ) w(s)]

′
(17)

where Ῡ corresponds to Υo in (9) by Schur’s complements. It
is readily seen from (9) that:

z
′
(s)z(s)− γ2w

′
(s)w(s) + V̇ (s) < 0 (18)

for arbitrary s ∈ [t,∞), which implies for any w(t) ∈
L2 (0,∞) ̸= 0 that J < 0 leading to ∥ z(t) ∥2 < γ ∥ w(t) ∥2.

III. NUMERICAL RESULTS

A moving-block train system with three moving trains
has been considered here. Two trains are following a leading
train on a straight line. The dynamics of perturbation are
represented in (5), and the dynamics of position and velocity
are represented in (6), (7) and (8). The numerical values of
sensitivity with respect to position are: SP,1 = SP,2 = SP,3

= 0.132. The values of sensitivity with respect to velocity are:
SV,1 = SV,2 = SV,3 = 0.45. It can be seen in Fig. 2 that
initially the following train 2 and train 3 suffered due to time-
delay and differences of position and velocity. However, all
three trains eventually confirmed stability in the presence of
delay. This is due to the property of proposed function which
enhance the feasibility region of the delay-dependent moving
trains.

IV. CONCLUSIONS

The theory of traffic is discussed in this paper from the
perspective of perturbation in a moving-block train. The model
considered dynamics of delay, position and velocity of the
train. The implementation of the delay-dependent Lyapunov
function enhanced the feasibility region of the system. Perfor-
mance evaluation showed convincing results towards achieving
stability. Future implications could be towards an analysis
of a time-varying delay and with wireless communication in
moving-block train systems.
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