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767

he objective of this chapter is to introduce the fundamental notions of
electromechanical energy conversion, leading to an understanding of the
operation of various electromechanical transducers. The chapter also
serves as an introduction to the material on electric machines to be pre-

sented in Chapters 17 and 18. The foundations for the material introduced in this
chapter will be found in the circuit analysis chapters (1–7). In addition, the ma-
terial on power electronics (Chapter 11) is also relevant, especially with reference
to Chapters 17 and 18.

The subject of electromechanical energy conversion is one that should be
of particular interest to the non–electrical engineer, because it forms one of the
important points of contact between electrical engineering and other engineering
disciplines. Electromechanical transducers are commonly used in the design of
industrial and aerospace control systems and in biomedical applications, and they
form the basis of many common appliances. In the course of our exploration
of electromechanics, we shall illustrate the operation of practical devices, such
as loudspeakers, relays, solenoids, sensors for the measurement of position and
velocity, and other devices of practical interest.

Upon completion of the chapter, you should be able to:

Analyze simple magnetic circuits, to determine electrical and mechanical
performance and energy requirements.
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Size a relay or solenoid for a given application.

Describe the energy-conversion process in electromechanical systems.

Perform a simplified linear analysis of electromechanical transducers.

16.1 ELECTRICITY AND MAGNETISM

The notion that the phenomena of electricity and magnetism are interconnected was
first proposed in the early 1800s by H. C. Oersted, a Danish physicist. Oersted
showed that an electric current produces magnetic effects (more specifically, a
magnetic field). Soon after, the French scientist André Marie Ampère expressed
this relationship by means of a precise formulation, known as Ampère’s law. A few
years later, the English scientist Faraday illustrated how the converse of Ampère’s
law also holds true, that is, that a magnetic field can generate an electric field; in
short, Faraday’s law states that a changing magnetic field gives rise to a voltage.
We shall undertake a more careful examination of both Ampère’s and Faraday’s
laws in the course of this chapter.

As will be explained in the next few sections, the magnetic field forms a
necessary connection between electrical and mechanical energy. Ampère’s and
Faraday’s laws will formally illustrate the relationship between electric and mag-
netic fields, but it should already be evident from your own individual experience
that the magnetic field can also convert magnetic energy to mechanical energy
(for example, by lifting a piece of iron with a magnet). In effect, the devices we
commonly refer to as electromechanical should more properly be referred to as
electromagnetomechanical, since they almost invariably operate through a conver-
sion from electrical to mechanical energy (or vice versa) by means of a magnetic
field. Chapters 16 through 18 are concerned with the use of electricity and mag-
netic materials for the purpose of converting electrical energy to mechanical, and
back.

The Magnetic Field and Faraday’s Law

The quantities used to quantify the strength of a magnetic field are the magnetic
flux, , in units of webers (Wb); and the magnetic flux density, B, in units
of webers per square meter (Wb/m2), or teslas (T). The latter quantity, as well
as the associated magnetic field intensity, H (in units of amperes per meter, or
A/m) are vectors.1 Thus, the density of the magnetic flux and its intensity are
in general described in vector form, in terms of the components present in each
spatial direction (e.g., on the , and axes). In discussing magnetic flux density
and field intensity in this chapter and the next, we shall almost always assume that
the field is a scalar field, that is, that it lies in a single spatial direction. This will
simplify many explanations.

It is customary to represent the magnetic field by means of the familiar lines
of force (a concept also due to Faraday); we visualize the strength of a magnetic
field by observing the density of these lines in space. You probably know from a
previous course in physics that such lines are closed in a magnetic field, that is,
that they form continuous loops exiting at a magnetic north pole (by definition)

1We will use the boldface symbols B and H to denote the vector forms of and ; the standard
typeface will represent the scalar flux density or field intensity in a given direction.
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and entering at a magnetic south pole. The relative strengths of the magnetic fields
generated by two magnets could be depicted as shown in Figure 16.1.

Weaker magnetic field

NS

Stronger magnetic field

NS

Figure 16.1 Lines of force
in a magnetic field

Magnetic fields are generated by electric charge in motion, and their effect
is measured by the force they exert on a moving charge. As you may recall from
previous physics courses, the vector force f exerted on a charge of moving at
velocity u in the presence of a magnetic field with flux density B is given by the
equation

f u B (16.1)

where the symbol denotes the (vector) cross product. If the charge is moving at
a velocity u in a direction that makes an angle with the magnetic field, then the
magnitude of the force is given by

sin (16.2)

and the direction of this force is at right angles with the plane formed by the vectors
B and u. This relationship is depicted in Figure 16.2.

u

f

q

B

Figure 16.2 Charge
moving in a constant
magnetic field

The magnetic flux, , is then defined as the integral of the flux density over
some surface area. For the simplified (but often useful) case of magnetic flux lines
perpendicular to a cross-sectional area , we can see that the flux is given by the
following integral:

(16.3)

in webers (Wb), where the subscript indicates that the integral is evaluated
over the surface . Furthermore, if the flux were to be uniform over the cross-
sectional area (a simplification that will be useful), the preceding integral could
be approximated by the following expression:

(16.4)

Figure 16.3 illustrates this idea, by showing hypothetical magnetic flux lines
traversing a surface, delimited in the figure by a thin conducting wire.

A

Figure 16.3 Magnetic flux lines
crossing a surface

Faraday’s law states that if the imaginary surface were bounded by a
conductor—for example, the thin wire of Figure 16.3—then a changing magnetic
field would induce a voltage, and therefore a current, in the conductor. More
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precisely, Faraday’s law states that a time-varying flux causes an induced electro-
motive force, or emf, , as follows:

(16.5)

A little discussion is necessary at this point to explain the meaning of the
minus sign in equation 16.5. Consider the one-turn coil of Figure 16.4, which
forms a circular cross-sectional area, in the presence of a magnetic field with flux
density B oriented in a direction perpendicular to the plane of the coil. If the
magnetic field, and therefore the flux within the coil, is constant, no voltage will
exist across terminals and ; if, however, the flux were increasing and terminals

and were connected—for example, by means of a resistor, as indicated in
Figure 16.4(b)—current would flow in the coil in such a way that the magnetic flux
generated by the current would oppose the increasing flux. Thus, the flux induced
by such a current would be in the direction opposite to that of the original flux
density vector, B. This principle is known as Lenz’s law. The reaction flux would
then point downward in Figure 16.4(a), or into the page in Figure 16.4(b). Now,
by virtue of the right-hand rule, this reaction flux would induce a current flowing
clockwise in Figure 16.4(b), that is, a current that flows out of terminal and into
terminal . The resulting voltage across the hypothetical resistor would then be
negative. If, on the other hand, the original flux were decreasing, current would be
induced in the coil so as to reestablish the initial flux; but this would mean that the
current would have to generate a flux in the upward direction in Figure 16.4(a) (or
out of the page in Figure 16.4(b)). Thus, the resulting voltage would change sign.
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Current generating a magnetic flux
opposing the increase in flux due to B

Figure 16.4 Flux direction

The polarity of the induced voltage can usually be determined from physical
considerations; therefore the minus sign in equation 16.5 is usually left out. We
will use this convention throughout the chapter.

In practical applications, the size of the voltages induced by the changing
magnetic field can be significantly increased if the conducting wire is coiled many
times around, so as to multiply the area crossed by the magnetic flux lines many
times over. For an -turn coil with cross-sectional area , for example, we have
the emf

(16.6)

Figure 16.5 shows an -turn coil linking a certain amount of magnetic flux; you
can see that if is very large and the coil is tightly wound (as is usually the case in
the construction of practical devices), it is not unreasonable to presume that each
turn of the coil links the same flux. It is convenient, in practice, to define the flux
linkage, , as

(16.7)

so that

(16.8)

i

i

B

B

Flux lines

Right-hand rule

i

Figure 16.5 Concept of
flux linkage

Note that equation 16.8, relating the derivative of the flux linkage to the
induced emf, is analogous to the equation describing current as the derivative of
charge:

(16.9)
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In other words, flux linkage can be viewed as the dual of charge in a circuit analysis
sense, provided that we are aware of the simplifying assumptions just stated in the
preceding paragraphs, namely, a uniform magnetic field perpendicular to the area
delimited by a tightly wound coil. These assumptions are not at all unreasonable
when applied to the inductor coils commonly employed in electric circuits.

What, then, are the physical mechanisms that can cause magnetic flux to
change, and therefore to induce an electromotive force? Two such mechanisms
are possible. The first consists of physically moving a permanent magnet in the
vicinity of a coil—for example, so as to create a time-varying flux. The second
requires that we first produce a magnetic field by means of an electric current (how
this can be accomplished is discussed later in this section) and then vary the current,
thus varying the associated magnetic field. The latter method is more practical
in many circumstances, since it does not require the use of permanent magnets
and allows variation of field strength by varying the applied current; however, the
former method is conceptually simpler to visualize. The voltages induced by a
moving magnetic field are called motional voltages; those generated by a time-
varying magnetic field are termed transformer voltages. We shall be interested
in both in this chapter, for different applications.

In the analysis of linear circuits in Chapter 4, we implicitly assumed that the
relationship between flux linkage and current was a linear one:

(16.10)

so that the effect of a time-varying current was to induce a transformer voltage
across an inductor coil, according to the expression

(16.11)

This is, in fact, the defining equation for the ideal self-inductance, . In addition
to self-inductance, however, it is also important to consider themagnetic coupling
that can occur between neighboring circuits. Self-inductance measures the voltage
induced in a circuit by the magnetic field generated by a current flowing in the
same circuit. It is also possible that a second circuit in the vicinity of the first may
experience an induced voltage as a consequence of the magnetic field generated
in the first circuit. As we shall see in Section 16.4, this principle underlies the
operation of all transformers.

v1~i1

+

–

+

–

L1 L2

v2

M

v1~i1

+

– +

–

L1 L2

v2

M

Figure 16.6 Mutual
inductance

Self- and Mutual Inductance

Figure 16.6 depicts a pair of coils, one of which, 1, is excited by a current, 1,
and therefore develops a magnetic field and a resulting induced voltage, 1. The
second coil, 2, is not energized by a current, but links some of the flux generated
by the current 1 around 1 because of its close proximity to the first coil. The
magnetic coupling between the coils established by virtue of their proximity is
described by a quantity called mutual inductance and defined by the symbol .
The mutual inductance is defined by the equation

2
1 (16.12)

The dots shown in the two figures indicate the polarity of the coupling between the
coils. If the dots are at the same end of the coils, the voltage induced in coil 2 by a
current in coil 1 has the same polarity as the voltage induced by the same current
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in coil 1; otherwise, the voltages are in opposition, as shown in the lower part
of Figure 16.6. Thus, the presence of such dots indicates that magnetic coupling
is present between two coils. It should also be pointed out that if a current (and
therefore a magnetic field) were present in the second coil, an additional voltage
would be induced across coil 1. The voltage induced across a coil is, in general,
equal to the sum of the voltages induced by self-inductance and mutual inductance.

The linear variable differential transformer (LVDT) is a dis-
placement transducer based on the mutual inductance concept
just discussed. Figure 16.7 shows a simplified representation of
an LVDT, which consists of a primary coil, subject to AC excitation ( ex),
and of a pair of identical secondary coils, which are connected so as to result
in the output voltage

out 1 2

The ferromagnetic core between the primary and secondary coils can be
displaced in proportion to some external motion, , and determines the
magnetic coupling between primary and secondary coils. Intuitively, as the
core is displaced upward, greater coupling will occur between the primary
coil and the top secondary coil, thus inducing a greater voltage in the top
secondary coil. Hence, out 0 for positive displacements. The converse is
true for negative displacements. More formally, if the primary coil has
resistance and self-inductance , we can write

ex

and the voltages induced in the secondary coils are given by

1 1

2 2

so that

out 1 2

vex

Iron core

vout

x = 0

Nonmagnetic rod

~

x

+

–

–
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v2

+

+

–

i
+

–

Figure 16.7 Linear variable
differential transformer
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where 1 and 2 are the mutual inductances between the primary and the
respective secondary coils. It should be apparent that each of the mutual
inductances is dependent on the position of the iron core. For example, with
the core at the null position, 1 2 and out 0. The LVDT is typically
designed so that 1 2 is linearly related to the displacement of the core,

.
Because the excitation is by necessity an AC signal (why?), the output

voltage is actually given by the difference of two sinusoidal voltages at the
same frequency, and is therefore itself a sinusoid, whose amplitude and
phase depend on the displacement, . Thus, out is an amplitude-modulated
(AM) signal, similar to the one discussed in “Focus on Measurements:
Capacitive Displacement Transducer” in Chapter 4. To recover a signal
proportional to the actual displacement, it is therefore necessary to use a
demodulator circuit, such as the one discussed in “Focus on Measurements:
Peak Detector for Capacitive Displacement Transducer” in Chapter 8.

In practical electromagnetic circuits, the self-inductance of a circuit is not
necessarily constant; in particular, the inductance parameter, , is not constant, in
general, but depends on the strength of the magnetic field intensity, so that it will
not be possible to use such a simple relationship as , with constant.
If we revisit the definition of the transformer voltage,

(16.13)

we see that in an inductor coil, the inductance is given by

(16.14)

This expression implies that the relationship between current and flux in a magnetic
structure is linear (the inductance being the slope of the line). In fact, the properties
of ferromagnetic materials are such that the flux-current relationship is nonlinear,
as we shall see in Section 16.3, so that the simple linear inductance parameter
used in electric circuit analysis is not adequate to represent the behavior of the
magnetic circuits of the present chapter. In any practical situation, the relationship
between the flux linkage, , and the current is nonlinear, and might be described
by a curve similar to that shown in Figure 16.8. Whenever the - curve is not
a straight line, it is more convenient to analyze the magnetic system in terms of
energy calculations, since the corresponding circuit equation would be nonlinear.

Field
energy

Co-energy

i (A)

W'm

 (Wb-turns)

0

Wm

Figure 16.8 Relationship
between flux linkage, current,
energy, and co-energy.

In a magnetic system, the energy stored in the magnetic field is equal to the
integral of the instantaneous power, which is the product of voltage and current,
just as in a conventional electrical circuit:

(16.15)

However, in this case, the voltage corresponds to the induced emf, according to
Faraday’s law:

(16.16)
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and is therefore related to the rate of change of the magnetic flux. The energy
stored in the magnetic field could therefore be expressed in terms of the current
by the integral

(16.17)

It should be straightforward to recognize that this energy is equal to the area above
the - curve of Figure 16.8. From the same figure, it is also possible to define a
fictitious (but sometimes useful) quantity called co-energy, equal to the area under
the curve and identified by the symbol . From the figure, it is also possible to
see that the co-energy can be expressed in terms of the stored energy by means of
the following relationship:

(16.18)

Example 16.1 illustrates the calculation of energy, co-energy, and induced voltage
using the concepts developed in these paragraphs.

The calculation of the energy stored in the magnetic field around a magnetic
structure will be particularly useful later in the chapter, when the discussion turns
to practical electromechanical transducers and it will be necessary to actually
compute the forces generated in magnetic structures.

Problem

Compute the energy, co-energy, and incremental linear inductance for an iron core
inductor with a given - relationship. Also compute the voltage across the terminals
given the current through the coil.

Solution

Known Quantities: - relationship; nominal value of ; coil resistance; coil current.

Find: ; ; ; .

Schematics, Diagrams, Circuits, and Given Data: 0 5 2; 0 0 5 V s;
1 ; 0 625 0 01 sin 400 .

Assumptions: Assume that the magnetic equation can be linearized and use the linear
model in all circuit calculations.

Analysis:

1. Calculation of energy and co-energy. From equation 16.17, we calculate the energy
as follows.

0

2

2

3

6

The above expression is valid in general; in our case, the inductor is operating at a
nominal flux linkage 0 0 5 V-s and we can therefore evaluate the energy to be:

0

2

2

3

6 0 5

0 1458 J
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Thus, after equation 16.18, the co-energy is given by:

where

0 5 2 0 625 A

and

0 625 0 5 0 1458 0 1667 J

2. Calculation of incremental inductance. If we know the nominal value of flux linkage
(i.e., the operating point), we can calculate a linear inductance , valid around
values of close to the operating point 0:

0

1

1 0 5

0 667 H

The above expressions can be used to analyze the circuit behavior of the inductor
when the flux linkage is around 0 5 V s, or, equivalently, when the current through
the inductor is around 0.625 A.

3. Circuit analysis using linearized model of inductor. We can use the incremental linear
inductance calculated above to compute the voltage across the inductor in the
presence of a current 0 625 0 01 sin 400 . Using the basic circuit definition
of an inductor with series resistance , the voltage across the inductor is given by:

[0 625 0 01 sin 400 ] 1 0 667 4 cos 400

0 625 0 01 sin 400 2 668 cos 400 0 625 2 668 sin 400 89 8

Comments: The linear approximation in this case is not a bad one: the small sinusoidal
current is oscillating around a much larger average current. In this type of situation, it is
reasonable to assume that the inductor behaves linearly. This example explains why the
linear inductor model introduced in Chapter 4 is an acceptable approximation in most
circuit analysis problems.

Ampère’s Law

As explained in the previous section, Faraday’s law is one of two fundamental
laws relating electricity to magnetism. The second relationship, which forms a
counterpart to Faraday’s law, is Ampère’s law. Qualitatively, Ampère’s law states
that the magnetic field intensity, H, in the vicinity of a conductor is related to the
current carried by the conductor; thus Ampère’s law establishes a dual relationship
with Faraday’s law.

In the previous section, we described the magnetic field in terms of its flux
density, B, and flux . To explain Ampère’s law and the behavior of magnetic
materials, we need to define a relationship between the magnetic field intensity,
H, and the flux density, B. These quantities are related by:

B H 0H Wb/m2 or T (16.19)

where the parameter is a scalar constant for a particular physical medium (at
least, for the applications we consider here) and is called the permeability of the
medium. The permeability of a material can be factored as the product of the
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permeability of free space, 0 4 10 7 H/m, times the relative permeability,
, which varies greatly according to the medium. For example, for air and for most

electrical conductors and insulators, is equal to 1. For ferromagnetic materials,
the value of can take values in the hundreds or thousands. The size of
represents a measure of the magnetic properties of the material. A consequence of
Ampère’s law is that, the larger the value of , the smaller the current required to
produce a large flux density in an electromagnetic structure. Consequently, many
electromechanical devices make use of ferromagnetic materials, called iron cores,
to enhance their magnetic properties. Table 16.1 gives approximate values of
for some common materials.

Table 16.1 Relative
permeabilities for common
materials

Material r

Air 1

Permalloy 100,000

Cast steel 1,000

Sheet steel 4,000

Iron 5,195

Conversely, the reason for introducing the magnetic field intensity is that
it is independent of the properties of the materials employed in the construction
of magnetic circuits. Thus, a given magnetic field intensity, H, will give rise
to different flux densities in different materials. It will therefore be useful to
define sources of magnetic energy in terms of the magnetic field intensity, so that
different magnetic structures and materials can then be evaluated or compared for
a given source. In analogy with electromotive force, this “source” will be termed
magnetomotive force (mmf). As stated earlier, both the magnetic flux density
and field intensity are vector quantities; however, for ease of analysis, scalar fields
will be chosen by appropriately selecting the orientation of the fields, wherever
possible.

Ampère’s law states that the integral of the vector magnetic field intensity,
H, around a closed path is equal to the total current linked by the closed path, :

H l (16.20)

where l is an increment in the direction of the closed path. If the path is in the
same direction as the direction of the magnetic field, we can use scalar quantities
to state that

(16.21)

Figure 16.9 illustrates the case of a wire carrying a current , and of a circular
path of radius surrounding the wire. In this simple case, you can see that the
magnetic field intensity, H, is determined by the familiar right-hand rule. This
rule states that if the direction of the current points in the direction of the thumb
of one’s right hand, the resulting magnetic field encircles the conductor in the
direction in which the other four fingers would encircle it. Thus, in the case of
Figure 16.9, the closed-path integral becomes equal to 2 , since the path
and the magnetic field are in the same direction, and therefore the magnitude of
the magnetic field intensity is given by

2
(16.22)

Now, the magnetic field intensity is unaffected by the material surrounding
the conductor, but the flux density depends on the material properties, since

. Thus, the density of flux lines around the conductor would be far greater in
the presence of a magnetic material than if the conductor were surrounded by air.
The field generated by a single conducting wire is not very strong; however, if we
arrange the wire into a tightly wound coil with many turns, we can greatly increase
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By the right-hand rule, the
current, i, generates a magnetic 
field intensity, H, in the direction 
shown.

H

r

i

Circular
path

Conducting
wire

Figure 16.9 Illustration of Ampère’s law

the strength of the magnetic field. For such a coil, with turns, one can verify
visually that the lines of force associated with the magnetic field link all of the turns
of the conducting coil, so that we have effectively increased the current linked by
the flux lines -fold. The product is a useful quantity in electromagnetic
circuits, and is called the magnetomotive force,2 (often abbreviated mmf), in
analogy with the electromotive force defined earlier:

ampere-turns (16.23)

Figure 16.10 illustrates the magnetic flux lines in the vicinity of a coil. The
magnetic field generated by the coil can be made to generate a much greater flux
density if the coil encloses a magnetic material. The most common ferromagnetic
materials are steel and iron; in addition to these, many alloys and oxides of iron—
as well as nickel—and some artificial ceramic materials called ferrites also exhibit
magnetic properties. Winding a coil around a ferromagnetic material accomplishes
two useful tasks at once: it forces the magnetic flux to be concentrated near the coil
and—if the shape of the magnetic material is appropriate—completely confines
the flux within the magnetic material, thus forcing the closed path for the flux
lines to be almost entirely enclosed within the ferromagnetic material. Typical
arrangements are the iron-core inductor and the toroid of Figure 16.11. The flux
densities for these inductors are given by the expressions

Flux density for tightly wound circular coil (16.24)

2 2
Flux density for toroidal coil (16.25)

Intuitively, the presence of a high-permeability material near a source of
magnetic flux causes the flux to preferentially concentrate in the high- material,
rather than in air, much as a conducting path concentrates the current produced
by an electric field in an electric circuit. In the course of this chapter, we shall

2Note that, although dimensionally equal to amperes, the units of magnetomotive force are
ampere-turns.
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i

i

Figure 16.10 Magnetic field in the vicinity of a
current-carrying coil

i

Iron-core inductor

Toroidal inductor

r2

r1

r

l

Figure 16.11 Practical inductors

continue to develop this analogy between electric circuits and magnetic circuits.
Figure 16.12 depicts an example of a simple electromagnetic structure, which, as
we shall see shortly, forms the basis of the practical transformer.

Table 16.2 summarizes the variables introduced thus far in the discussion of
electricity and magnetism.

A (cross-sectional area)

Ferromagnetic
material with

r>>l

Mean path of magnetic flux lines
(note how the path of the flux is

enclosed within the magnetic structure)

i

l

Figure 16.12 A simple
electromagnetic structure
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Table 16.2 Magnetic variables and units

Variable Symbol Units

Current I A

Magnetic flux density B Wb/m2 T

Magnetic flux Wb

Magnetic field intensity H A/m

Electromotive force e V

Magnetomotive force A t

Flux linkage Wb t

Check Your Understanding

16.1 A coil having 100 turns is immersed in a magnetic field that is varying uniformly
from 80 mWb to 30 mWb in 2 seconds. Find the induced voltage in the coil.

16.2 The magnitude of H at a radius of 0.5 m from a long linear conductor is
1 A m 1. Find the current in the wire.

16.3 The relation between the flux linkages and the current for a magnetic material is
given by 6 2 1 Wb t. Determine the energy stored in the magnetic field for

2 Wb t.

16.4 Verify that for the linear case, where the flux is proportional to the mmf, the energy
stored in the magnetic field is 1

2
2.

16.2 MAGNETIC CIRCUITS

It is possible to analyze the operation of electromagnetic devices such as the one
depicted in Figure 16.12 by means of magnetic equivalent circuits, similar in many
respects to the equivalent electrical circuits of the earlier chapters. Before we can
present this technique, however, we need to make a few simplifying approxima-
tions. The first of these approximations assumes that there exists a mean path
for the magnetic flux, and that the corresponding mean flux density is approxi-
mately constant over the cross-sectional area of the magnetic structure. Thus, a
coil wound around a core with cross-sectional area will have flux density

(16.26)

where is assumed to be perpendicular to the direction of the flux lines. Figure
16.12 illustrates such a mean path and the cross-sectional area, . Knowing the
flux density, we obtain the field intensity:

(16.27)

But then, knowing the field intensity, we can relate the mmf of the coil, , to the
product of the magnetic field intensity, , and the length of the magnetic (mean)
path, , for one leg of the structure:

(16.28)
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In summary, the mmf is equal to the magnetic flux times the length of the magnetic
path, divided by the permeability of the material times the cross-sectional area:

(16.29)

A review of this formula reveals that the magnetomotive force, , may be viewed as
being analogous to the voltage source in a series electrical circuit, and that the flux,

, is then equivalent to the electrical current in a series circuit and the term
to the magnetic resistance of one leg of the magnetic circuit. You will note that
the term is very similar to the term describing the resistance of a cylindrical
conductor of length and cross-sectional area , where the permeability, , is
analogous to the conductivity, . The term occurs frequently enough to
be assigned the name of reluctance, and the symbol . It is also important to
recognize the relationship between the reluctance of a magnetic structure and its
inductance. This can be derived easily starting from equation 16.14:

2

(H) (16.30)

In summary, when an -turn coil carrying a current is wound around a
magnetic core such as the one indicated in Figure 16.12, the mmf, , generated
by the coil produces a flux, , that is mostly concentrated within the core and is
assumed to be uniform across the cross section. Within this simplified picture,
then, the analysis of a magnetic circuit is analogous to that of resistive electrical
circuits. This analogy is illustrated in Table 16.3 and in the examples in this section.

Table 16.3 Analogy between electric and magnetic circuits

Electrical quantity Magnetic quantity

Electrical field intensity, , V/m Magnetic field intensity, , A t/m
Voltage, , V Magnetomotive force, , A t

Current, , A Magnetic flux, , Wb

Current density, , A/m2 Magnetic flux density, , Wb/m2

Resistance, , Reluctance, , A t/Wb
Conductivity, , 1/ m Permeability, , Wb/A m

The usefulness of the magnetic circuit analogy can be emphasized by ana-
lyzing a magnetic core similar to that of Figure 16.12, but with a slightly modified
geometry. Figure 16.13 depicts the magnetic structure and its equivalent circuit
analogy. In the figure, we see that the mmf, , excites the magnetic circuit,
which is composed of four legs: two of mean path length 1 and cross-sectional
area 1 1 , and the other two of mean length 2 and cross section 2 2 .
Thus, the reluctance encountered by the flux in its path around the magnetic core
is given by the quantity series, with

series 2 1 2 2

and

1
1

1
2

2

2
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Analog circuit
representation

A magnetic structure excited by
a magnetomotive force    = Ni

d2

d1

i

2 2

Figure 16.13 Analogy between magnetic and electric circuits

It is important at this stage to review the assumptions and simplifications
made in analyzing the magnetic structure of Figure 16.13:

1. All of the magnetic flux is linked by all of the turns of the coil.

2. The flux is confined exclusively within the magnetic core.

3. The density of the flux is uniform across the cross-sectional area of the
core.

You can probably see intuitively that the first of these assumptions might not
hold true near the ends of the coil, but that it might be more reasonable if the coil
is tightly wound. The second assumption is equivalent to stating that the relative
permeability of the core is infinitely higher than that of air (presuming that this is
the medium surrounding the core): if this were the case, the flux would indeed be
confined within the core. It is worthwhile to note that we make a similar assumption
when we treat wires in electric circuits as perfect conductors: the conductivity of
copper is substantially greater than that of free space, by a factor of approximately
1015. In the case of magnetic materials, however, even for the best alloys, we have
a relative permeability only on the order of 103 to 104. Thus, an approximation
that is quite appropriate for electric circuits is not nearly as good in the case of
magnetic circuits. Some of the flux in a structure such as those of Figures 16.12
and 16.13 would thus not be confined within the core (this is usually referred to
as leakage flux). Finally, the assumption that the flux is uniform across the core
cannot hold for a finite-permeability medium, but it is very helpful in giving an
approximate mean behavior of the magnetic circuit.

The magnetic circuit analogy is therefore far from being exact. However,
short of employing the tools of electromagnetic field theory and of vector calculus,
or advanced numerical simulation software, it is the most convenient tool at the
engineer’s disposal for the analysis of magnetic structures. In the remainder of this
chapter, the approximate analysis based on the electric circuit analogy will be used
to obtain approximate solutions to problems involving a variety of useful magnetic
circuits, many of which you are already familiar with. Among these will be the
loudspeaker, solenoids, automotive fuel injectors, sensors for the measurement of
linear and angular velocity and position, and other interesting applications.
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Problem

Calculate the flux, flux density, and field intensity on the magnetic structure of
Figure 16.14.

l

i =
0.1 A

l = 0.1 m, h = 0.1 m, w = 0.01 m

w

h
N turns

Figure 16.14

Solution

Known Quantities: Relative permeability; number of coil turns; coil current; structure
geometry.

Find: ; ; .

Schematics, Diagrams, Circuits, and Given Data: 1 000; 500 turns;
0.1 A. The magnetic circuit geometry is defined in Figures 16.14 and 16.15.

Mean
path

0.08 m

0.09 m

0.1 m

Figure 16.15

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.

Analysis:

1. Calculation of magnetomotive force. From equation 16.28, we calculate the
magnetomotive force:

mmf 500 turns 0 1 A 50 A t

2. Calculation of mean path. Next, we estimate the mean path of the magnetic flux. On
the basis of the assumptions, we can calculate a mean path that runs through the
geometric center of the magnetic structure, as shown in Figure 16.15. The path length
is:

4 0 09 m 0 36 m

The cross sectional area is 2 0 01 2 0 0001 m2.

3. Calculation of reluctance. Knowing the magnetic path length and cross sectional area
we can calculate the reluctance of the circuit:

0

0 36

1 000 4 10 7 0 0001
2 865 106 A t/Wb

The corresponding equivalent magnetic circuit is shown in Figure 16.16.

+
_

50 A• t

2.865  106 A• t
Wb

Figure 16.16

4. Calculation of magnetic flux, flux density and field intensity. On the basis of the
assumptions, we can now calculate the magnetic flux:

50 A t

2 865 106 A t/Wb
1 75 10 5 Wb

the flux density:

A 2

1 75 10 5 Wb

0 0001 m2
0 175 Wb/m2

and the magnetic field intensity:

0

0 175 Wb/m2

1 000 4 10 7 H/m
139 A t/m

Comments: This example has illustrated all the basic calculations that pertain to
magnetic structures. Remember that the assumptions stated in this example (and earlier in
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the chapter) simplify the problem and make its approximate numerical solution possible in
a few simple steps. In reality, flux leakage, fringing, and uneven distribution of flux across
the structure would require the solution of three-dimensional equations using
finite-element methods. These methods are not discussed in this book, but are necessary
for practical engineering designs.

The usefulness of these approximate methods is that you can, for example, quickly
calculate the approximate magnitude of the current required to generate a given magnetic
flux or flux density. You shall soon see how these calculations can be used to determine
electromagnetic energy and magnetic forces in practical structures.

The methodology described in this example is summarized in the following
methodology box.

F O C U S O N M E T H O D O L O G Y

Magnetic Structures and Equivalent Magnetic Circuits

Direct Problem:

Given—The structure geometry and the coil parameters (number of turns,
current).

Calculate—The magnetic flux in the structure.

1. Compute the mmf.

2. Determine the length and cross section of the magnetic path for each
continuous leg or section of the path.

3. Calculate the equivalent reluctance of the leg.

4. Generate the equivalent magnetic circuit diagram and calculate the
total equivalent reluctance.

5. Calculate the flux, flux density, and magnetic field intensity, as needed.

Inverse Problem:

Given—The desired flux or flux density and structure geometry.

Calculate—The necessary coil current and number of turns.

1. Calculate the total equivalent reluctance of the structure from the
desired flux.

2. Generate the equivalent magnetic circuit diagram.

3. Determine the mmf required to establish the required flux.

4. Choose the coil current and number of turns required to establish the
desired mmf.

Consider the analysis of the same simple magnetic structure when an air
gap is present. Air gaps are very common in magnetic structures; in rotating
machines, for example, air gaps are necessary to allow for free rotation of the
inner core of the machine. The magnetic circuit of Figure 16.17(a) differs from



784 Chapter 16 Principles of Electromechanics

the circuit analyzed in Example 16.2 simply because of the presence of an air gap;
the effect of the gap is to break the continuity of the high-permeability path for the
flux, adding a high-reluctance component to the equivalent circuit. The situation
is analogous to adding a very large series resistance to a series electrical circuit.
It should be evident from Figure 16.17(a) that the basic concept of reluctance still
applies, although now two different permeabilities must be taken into account.

The equivalent circuit for the structure of Figure 16.17(a) may be drawn as
shown in Figure 16.17(b), where is the reluctance of path , for 1 2 5,
and is the reluctance of the air gap. The reluctances can be expressed as follows,
if we assume that the magnetic structure has a uniform cross-sectional area, :

1
1

0
2

2

0
3

3

0

4
4

0
5

5

0 0

(16.31)

Note that in computing , the length of the gap is given by and the permeability
is given by 0, as expected, but is different from the cross-sectional area, ,
of the structure. The reason is that the flux lines exhibit a phenomenon known as
fringing as they cross an air gap. The flux lines actually bow out of the gap defined
by the cross section, , not being contained by the high-permeability material any
longer. Thus, it is customary to define an area that is greater than , to account
for this phenomenon. Example 16.3 describes in more detail the procedure for
finding and also discusses the phenomenon of fringing.

+
_

1

2

3

g

4

5

(b)

(a)

i

l

l

 l

l

l
N

r 0
air
gap

0

Figure 16.17 (a) Magnetic
circuit with air gap; (b)
Equivalent representation of
magnetic circuit with an air gap

Problem

Compute the equivalent reluctance of the magnetic circuit of Figure 16.18 and the flux
density established in the bottom bar of the structure.

i = l A

0.01 m

0.005m

100 turns

Bottom plate

0.01 m

0.025 m

0.
01

 m

0.05 m

0.
01

 m

0.01 m

0.1 m

Figure 16.18 Electromagnetic structure with air
gaps
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Solution

Known Quantities: Relative permeability; number of coil turns; coil current; structure
geometry.

Find: ; .

Schematics, Diagrams, Circuits, and Given Data: 10 000; 100 turns;
1 A.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.

Analysis:

1. Calculation of magnetomotive force. From equation 16.28, we calculate the
magnetomotive force:

mmf 100 turns 1 A 100 A t

2. Calculation of mean path. Figure 16.19 depicts the geometry. The path length is:

1 2 3 4 5 6

However, the path must be broken into three legs: the upside-down U-shaped
element, the air gaps, and the bar. We cannot treat these three parts as one because the
relative permeability of the magnetic material is very different from that of the air
gap. Thus, we define the following three paths, neglecting the very small (half bar
thickness) lengths 5 and 6:

1 2 3 bar 4 5 6 4 gap

where

0 18 m bar 0 09 m gap 0 05 m.

Next, we compute the cross-sectional area. For the magnetic structure, we calculate
the square cross section to be: 2 0 01 2 0 0001 m2. For the air gap, we
will make an empirical adjustment to account for the phenomenon of fringing, that is,
to account for the tendency of the magnetic flux lines to bow out of the magnetic path,
as illustrated in Figure 16.20. A rule of thumb used to account for fringing is to add
the length of the gap to the actual cross-sectional area. Thus:

gap 0 01 m 2 0 0125 2 0 15625 10 3 m2

l5 l6

l1

l2l3

0.09 m

0.045 m

0.025 m
l4

lglg

Figure 16.19

Ferromagnetic
material Lines of flux

Air gap

lg

Figure 16.20 Fringing
effects in air gap

3. Calculation of reluctance. Knowing the magnetic path length and cross sectional area
we can calculate the reluctance of each of the legs of the circuit:

0

0 18

10 000 4 10 7 0 0001

1 43 105 A t/Wb

bar
bar

bar

bar

0

0 09

10 000 4 10 7 0 0001

0 715 105 A t/Wb

gap
gap

gap gap

gap

0 gap

0 05

4 10 7 0 0001
2 55 107 A t/Wb

Note that the reluctance of the air gap is dominant with respect to that of the magnetic
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structure, in spite of the small dimension of the gap. This is because the relative
permeability of the air gap is much smaller than that of the magnetic material.

The equivalent reluctance of the structure is:

eq bar gap 1 43 105 0 715 105 2 55 107

2 57 107

Thus,

eq gap

Since the gap reluctance is two orders of magnitude greater than the reluctance of the
magnetic structure, it is reasonable to neglect the magnetic structure reluctance and
work only with the gap reluctance in calculating the magnetic flux.

4. Calculation of magnetic flux and flux density in the bar. From the result of the
preceding sub-section, we calculate the flux

eq gap

100 A t

2 55 107 A t/Wb
3 92 10 6 Wb

and the flux density in the bar:

bar
3 92 10 6 Wb

0 0001 m2
39 2 10 3 Wb/m2

Comments: It is very common to neglect the reluctance of the magnetic material
sections in these approximate calculations. We shall make this assumption very frequently
in the remainder of the chapter.

Problem

Figure 16.21 depicts the configuration of an electric motor. The electric motor consists of
a stator and of a rotor. Compute the air gap flux and flux density.

Stator

I

Rotor

lgap, Agap

N turns

0

Figure 16.21 Cross-sectional
view of synchronous motor

Solution

Known Quantities: Relative permeability; number of coil turns; coil current; structure
geometry.
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Find: gap; gap.

Schematics, Diagrams, Circuits, and Given Data: ; 1 000 turns;
10 A; gap 0 01 m; gap 0 1 m2. The magnetic circuit geometry is defined in
Figure 16.21.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the magnetic
core; the flux density is uniform. The reluctance of the magnetic structure is negligible.

Analysis:

1. Calculation of magnetomotive force. From equation 16.28, we calculate the
magnetomotive force:

mmf 1 000 turns 10 A 10 000 A t

2. Calculation of reluctance. Knowing the magnetic path length and cross sectional
area, we can calculate the equivalent reluctance of the two gaps:

gap
gap

gap gap

gap

0 gap

0 01

4 10 7 0 2
3 97 104 A t/Wb

eq 2 gap 7 94 104 A t/Wb

3. Calculation of magnetic flux and flux density. From the results of steps 1 and 2, we
calculate the flux

eq

10 000 A t

7 94 104 A t/Wb
0 126 Wb

and the flux density:

bar
0 126 Wb

0 1 m2
1 26 Wb/m2

Comments: Note that the flux and flux density in this structure are significantly larger
than in the preceding example because of the larger mmf and larger gap area of this
magnetic structure.

The subject of electric motors will be formally approached in Chapter 17.

Problem

Figure 16.23 depicts the configuration of a magnetic structure with two air gaps.
Determine the equivalent circuit of the structure.

Solution

Known Quantities: Structure geometry.

Find: Equivalent circuit diagram.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the magnetic
core; the flux density is uniform. The reluctance of the magnetic structure is negligible.

Analysis:

1. Calculation of magnetomotive force.

mmf
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2. Calculation of reluctance. Knowing the magnetic path length and cross sectional area
we can calculate the equivalent reluctance of the two gaps:

gap 1
gap 1

gap 1 gap 1

gap 1

0 gap 1

gap 1
gap 2

gap 2 gap 2

gap 2

0 gap 2

3. Calculation of magnetic flux and flux density. Note that the flux must now divide
between the two legs, and that a different air-gap flux will exist in each leg. Thus:

1
gap 1

0 gap 1

gap 1

2
gap 2

0 gap 2

gap 2

and the total flux generated by the coil is 1 2.
The equivalent circuit is shown in the bottom half of Figure 16.22.

N turns Igap–1

I

Agap–1 Igap–2 Agap–2

+
_

1 2

Ni

Figure 16.22 Magnetic
structure with two air gaps

Comments: Note that the two legs of the structure act like resistors in a parallel circuit.

Problem

1. Determine the inductance and the magnetic stored energy for the structure of
Fig. 16.17(a). The structure is identical to that of Example 16.2 except for the air gap.

2. Assume that the flux density in the air gap varies sinusoidally as 0 sin .
Determine the induced voltage across the coil, .

Solution

Known Quantities: Relative permeability; number of coil turns; coil current; structure
geometry; flux density in air gap.

Find: ; ; .

Schematics, Diagrams, Circuits, and Given Data: ; 500 turns; 0 1 A.
The magnetic circuit geometry is defined in Figures 16.14 and 16.15. The air gap has

0 002 m. 0 0 6 Wb/m2.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the magnetic
core; the flux density is uniform. The reluctance of the magnetic structure is negligible.

Analysis:

1. Part 1. To calculate the inductance of this magnetic structure, we use equation 16.30:

2

Thus, we need to first calculate the reluctance. Assuming that the reluctance of the
structure is negligible, we have:

gap
gap

gap gap

gap

0 gap

0 002

4 10 7 0 0001
1 59 107 A t/Wb
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and
2 5002

1 59 107
0 157 H

Finally, we can calculate the stored magnetic energy as follows:

1

2
2 1

2
0 157 H 0 1 A 2 0 785 10 3 J

2. Part 2. To calculate the induced voltage due to a time-varying magnetic flux, we use
equation 16.16:

0 cos

500 0 0001 0 6 377 cos 377 11 31 cos 377 V

Comments: The voltage induced across a coil in an electromagnetic transducer is a very
important quantity called back electromotive force, or back emf. We shall make use of this
quantity in Sec. 16.5.

A simple magnetic structure, very similar to those examined in
the previous examples, finds very common application in the
so-called variable-reluctance position sensor, which, in turn,
finds widespread application in a variety of configurations for the
measurement of linear and angular velocity. Figure 16.23 depicts one
particular configuration that is used in many applications. In this structure, a
permanent magnet with a coil of wire wound around it forms the sensor; a
steel disk (typically connected to a rotating shaft) has a number of tabs that
pass between the pole pieces of the sensor. The area of the tab is assumed
equal to the area of the cross section of the pole pieces and is equal to 2.
The reason for the name variable-reluctance sensor is that the reluctance of
the magnetic structure is variable, depending on whether or not a
ferromagnetic tab lies between the pole pieces of the magnet.

Tab

Magnet

a

a

Steel disk

+ –

lg lg

eS

Figure 16.23 Variable-reluctance position sensor



790 Chapter 16 Principles of Electromechanics

The principle of operation of the sensor is that an electromotive force,
, is induced across the coil by the change in magnetic flux caused by the

passage of the tab between the pole pieces when the disk is in motion. As
the tab enters the volume between the pole pieces, the flux will increase,
because of the lower reluctance of the configuration, until it reaches a
maximum when the tab is centered between the poles of the magnet.
Figure 16.24 depicts the approximate shape of the resulting voltage, which,
according to Faraday’s law, is given by

The rate of change of flux is dictated by the geometry of the tab and of the
pole pieces, and by the speed of rotation of the disk. It is important to note
that, since the flux is changing only if the disk is rotating, this sensor cannot
detect the static position of the disk.

Tab

Magnet

eS (V)

Maximum
flux

t

Figure 16.24 Variable-reluctance position
sensor waveform

One common application of this concept is in the measurement of the
speed of rotation of rotating machines, including electric motors and internal
combustion engines. In these applications, use is made of a 60-tooth wheel,
which permits the conversion of the speed rotation directly to units of
revolutions per minute. The output of a variable-reluctance position sensor
magnetically coupled to a rotating disk equipped with 60 tabs (teeth) is
processed through a comparator or Schmitt trigger circuit (see Chapter 15).
The voltage waveform generated by the sensor is nearly sinusoidal when the
teeth are closely spaced, and it is characterized by one sinusoidal cycle for
each tooth on the disk. If a negative zero-crossing detector (see Chapter 15)
is employed, the trigger circuit will generate a pulse corresponding to the
passage of each tooth, as shown in Figure 16.25. If the time between any
two pulses is measured by means of a high-frequency clock, the speed of the
engine can be directly determined in units of rev/min by means of a digital
counter (see Chapter 14).
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N

Vout

Vclock

Vref

eS

R1R2

v–

v+

Variable reluctance
sensor voltage Schmitt

trigger

+

–

Vout

T

Figure 16.25 Signal processing for a 60-tooth-wheel RPM
sensor

This example illustrates the calculation of the voltage induced in a magnetic
reluctance sensor by a rotating toothed wheel. In particular, we will find an
approximate expression for the reluctance and the induced voltage for the
position sensor shown in Figure 16.26, and show that the induced voltage is
speed-dependent. It will be assumed that the reluctance of the core and
fringing at the air gaps are both negligible.

Tab

Steel disk

Pole
piece

= =

r

=

Figure 16.26 Reluctance sensor for
measurement of angular position

From the geometry shown in the preceding “Focus on Measurements,” the
equivalent reluctance of the magnetic structure is twice that of one gap, since
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the permeability of the tab and magnetic structure are assumed infinite (i.e.,
they have negligible reluctance). When the tab and the poles are aligned, the
angle is zero, as shown in Figure 16.26, and the area of the air gap is
maximum. For angles greater than 2 0, the magnetic length of the air gaps is
so large that the magnetic field may reasonably be taken as zero.

To model the reluctance of the gaps, we assume the following simplified
expression, where the area of overlap of the tab with the magnetic poles is
assumed proportional to the angular displacement:

2

0

2

0 1
for 0 1

Naturally, this is an approximation; however, the approximation captures the
essential idea of this transducer, namely, that the reluctance will decrease
with increasing overlap area until it reaches a minimum, and then it will
increase as the overlap area decreases. For 1, that is, with the tab
outside the magnetic pole pieces, we have max . For 0, that is,
with the tab perfectly aligned with the pole pieces, we have

min 2 0 1. The flux may therefore be computed as follows:

0 1

2

The induced voltage is found by

0

2

where is the rotational speed of the steel disk. It should be
evident that the induced voltage is speed-dependent. For 1 cm,
10 cm, 0 1 cm, 100 turns, 10 mA, 1 6 0 1 rad, and

400 rad/s (approximately 3,800 rev/min), we have

max
2 0 1 10 2

4 10 7 1 10 2 10 10 2 0 1

1 59 107 A t/Wb

peak
1 000 10 10 3 4 10 7 1 10 2 10 1

2 0 1 10 2
400

2 5 mV

That is, the peak amplitude of will be 2.5 mV.

Check Your Understanding

16.5 If eq 2 gap in Example 16.3, calculate and .

16.6 Determine the equivalent reluctance of the structure of Figure 16.27 as seen by
the “source” if for the structure is 1,000, 5 cm, and all of the legs are 1 cm on a side.

16.7 Find the equivalent reluctance of the magnetic circuit shown in Figure 16.28 if
of the structure is infinite, 2 mm, and the physical cross section of the core is 1 cm2.
Do not neglect fringing.
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ll

l

r 0

0

i

0

2 cm 2 cm 2 cm

1 cm

depth = 1 cm

Figure 16.27

16.8 Find the equivalent magnetic circuit of the structure of Figure 16.29 if is infinite.
Give expressions for each of the circuit values if the physical cross-sectional area of each
of the legs is given by

Do not neglect fringing.

r 00

i

Fixed

r 0

Figure 16.28

i1

i2

N

N

rr

Figure 16.29

16.3 MAGNETIC MATERIALS AND B-H
CURVES

In the analysis of magnetic circuits presented in the previous sections, the relative
permeability, , was treated as a constant. In fact, the relationship between the
magnetic flux density, B, and the associated field intensity, H,

B H (16.32)

is characterized by the fact that the relative permeability of magnetic materials
is not a constant, but is a function of the magnetic field intensity. In effect, all
magnetic materials exhibit a phenomenon called saturation, whereby the flux
density increases in proportion to the field intensity until it cannot do so any
longer. Figure 16.30 illustrates the general behavior of all magnetic materials.
You will note that since the - curve shown in the figure is nonlinear, the value
of (which is the slope of the curve) depends on the intensity of the magnetic
field.

Linear region
( constant

Saturation
region

B

Average

H

Figure 16.30 Permeability
and magnetic saturation effects

To understand the reasons for the saturation of a magnetic material, we need
to briefly review the mechanism of magnetization. The basic idea behind magnetic
materials is that the spin of electrons constitutes motion of charge, and therefore
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leads to magnetic effects, as explained in the introductory section of this chapter.
In most materials, the electron spins cancel out, on the whole, and no net effect
remains. In ferromagnetic materials, on the other hand, atoms can align so that
the electron spins cause a net magnetic effect. In such materials, there exist small
regions with strong magnetic properties (called magnetic domains), the effects of
which are neutralized in unmagnetized material by other, similar regions that are
oriented differently, in a random pattern. When the material is magnetized, the
magnetic domains tend to align with each other, to a degree that is determined by
the intensity of the applied magnetic field.

In effect, the large number of miniature magnets within the material are
polarized by the external magnetic field. As the field increases, more and more
domains become aligned. When all of the domains have become aligned, any
further increase in magnetic field intensity does not yield an increase in flux density
beyond the increase that would be caused in a nonmagnetic material. Thus, the
relative permeability, , approaches 1 in the saturation region. It should be
apparent that an exact value of cannot be determined; the value of used in
the earlier examples is to be interpreted as an average permeability, for intermediate
values of flux density. As a point of reference, commercial magnetic steels saturate
at flux densities around a few teslas. Figure 16.33, shown later in this section, will
provide some actual - curves for common ferromagnetic materials.

The phenomenon of saturation carries some interesting implications with
regard to the operation of magnetic circuits: the results of the previous section
would seem to imply that an increase in the mmf (that is, an increase in the current
driving the coil) would lead to a proportional increase in the magnetic flux. This
is true in the linear region of Figure 16.30; however, as the material reaches
saturation, further increases in the driving current (or, equivalently, in the mmf)
do not yield further increases in the magnetic flux.

Laminated core
(the laminations are separated
by a thin layer of insulation)

Solid core

Eddy current
B

Reduced eddy currents 

Figure 16.31 Eddy currents
in magnetic structures

There are two more features that cause magnetic materials to further deviate
from the ideal model of the linear - relationship: eddy currents andhysteresis.
The first phenomenon consists of currents that are caused by any time-varying flux
in the core material. As you know, a time-varying flux will induce a voltage,
and therefore a current. When this happens inside the magnetic core, the induced
voltage will cause “eddy” currents (the terminology should be self-explanatory)
in the core, which depend on the resistivity of the core. Figure 16.31 illustrates
the phenomenon of eddy currents. The effect of these currents is to dissipate
energy in the form of heat. Eddy currents are reduced by selecting high-resistivity
core materials, or by laminating the core, introducing tiny, discontinuous air gaps
between core layers (see Figure 16.31). Lamination of the core reduces eddy
currents greatly without affecting the magnetic properties of the core.

It is beyond the scope of this chapter to quantify the losses caused by induced
eddy currents, but it will be important in Chapters 17 and 18 to be aware of this
source of energy loss.

Hysteresis is another loss mechanism in magnetic materials; it displays a
rather complex behavior, related to the magnetization properties of a material.
The curve of Figure 16.32 reveals that the - curve for a magnetic material
during magnetization (as is increased) is displaced with respect to the curve
that is measured when the material is demagnetized. To understand the hysteresis
process, consider a core that has been energized for some time, with a field intensity
of 1 t/m. As the current required to sustain the mmf corresponding to 1

is decreased, we follow the hysteresis curve from the point to the point .
When the mmf is exactly zero, the material displays the remanent (or residual)
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magnetization . To bring the flux density to zero, we must further decrease
the mmf (i.e., produce a negative current), until the field intensity reaches the
value 0 (point on the curve). As the mmf is made more negative, the curve
eventually reaches the point . If the excitation current to the coil is now increased,
the magnetization curve will follow the path , eventually
returning to the original point in the - plane, but via a different path.

B (T)

A.t
m

H

'

'

'

–H1

H0

–H0

H1

–Br

Br

Figure 16.32 Hysteresis in
magnetization curves

The result of this process, by which an excess magnetomotive force is re-
quired to magnetize or demagnetize the material, is a net energy loss. It is difficult
to evaluate this loss exactly; however, it can be shown that it is related to the area
between the curves of Figure 16.32. There are experimental techniques that enable
the approximate measurement of these losses.

Figures 16.33(a)–(c) depict magnetization curves for three very common
ferromagnetic materials: cast iron, cast steel, and sheet steel. These curves will
be useful in solving some of the homework problems.
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Figure 16.33 (a) Magnetization curve for cast iron; (b) Magnetization curve for cast steel;
(c) Magnetization curve for sheet steel

16.4 TRANSFORMERS

One of the more common magnetic structures in everyday applications is the
transformer. The ideal transformer was introduced in Chapter 7 as a device that
can step an AC voltage up or down by a fixed ratio, with a corresponding decrease
or increase in current. The structure of a simple magnetic transformer is shown in
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Figure 16.34, which illustrates that a transformer is very similar to the magnetic
circuits described earlier in this chapter. Coil 1 represents the input side of the
transformer, while coil 2 is the output coil; both coils are wound around the same
magnetic structure, which we show here to be similar to the “square doughnut” of
the earlier examples.

i2

e2L2 v2

+

–

+

–

i1

e1 L1v1

+

–

+

–

Load~

N1 turns

N2 turns

Figure 16.34 Structure of a transformer

The ideal transformer operates on the basis of the same set of assumptions
we made in earlier sections: the flux is confined to the core, the flux links all turns
of both coils, and the permeability of the core is infinite. The last assumption is
equivalent to stating that an arbitrarily small mmf is sufficient to establish a flux in
the core. In addition, we assume that the ideal transformer coils offer negligible
resistance to current flow.

The operation of a transformer requires a time-varying current; if a time-
varying voltage is applied to the primary side of the transformer, a corresponding
current will flow in 1; this current acts as an mmf and causes a (time-varying)
flux in the structure. But the existence of a changing flux will induce an emf
across the secondary coil! Without the need for a direct electrical connection, the
transformer can couple a source voltage at the primary to the load; the coupling
occurs by means of the magnetic field acting on both coils. Thus, a transformer
operates by converting electric energy to magnetic, and then back to electric. The
following derivation illustrates this viewpoint in the ideal case (no loss of energy),
and compares the result with the definition of the ideal transformer in Chapter 7.

If a time-varying voltage source is connected to the input side, then by virtue
of Faraday’s law, a corresponding time-varying flux is established in coil

1:

1 1 1 (16.33)

But since the flux thus produced also links coil 2, an emf is induced across the
output coil as well:

2 2 2 (16.34)

This induced emf can be measured as the voltage 2 at the output terminals, and
one can readily see that the ratio of the open-circuit output voltage to input terminal
voltage is

2

1

2

1
(16.35)
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If a load current 2 is now required by the connection of a load to the output
circuit (by closing the switch in the figure), the corresponding mmf is 2

2 2. This mmf, generated by the load current 2, would cause the flux in the
core to change; however, this is not possible, since a change in would cause a
corresponding change in the voltage induced across the input coil. But this voltage
is determined (fixed) by the source 1 (and is therefore ), so that the input
coil is forced to generate a counter mmf to oppose the mmf of the output coil;
this is accomplished as the input coil draws a current 1 from the source 1 such
that

1 1 2 2 (16.36)

or

2

1

1

2
(16.37)

where is the ratio of primary to secondary turns (the transformer ratio) and 1

and 2 are the primary and secondary turns, respectively. If there were any net
difference between the input and output mmf, flux balance required by the input
voltage source would not be satisfied. Thus, the two mmf’s must be equal. As
you can easily verify, these results are the same as in Chapter 7; in particular, the
ideal transformer does not dissipate any power, since

1 1 2 2 (16.38)

Note the distinction we have made between the induced voltages (emf’s), , and
the terminal voltages, . In general, these are not the same.

The results obtained for the ideal case do not completely represent the phys-
ical nature of transformers. A number of loss mechanisms need to be included in a
practical transformer model, to account for the effects of leakage flux, for various
magnetic core losses (e.g., hysteresis), and for the unavoidable resistance of the
wires that form the coils.

Commercial transformer ratings are usually given on the so-called name-
plate, which indicates the normal operating conditions. The nameplate includes
the following parameters:

Primary-to-secondary voltage ratio

Design frequency of operation

(Apparent) rated output power

For example, a typical nameplate might read 480:240 V, 60 Hz, 2 kVA. The volt-
age ratio can be used to determine the turns ratio, while the rated output power
represents the continuous power level that can be sustained without overheating.
It is important that this power be rated as the apparent power in kVA, rather than
real power in kW, since a load with low power factor would still draw current and
therefore operate near rated power. Another important performance characteristic
of a transformer is its power efficiency, defined by:

Power efficiency
Output power

Input power
(16.39)

The following examples illustrate the use of the nameplate ratings and the cal-
culation of efficiency in a practical transformer, in addition to demonstrating the
application of the circuit models.
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Problem

Determine the turns ratio and the rated currents of a transformer from nameplate data.

Solution

Known Quantities: Nameplate data.

Find: 1 2; 1; 2.

Schematics, Diagrams, Circuits, and Given Data: Nameplate data: 120 V/480 V;
48 kVA; 60 Hz.

Assumptions: Assume an ideal transformer.

Analysis: The first element in the nameplate data is a pair of voltages, indicating the
primary and secondary voltages for which the transformer is rated. The ratio, , is found
as follows:

1

2

480

120
4

To find the primary and secondary currents, we use the kVA rating (apparent power) of the
transformer:

1
1

48 kVA

480 V
100 A 2

2

48 kVA

120 V
400 A

Comments: In computing the rated currents, we have assumed that no losses take place
in the transformer; in fact, there will be losses due to coil resistance and magnetic core
effects. These losses result in heating of the transformer, and limit its rated performance.

Problem

Find the equivalent load impedance seen by the voltage source (i.e., reflected from
secondary to primary) for the transformer of Figure 16.35.

N1 N2

I2I1

V1 ~ Z2

Figure 16.35 Ideal
transformer

Solution

Known Quantities: Transformer turns ratio, .

Find: Reflected impedance, 2.

Assumptions: Assume an ideal transformer.

Analysis: By definition, the load impedance is equal to the ratio of secondary phasor
voltage and current:

2
V2

I2

To find the reflected impedance we can express the above ratio in terms of primary voltage
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and current:

2
V2

I2

V1

I1

1
2

V1

I1

where the ratio V1 I1 is the impedance seen by the source at the primary coil, that is, the
reflected load impedance seen by the primary (source) side of the circuit. Thus, we can
write the load impedance, 2, in terms of the primary circuit voltage and current; we call
this the reflected impedance, 2:

2
1

2

V1

I1

1
2 1

1
2 2

Thus, 2
2 2. Figure 16.36 depicts the equivalent circuit with the load impedance

reflected back to the primary.

N1 N2

V1 V2~ 2Z2

Figure 16.36

Comments: The equivalent reflected circuit calculations are convenient because all
circuit elements can be referred to a single set of variable (i.e., only primary or secondary
voltages and currents).

Check Your Understanding

16.9 The high-voltage side of a transformer has 500 turns, and the low-voltage side has
100 turns. When the transformer is connected as a step-down transformer, the load current
is 12 A. Calculate: (a) the turns ratio ; (b) the primary current.

16.10 Calculate the turns ratio if the transformer in Check Your Understanding 16.9
is used as a step-up transformer.

16.11 The output of a transformer under certain conditions is 12 kW. The copper losses
are 189 W and the core losses are 52 W. Calculate the efficiency of this transformer.

16.12 The output impedance of a servo amplifier is 250 . The servomotor that the
amplifier must drive has an impedance of 2.5 . Calculate the turns ratio of the transformer
required to match these impedances.

16.5 ELECTROMECHANICAL ENERGY
CONVERSION

From the material developed thus far, it should be apparent that electromagnetome-
chanical devices are capable of converting mechanical forces and displacements
to electromagnetic energy, and that the converse is also possible. The objective
of this section is to formalize the basic principles of energy conversion in elec-
tromagnetomechanical systems, and to illustrate its usefulness and potential for
application by presenting several examples of energy transducers. A transducer
is a device that can convert electrical to mechanical energy (in this case, it is often
called an actuator), or vice versa (in which case it is called a sensor).

Several physical mechanisms permit conversion of electrical to mechanical
energy and back, the principal phenomena being the piezoelectric effect,3 con-
sisting of the generation of a change in electric field in the presence of strain in

3See “Focus on Measurements: Charge Amplifiers” in Chapter 12.
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certain crystals (e.g., quartz), and electrostriction andmagnetostriction, in which
changes in the dimension of certain materials lead to a change in their electrical
(or magnetic) properties. Although these effects lead to many interesting applica-
tions, this chapter is concerned only with transducers in which electrical energy
is converted to mechanical energy through the coupling of a magnetic field. It is
important to note that all rotating machines (motors and generators) fit the basic
definition of electromechanical transducers we have just given.

Forces in Magnetic Structures

Mechanical forces can be converted to electrical signals, and vice versa, by means
of the coupling provided by energy stored in the magnetic field. In this subsection,
we discuss the computation of mechanical forces and of the corresponding electro-
magnetic quantities of interest; these calculations are of great practical importance
in the design and application of electromechanical actuators. For example, a prob-
lem of interest is the computation of the current required to generate a given force
in an electromechanical structure. This is the kind of application that is likely to
be encountered by the engineer in the selection of an electromechanical device for
a given task.

As already seen in this chapter, an electromechanical system includes an elec-
trical system and a mechanical system, in addition to means through which the two
can interact. The principal focus of this chapter has been the coupling that occurs
through an electromagnetic field common to both the electrical and the mechanical
system; to understand electromechanical energy conversion, it will be important to
understand the various energy storage and loss mechanisms in the electromagnetic
field. Figure 16.37 illustrates the coupling between the electrical and mechanical
systems. In the mechanical system, energy loss can occur because of the heat
developed as a consequence of friction, while in the electrical system, analogous
losses are incurred because of resistance. Loss mechanisms are also present in
the magnetic coupling medium, since eddy current losses and hysteresis losses
are unavoidable in ferromagnetic materials. Either system can supply energy, and
either system can store energy. Thus, the figure depicts the flow of energy from the
electrical to the mechanical system, accounting for these various losses. The same
flow could be reversed if mechanical energy were converted to electrical form.

Electrical
system

Coupling
field

Mechanical
system

Electrical
energy input

Useful
mechanical

energy
Resistive

losses
Magnetic

core losses

Useful
electrical
energy

Mechanical
energy input

Friction
losses

Figure 16.37

Moving-Iron Transducers

One important class of electromagnetomechanical transducers is that of moving-
iron transducers. The aim of this section is to derive an expression for the mag-
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netic forces generated by such transducers and to illustrate the application of these
calculations to simple, yet common devices such as electromagnets, solenoids, and
relays. The simplest example of a moving-iron transducer is the electromagnet
of Figure 16.38, in which the U-shaped element is fixed and the bar is movable.
In the following paragraphs, we shall derive a relationship between the current
applied to the coil, the displacement of the movable bar, and the magnetic force
acting in the air gap.

Fixed

N = 700

x

i

Movable

v –+

fe

Figure 16.38

The principle that will be applied throughout the section is that in order for
a mass to be displaced, some work needs to be done; this work corresponds to a
change in the energy stored in the electromagnetic field, which causes the mass
to be displaced. With reference to Figure 16.38, let represent the magnetic
force acting on the bar and the displacement of the bar, in the direction shown.
Then the net work into the electromagnetic field, , is equal to the sum of the
work done by the electrical circuit plus the work done by the mechanical system.
Therefore, for an incremental amount of work, we can write

(16.40)

where is the electromotive force across the coil and the negative sign is due to
the sign convention indicated in Figure 16.38. Recalling that the emf is equal to
the derivative of the flux linkage (equation 16.16), we can further expand equation
16.40 to obtain

(16.41)

or

(16.42)

Now we must observe that the flux in the magnetic structure of Figure 16.38
depends on two variables, which are in effect independent: the current flowing
through the coil, and the displacement of the bar. Each of these variables can cause
the magnetic flux to change. Similarly, the energy stored in the electromagnetic
field is also dependent on both current and displacement. Thus we can rewrite
equation 16.42 as follows:

(16.43)

Since and are independent variables, we can write

and 0 (16.44)

From the first of the expressions in equation 16.44, we obtain the relationship

(16.45)

where the term corresponds to , defined as the co-energy in equation 16.18.
Finally, we observe that the force acting to pull the bar toward the electromagnet
structure, which we will call , is of opposite sign relative to , and therefore we
can write

(16.46)
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Equation 16.46 includes a very important assumption: that the energy is equal
to the co-energy. If you make reference to Figure 16.8, you will realize that in
general this is not true. Energy and co-energy are equal only if the - relationship
is linear. Thus, the useful result of equation 16.46, stating that the magnetic force
acting on the moving iron is proportional to the rate of change of stored energy
with displacement, applies only for linear magnetic structures.

Thus, in order to determine the forces present in a magnetic structure, it will
be necessary to compute the energy stored in the magnetic field. To simplify the
analysis, it will be assumed hereafter that the structures analyzed are magnetically
linear. This is, of course, only an approximation, in that it neglects a number
of practical aspects of electromechanical systems (for example, the nonlinear -
curves described earlier, and the core losses typical of magnetic materials), but
it permits relatively simple analysis of many useful magnetic structures. Thus,
although the analysis method presented in this section is only approximate, it will
serve the purpose of providing a feeling for the direction and the magnitude of the
forces and currents present in electromechanical devices. On the basis of a linear
approximation, it can be shown that the stored energy in a magnetic structure is
given by the expression

2
(16.47)

and since the flux and the mmf are related by the expression

(16.48)

the stored energy can be related to the reluctance of the structure according to
2

2
(16.49)

where the reluctance has been explicitly shown to be a function of displacement,
as is the case in a moving-iron transducer. Finally, then, we shall use the following
approximate expression to compute the magnetic force acting on the moving iron:

2

2
(16.50)

The following examples illustrate the application of this approximate tech-
nique for the computation of forces and currents (the two problems of practical
engineering interest to the user of such electromechanical systems) in some com-
mon devices.

Problem

An electromagnet is used to support a solid piece of steel, as shown in Figure 16.38.
Determine the minimum coil current required to support the weight for a given air gap.

Solution

Known Quantities: Force required to support weight; cross-sectional area of magnetic
core; air gap dimension, number of coil turns.
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Find: Coil current, .

Schematics, Diagrams, Circuits, and Given Data: 8 900 N; 0 01 m2;
0 0015 m.

Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.

Analysis: To compute the current we need to derive an expression for the force in the air
gap. Using equation 16.50, we see that we need to compute the reluctance of the structure
and the magnetic flux to derive an expression for the force.

Since we are neglecting the iron reluctance, we can write the expression for the
reluctance as follows:

2

0

2

4 107 0 01

2

4 10 7 0 01
1 59 108 A t/Wb

Knowing the reluctance we can calculate the magnetic flux in the structure as a function of
the coil current:

and the magnitude of the force in the air gap is given by the expression

2

2

2

2 2 2

2 2

2 2

Solving for the current, we calculate:

2 2 2

2

2 1 59 108 0 0015 2 8 900

7002
13 A

3 6 A

Comments: As the air gap becomes smaller, the reluctance of the air gap decreases, to
the point where the reluctance of the iron cannot be neglected. When the air gap is zero,
the required, or holding, current is a minimum. Conversely, if the bar is initially
positioned at a substantial distance from the electromagnet, the initial current required to
exert the required force will be significantly larger than that computed in this example.

One of the more common practical applications of the concepts
discussed in this section is the solenoid. Solenoids find application
in a variety of electrically controlled valves. The action of a solenoid
valve is such that when it is energized, the plunger moves in such a
direction as to permit the flow of a fluid through a conduit, as shown schematically
in Figure 16.39.

Coil
Fluid flow

f
Force acting on plunger

with coil energized

lg

Figure 16.39 Application
of the solenoid as a valve

The following examples illustrate the calculations involved in the determi-
nation of forces and currents in a solenoid.

Problem

Figure 16.40 depicts a simplified representation of a solenoid. The restoring force for the
plunger is provided by a spring.

1. Derive a general expression for the force exerted on the plunger as a function of the
plunger position, .
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N turns

Fixed
structure

x = 0

lg

Spring

Movable plunger

i

a

a a

2a

a

x

Nonmagnetic
bushing
material
( r 1)

Figure 16.40 A solenoid

2. Determine the mmf required to pull the plunger to its end position .

Solution

Known Quantities: Geometry of magnetic structure; spring constant.

Find: ; mmf.

Schematics, Diagrams, Circuits, and Given Data: 0 01 m; gap 0 001 m;
1 N/m.

Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing. At
0 the plunger is in the gap by an infinitesimal displacement, .

a

x
Ag

a

Plunger

Figure 16.41

Analysis:

1. Force on the plunger. To compute a general expression for the magnetic force exerted
on the plunger, we need to derive an expression for the force in the air gap. Using
equation 16.50, we see that we need to compute the reluctance of the structure and the
magnetic flux to derive an expression for the force.

Since we are neglecting the iron reluctance, we can write the expression for the
reluctance as follows. Note that the area of the gap is variable, depending on the
position of the plunger, as shown in Figure 16.41.

gap 2
gap

0 gap

2 gap

0

The derivative of the reluctance with respect to the displacement of the plunger can
then be computed to be:

gap 2 gap

0
2

Knowing the reluctance, we can calculate the magnetic flux in the structure as a
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function of the coil current:

0

2 gap

The force in the air gap is given by the expression

gap

2

2
0

2

8 2
gap

2 gap

0
2

0
2

4 gap

Thus, the force in the gap is proportional to the square of the current, and does not
vary with plunger displacement.

2. Calculation of magnetomotive force. To determine the required magnetomotive force,
we observe that the magnetic force must overcome the mechanical (restoring) force
generated by the spring. Thus, gap . For the stated values,

gap 10 N/m 0 01 m 0 1 N, and

4 gap gap

0

4 0 001 0 1

4 10 7 0 01
56 4 A t

The required mmf can be most effectively realized by keeping the current value
relatively low, and using a large number of turns.

Comments: The same mmf can be realized with an infinite number of combinations of
current and number of turns; however, there are trade-offs involved. If the current is very
large (and the number of turns small), the required wire diameter will be very large.
Conversely, a small current will require a small wire diameter and a large number of turns.
A homework problem explores this trade-off.

Problem

Analyze the current response of the solenoid of Example 16.10 to a step change in
excitation voltage. Plot the force and current as a function of time.

Solution

Known Quantities: Coil inductance and resistance; applied current.

Find: Current and force response as a function of time.

Schematics, Diagrams, Circuits, and Given Data: See Example 16.10. 1000
turns. 12 V. coil 5 .

Assumptions: The inductance of the solenoid is approximately constant, and is equal to
the midrange value (plunger displacement equal to 2).

Analysis: From Example 16.10, we have an expression for the reluctance of the solenoid:

gap
2 gap

0

Using equation 16.30, and assuming 2, we calculate the inductance of the structure:

2

gap 2

2
0

2

4 gap

106 4 10 7 10 4

4 10 3
31 4 mH
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The equivalent solenoid circuit is shown in Figure 16.42. When the switch is closed, the
solenoid current rises exponentially with time constant 6 3 ms. As shown in
Chapter 5, the response is of the form:

1 1
12

5
1 6 3 10 3

A

To determine how the magnetic force responds during the turn-on transient, we return to
the expression for the force derived in Example 16.10:

gap
0

2

4 gap

4 10 7 10 2 106

4 10 3
2 2

12

5
1 6 3 10 3

2

The two curves are plotted in Figure 16.42(b).
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Figure 16.42 Solenoid equivalent electrical circuit and step response

Comments: The assumption that the inductance is approximately constant is not quite
accurate. The reluctance (and therefore the inductance) of the structure will change as the
plunger moves into position. However, allowing for the inductance to be a function of
plunger displacement causes the problem to become nonlinear, and requires numerical
solution of the differential equation (i.e., the transient response results of Chapter 5 no
longer apply). This issue is explored in a homework problem.

Practical Facts About Solenoids

Solenoids can be used to produce linear or rotary mo-
tion, either in the push or pull mode. The most com-
mon solenoid types are listed below:

1. Single-action linear (push or pull). Linear
stroke motion, with a restoring force (from a
spring, for example) to return the solenoid to the
neutral position.

2. Double-acting linear. Two solenoids back to
back can act in either direction. Restoring force
is provided by another mechanism (e.g., a
spring).

3. Mechanical latching solenoid (bistable). An
internal latching mechanism holds the solenoid
in place against the load.

4. Keep solenoid. Fitted with a permanent magnet
so that no power is needed to hold the load in
the pulled-in position. Plunger is released by
applying a current pulse of opposite polarity to
that required to pull in the plunger.

5. Rotary solenoid. Constructed to permit rotary
travel. Typical range is 25 to 95 . Return action
via mechanical means (e.g., a spring).

6. Reversing rotary solenoid. Rotary motion is
from one end to the other; when the solenoid is
energized again it reverses direction.
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Solenoid power ratings are dependent primar-
ily on the current required by the coil, and on the
coil resistance. 2 is the primary power sink, and
solenoids are therefore limited by the heat they can
dissipate. Solenoids can operated in continuous or
pulsed mode. The power rating depends on the mode
of operation, and can be increased by adding hold-in
resistors to the circuit to reduce the holding current
required for continuous operation. The hold resistor
is switched into the circuit once the pull-in current
required to pull the plunger has been applied, and the
plunger has moved into place. The holding current
can be significantly smaller than the pull-in current.

A common method to reduce the solenoid hold-
ing current employs a normally closed (NC) switch in
parallel with a hold-in resistor. In Figure 16.43, when
the push button (PB) closes the circuit, full voltage
is applied to the solenoid coil, bypassing the resis-
tor through the NC switch, connecting the resistor in
series with the coil. The resistor will now limit the
current to the value required to hold the solenoid in
position.

Solenoid coil

NC switch

Hold-in resistor
PB switch

VDC

Figure 16.43

Another electromechanical device that finds common application in indus-
trial practice is the relay. The relay is essentially an electromechanical switch that
permits the opening and closing of electrical contacts by means of an electromag-
netic structure similar to those discussed earlier in this section.

A relay such as would be used to start a high-voltage single-phase motor is
shown in Figure 16.44. The magnetic structure has dimensions equal to 1 cm on all
sides, and the transverse dimension is 8 cm. The relay works as follows. When the
push button is pressed, an electrical current flows through the coil and generates a
field in the magnetic structure. The resulting force draws the movable part toward
the fixed part, causing an electrical contact to be made. The advantage of the relay
is that a relatively low-level current can be used to control the opening and closing

120 VAC

1 cm

0.5 cm

To high-
voltage load

2 cm

Movable structure

C1 C2

Push-button
start (momentary contact)

N
turns

Push-button
stop

1 cm

1 cm

1 cm

240 VAC

5 cm

Figure 16.44 A relay
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of a circuit that can carry large currents. In this particular example, the relay is
energized by a 120-VAC contact, establishing a connection in a 240-VAC circuit.
Such relay circuits are commonly employed to remotely switch large industrial
loads.

Circuit symbols for relays are shown in Figure 16.45. An example of the
calculations that would typically be required in determining the mechanical and
electrical characteristics of a simple relay are given in Example 16.12.

CT

“Break,” or normally closed (NC) relay
or single-pole, single throw, SPSTNC

“Make,” or normally open (NO) relay
or single-pole, single throw, SPSTNO

“Break, make” or single-pole, double throw
SPDT (B-M), or “transfer”

“Make, break,” or “make-before-break” or
single-pole, double throw SPDT (M-B),
or “transfer,” or “continually transfer”

Basic operation of the electromechanical relay: The (small) coil
current i causes the relay to close (or open) and enables
(interrupts) the larger current, I.
On the left: SPSTNO relay (magnetic field causes relay to close).
On the right: SPSTNC relay (magnetic field causes relay to open).

NO

NC

NC

NO

NC

NC

NO

NO

i I i I

Figure 16.45 Circuit symbols and basic operation of relays

Problem

Figure 16.46 depicts a simplified representation of a relay. Determine the current required
for the relay to make contact (i.e., pull in the ferromagnetic plate) from a distance .
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Solution

Known Quantities: Relay geometry; restoring force to be overcome; distance between
bar and relay contacts; number of coil turns.

1 cm

1 cm

0.5 cm

10
cm

5 cm

i

N =
10,000

Figure 16.46

Find: .

Schematics, Diagrams, Circuits, and Given Data: gap 0 01 m 2; 0 05 m;
restore 5 N; 10 000.

Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.

Analysis:

gap
2

0 gap

The derivative of the reluctance with respect to the displacement of the plunger can then
be computed to be:

gap 2

0 gap

Knowing the reluctance, we can calculate the magnetic flux in the structure as a function
of the coil current:

0 gap

2

and the force in the air gap is given by the expression

gap

2

2
0 gap

2

8

2

0 gap

0 gap
2

4

The magnetic force must overcome a mechanical holding force of 5 N, thus,

gap
0 gap

2

4
restore 5 N

or

1 4 restore

0 gap

1

10 000

20

4 10 7 0 0001
39 9 A

Comments: The current required to close the relay is much larger than that required to
hold the relay closed, because the reluctance of the structure is much smaller once the gap
is reduced to zero.

Moving-Coil Transducers

Another important class of electromagnetomechanical transducers is that of
moving-coil transducers. This class of transducers includes a number of common
devices, such as microphones, loudspeakers, and all electric motors and genera-
tors. The aim of this section is to explain the relationship between a fixed magnetic
field, the emf across the moving coil, and the forces and motions of the moving
element of the transducer.

The basic principle of operation of electromechanical transducers was pre-
sented in Section 16.1, where we stated that a magnetic field exerts a force on a
charge moving through it. The equation describing this effect is

f u B (16.51)
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which is a vector equation, as explained earlier. In order to correctly interpret
equation 16.51, we must recall the right-hand rule and apply it to the transducer,
illustrated in Figure 16.47, depicting a structure consisting of a sliding bar which
makes contact with a fixed conducting frame. Although this structure does not
represent a practical actuator, it will be a useful aid in explaining the operation of
moving-coil transducers such as motors and generators. In Figure 16.47, and in
all similar figures in this section, a small cross represents the “tail” of an arrow
pointing into the page, while a dot represents an arrow pointing out of the page;
this convention will be useful in visualizing three-dimensional pictures.

Conducting bar
f

u

B

+

–

f

Length
of
conducting
bar

Supports for the
conducting bar

B-field pointing
into the page

The force exerted on a
positive charge is in

the direction dictated by
the right hand rule. An

opposite force is exerted
on a negative charge.

f

u

l

Figure 16.47 A simple electromechanical motion transducer

i
u

f'
l

i+

–

u'

Figure 16.48

Motor Action

A moving-coil transducer can act as a motor when an externally supplied current
flowing through the electrically conducting part of the transducer is converted into
a force that can cause the moving part of the transducer to be displaced. Such
a current would flow, for example, if the support of Figure 16.47 were made of
conducting material, so that the conductor and the right-hand side of the support
“rail” were to form a loop (in effect, a 1-turn coil). In order to understand the
effects of this current flow in the conductor, one must consider the fact that a charge
moving at a velocity (along the conductor and perpendicular to the velocity of
the conducting bar, as shown in Figure 16.48) corresponds to a current
along the length of the conductor. This fact can be explained by considering the
current along a differential element and writing

(16.52)

since the differential element would be traversed by the current in time at a
velocity . Thus we can write

(16.53)
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or

(16.54)

for the geometry of Figure 16.48. From Section 16.1, the force developed by a
charge moving in a magnetic field is, in general, given by

f u B (16.55)

For the term u we can substitute l to obtain

f l B (16.56)

Using the right-hand rule, we determine that the force f generated by the current
is in the direction that would push the conducting bar to the left. The magnitude

of this force is if the magnetic field and the direction of the current are
perpendicular. If they are not, then we must consider the angle formed by B and
l; in the more general case,

sin (16.57)

The phenomenon we have just described is sometimes referred to as the “Bli law.”

Generator Action

The other mode of operation of a moving-coil transducer occurs when an external
force causes the coil (i.e., the moving bar, in Figure 16.47) to be displaced. This
external force is converted to an emf across the coil, as will be explained in the
following paragraphs.

Since positive and negative charges are forced in opposite directions in the
transducer of Figure 16.47, a potential difference will appear across the conducting
bar; this potential difference is the electromotive force, or emf. The emf must be
equal to the force exerted by the magnetic field. In short, the electric force per
unit charge (or electric field ) must equal the magnetic force per unit charge

. Thus, the relationship

(16.58)

which holds whenever B, l, and u are mutually perpendicular, as in Figure 16.49.
If equation 16.58 is analyzed in greater depth, it can be seen that the product
(length times velocity) is the area crossed per unit time by the conductor. If one
visualizes the conductor as “cutting” the flux lines into the base in Figure 16.48,
it can be concluded that the electromotive force is equal to the rate at which the
conductor “cuts” the magnetic lines of flux. It will be useful for you to carefully
absorb this notion of conductors cutting lines of flux, since this will greatly simplify
understanding the material in this section and in the next chapter.

z

l

x

u

y

B

Figure 16.49

In general, B, l, and u are not necessarily perpendicular. In this case one
needs to consider the angles formed by the magnetic field with the normal to the
plane containing l and u, and the angle between l and u.. The former is the angle
of Figure 16.49, the latter the angle in the same figure. It should be apparent that
the optimum values of and are 0 and 90 , respectively. Thus, most practical
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devices are constructed with these values of and . Unless otherwise noted, it
will be tacitly assumed that this is the case. The “Bli law” just illustrated explains
how a moving conductor in a magnetic field can generate an electromotive force.

To summarize the electromechanical energy conversion that takes place in
the simple device of Figure 16.47, we must note now that the presence of a current
in the loop formed by the conductor and the rail requires that the conductor move
to the right at a velocity law), thus cutting the lines of flux and generating
the emf that gives rise to the current . On the other hand, the same current causes
a force to be exerted on the conductor ( law) in the direction opposite to
the movement of the conductor. Thus, it is necessary that an externally applied
force ext exist to cause the conductor to move to the right with a velocity . The
external force must overcome the force . This is the basis of electromechanical
energy conversion.

An additional observation we must make at this point is that the current flow-
ing around a closed loop generates a magnetic field, as explained in Section 16.1.
Since this additional field is generated by a one-turn coil in our illustration, it is
reasonable to assume that it is negligible with respect to the field already present
(perhaps established by a permanent magnet). Finally, we must consider that this
coil links a certain amount of flux, which changes as the conductor moves from
left to right. The area crossed by the moving conductor in time is

(16.59)

so that if the flux density, , is uniform, the rate of change of the flux linked by
the one-turn coil is

(16.60)

In other words, the rate of change of the flux linked by the conducting loop is
equal to the emf generated in the conductor. The student should realize that this
statement simply confirms Faraday’s law.

R

u

+

–

VB

B
into

the page

i

i

Figure 16.50 Motor and
generator action in an ideal
transducer

It was briefly mentioned that the and laws indicate that, thanks to
the coupling action of the magnetic field, a conversion of mechanical to electrical
energy—or the converse—is possible. The simple structures of Figures 16.47
and 16.48 can, again, serve as an illustration of this energy-conversion process,
although we have not yet indicated how these idealized structures can be converted
into a practical device. In this section we shall begin to introduce some physical
considerations. Before we proceed any further, we should try to compute the
power—electrical and mechanical—that is generated (or is required) by our ideal
transducer. The electrical power is given by

(W) (16.61)

while the mechanical power required, say, to move the conductor from left to right
is given by the product of force and velocity:

ext (W) (16.62)

The principle of conservation of energy thus states that in this ideal (lossless) trans-
ducer we can convert a given amount of electrical energy into mechanical energy,
or vice versa. Once again we can utilize the same structure of Figure 16.47 to
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illustrate this reversible action. If the closed path containing the moving conduc-
tor is now formed from a closed circuit containing a resistance and a battery,

, as shown in Figure 16.50, the externally applied force, ext, generates a pos-
itive current into the battery provided that the emf is greater than . When

, the ideal transducer acts as a generator. For any given set of
values of , and , there will exist a velocity for which the current is
positive. If the velocity is lower than this value—i.e., if —then
the current is negative, and the conductor is forced to move to the right. In this
case the battery acts as a source of energy and the transducer acts as a motor (i.e.,
electrical energy drives the mechanical motion).

In practical transducers, we must be concerned with the inertia, friction, and
elastic forces that are invariably present on the mechanical side of the transducer.
Similarly, on the electrical side we must account for the inductance of the circuit, its
resistance, and possibly some capacitance. Consider the structure of Figure 16.51.
In the figure, the conducting bar has been placed on a surface with coefficient of
sliding friction ; it has a mass and is attached to a fixed structure by means
of a spring with spring constant . The equivalent circuit representing the coil
inductance and resistance is also shown.

+_

x

L R

i

k

d m

+

vS

–

e

Figure 16.51 A more realistic
representation of the transducer of
Figure 16.50

If we recognize that in the figure, we can write the equation of
motion for the conductor as:

(16.63)

where the term represents the driving input that causes the mass to move.
The driving input in this case is provided by the electrical energy source, ; thus
the transducer acts as a motor, and is the net force acting on the mass of the
conductor. On the electrical side, the circuit equation is:

(16.64)

Equations 16.63 and 16.64 could then be solved by knowing the excitation voltage,
, and the physical parameters of the mechanical and electrical circuits. For

example, if the excitation voltage were sinusoidal, with

cos (16.65)

and the field density were constant:

0

we could postulate sinusoidal solutions for the transducer velocity, , and current,
:

cos cos (16.66)

and use phasor notation to solve for the unknowns ( , , , ).
The results obtained in the present section apply directly to transducers that

are based on translational (linear) motion. These basic principles of electrome-
chanical energy conversion and the analysis methods developed in the section will
be applied to practical transducers in a few examples.

The methods introduced in this section will later be applied in Chapters 17
and 18 to analyze rotating transducers, that is, electric motors and generators.
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The device shown in Figure 16.52 is called a seismic transducer
and can be used to measure the displacement, velocity, or acceler-
ation of a body. The permanent magnet of mass is supported
on the case by a spring, , and there is some viscous damping, , between
the magnet and the case; the coil is fixed to the case. You may assume that
the coil has length and resistance and inductance coil and coil,
respectively; the magnet exerts a magnetic field . Find the transfer function
between the output voltage, out, and the acceleration of the body, . Note
that is not equal to zero when the system is at rest. We shall ignore this
offset displacement.

–

+
i

M

Case

 N

k

S N

x(t)

a(t)
Accelerating body

vout Rout

Rcoil Lcoil

d

Figure 16.52 An electromagnetomechanical seismic transducer

First we apply KVL around the electrical circuit to write the differential
equation describing the electrical system:

coil out 0

Also note that out out . Next, we write the differential equation
describing the mechanical system. The magnet experiences an inertial force
due to the acceleration of the supporting body, , and to its own relative
acceleration, 2 2; thus, we can sketch a free-body diagram and apply
Newton’s second law to the permanent magnet, as shown in the sketch.

2

2
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Finally, using the Laplace transform, we determine the transfer function
from to out . Let coil out. Then

0
2

Since we need the transfer function from to out, we use the expression

out out

and, after some algebra, find that

2 2 2

or

out out

2 2 2

Problem

A loudspeaker, shown in Figure 16.53, uses a permanent magnet and a moving coil to
produce the vibrational motion that generates the pressure waves we perceive as sound.
Vibration of the loudspeaker is caused by changes in the input current to a coil; the coil is,
in turn, coupled to a magnetic structure that can produce time-varying forces on the
speaker diaphragm. A simplified model for the mechanics of the speaker is also shown in
Figure 16.53. The force exerted on the coil is also exerted on the mass of the speaker
diaphragm, as shown in Figure 16.54, which depicts a free-body diagram of the forces
acting on the loudspeaker diaphragm.
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Coil

N turns

N

N
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Figure 16.53 Loudspeaker
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Figure 16.54 Forces
acting on loudspeaker
diaphragm
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The force exerted on the mass, , is the magnetic force due to current flow in the
coil. The electrical circuit that describes the coil is shown in Figure 16.55, where
represents the inductance of the coil, represents the resistance of the windlings, and is
the emf induced by the coil moving through the magnetic field.

L R

ev +
_

+
_

Figure 16.55 Model of
transducer electrical side

Determine the frequency response, of the speaker.

Solution

Known Quantities: Circuit and mechanical parameters; magnetic flux density; number
of coil turns; coil radius.

Find: Frequency response of loudspeaker, .

Schematics, Diagrams, Circuits, and Given Data: Coil radius 0 05 m; 10 mH;
8 ; 0 001 kg; 22 75 N s2 m; 5 105 N/m; 47; 1 T.

Analysis: To determine the frequency response of the loudspeaker, we write the
differential equations that describe the electrical and mechanical subsystems. We apply
KVL to the electrical circuit, using the circuit model of Figure 16.55, in which we have
represented the term (motional voltage) in the form of a back electromotive
force, :

0

or

Next, we apply Newton’s second law to the mechanical system, consisting of: a lumped
mass representing the mass of the moving diaphragm, ; an elastic (spring) term, which
represents the elasticity of the diaphragm, ; and a damping coefficient, , representing
the frictional losses and aerodynamic damping affecting the moving diaphragm.

where and therefore

0

Note that the two equations are coupled, that is, a mechanical variable appears in the
electrical equation (the velocity in the term), and an electrical variable appears in
the mechanical equation (the current in the term).

To derive the frequency response we Laplace-transform the two equations to obtain:

0

We can write the above equations in matrix form and resort to Cramer’s rule to solve for
as a function of :

0
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with solution

det
0

det

or

2

3 2 2

To determine the frequency response of the loudspeaker, we let in the above
expression:

2 [ 2 3]

where 2 , and substitute the appropriate numerical parameters:

14 8

5 105 0 008 0 2275 2 [ 182 5 000 218 10 5 3]

14 8

5 105 0 2355 2 [ 5 4 103 10 5 3]

The resulting frequency response is plotted in Figure 16.56.
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Figure 16.56 Frequency response of loudspeaker
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Focus on Computer-Aided Tools: A Matlab -file containing the frequency response
calculations leading to the frequency response (Bode) plot of Figure 16.56 may be found
in the accompanying CD-ROM.

Check Your Understanding

16.13 The flux density of the earth’s magnetic field is about 50 T. Estimate the current
required in a conductor of length 10 cm and mass 10 g to counteract the force of gravity if
the wire is oriented in the optimum direction.

16.14 In Example 16.13, we examined the frequency response of a loudspeaker. How-
ever, over a period of time, permanent magnets may become demagnetized. Find the fre-
quency response of the same loudspeaker if the permanent magnet has lost its strength to a
point where 0 95 T.

16.15 In Example 16.10, a solenoid is used to exert force on a spring. Estimate the
position of the plunger if the number of turns in the solenoid winding is 1,000 and the
current going into the winding is 40 mA.

16.16 For the circuit in Figure 16.47, the conducting bar is moving with a velocity of
6 m/s. The flux density is 0.5 Wb/m2, and 1 0 m. Find the magnitude of the resulting
induced voltage.

CONCLUSION

Magnetic fields form a coupling mechanism between electrical and mechanical
systems, permitting the conversion of electrical energy to mechanical energy, and
vice versa. The basic laws that govern such electromechanical energy conversion
are Faraday’s law, stating that a changing magnetic field can induce a voltage; and
Ampère’s law, stating that a current flowing through a conductor generates a
magnetic field.

The two fundamental variables in the analysis of magnetic structures are the
magnetomotive force and the magnetic flux; if some simplifying approximations
are made, these quantities are linearly related through the reluctance parameter,
much in the same way as voltage and current are related through resistance
according to Ohm’s law. This simplified analysis permits approximate
calculations of required forces and currents to be conducted with relative ease in
magnetic structures.

Magnetic materials are characterized by a number of nonideal properties, which
should be considered in the detailed analysis of a magnetic structure. The most
important phenomena are saturation, eddy currents, and hysteresis.

Electromechanical transducers, which convert electrical signals to mechanical
forces, or mechanical motion to electrical signals, can be analyzed according to
the techniques presented in this chapter. Examples of such transducers are
electromagnets, position and velocity sensors, relays, solenoids, and loudspeakers.

CHECK YOUR UNDERSTANDING ANSWERS

CYU 16.1 2 5 V

CYU 16.2 A

CYU 16.3 0 648 J

CYU 16.5 3 94 10 6 Wb; 0 0788 Wb/m2

CYU 16.6 eq 1 41 106 A t/Wb
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CYU 16.7 eq 22 106 A t/Wb

CYU 16.8 1 2 3 0 ; 1 1; 2 2

CYU 16.9 5; 1 2 2 4 A

CYU 16.10 0 2

CYU 16.11 98%

CYU 16.12 10

CYU 16.13 196 102 A

CYU 16.14 0 056 15 950 1 15 950 1 31 347

CYU 16.15 0 5 cm

CYU 16.16 3 V

An iron-core inductor has the following
characteristic:

0 5 2

a. Determine the energy, co-energy, and incremental
inductance for 0 5 V s.

b. Given that the coil resistance is 1 and that

0 625 0 01 sin 400 A

determine the voltage across the terminals on the
inductor.

For the electromagnet of Figure P16.2:

a. Find the flux density in the core.

b. Sketch the magnetic flux lines and indicate their
direction.

c. Indicate the north and south poles of the magnet.

Cross-sectional
area = 0.01 m2 = 4  10-4 Wb

N turnsI

Figure P16.2

An iron-core inductor has the characteristic shown
in Figure P16.3:
a. Determine the energy and the incremental

inductance for 1 0 A.
b. Given that the coil resistance is 2 and that

0 5 sin 2 , determine the voltage across the
terminals of the inductor.

2.0

1.50.5
–1.5 –0.5

4.0

i (A)

(v•s)

–2.0

–4.0

Figure P16.3

A single loop of wire carrying current 2 is placed
near the end of a solenoid having turns and carrying
current 1, as shown in Figure P16.4. The solenoid is
fastened to a horizontal surface, but the single coil is
free to move. With the currents directed as shown, is
there a resultant force on the single coil? If so, in what
direction? Why?

+

+

+

+

+

+

I1

I2

Figure P16.4

The electromagnet of Figure P16.5 has reluctance
given by 7 108 0 002 H 1, where is
the length of the variable gap in meters. The coil has
980 turns and 30 resistance. For an applied voltage
of 120 VDC, find:
a. The energy stored in the magnetic field for

0 005 m.
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b. The magnetic force for 0 005 m.

I

v

x

N turns f
–

+

Figure P16.5

A practical LVDT is typically connected to a
resistive load. Derive the LVDT equations in the
presence of a resistive load, , connected across the
output terminals, using the results of “Focus on
Measurements: Linear Variable Differential
Transformer.”

On the basis of the equations of “Focus on
Measurements: Linear Variable Differential
Transformer,” and of the results of Problem 16.6,
derive the frequency response of the LVDT, and
determine the range of frequencies for which the device
will have maximum sensitivity for a given excitation.
[Hint: Compute out ex, and set the derivative
equal to zero to determine the maximum sensitivity.]

A wire of length 20 cm vibrates in one direction in
a constant magnetic field with a flux density of 0.1 T;
see Figure P16.8. The position of the wire as a
function of time is given by 0 1 sin 10 m. Find
the induced emf across the length of the wire as a
function of time.

X   X  X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

X   X   X   X

e(t)

+

–

Wire

B = 0.1 T
0

x

Figure P16.8

The wire of Problem 16.8 induces a time-varying
emf of

1 0 02 cos 10

A second wire is placed in the same magnetic field but
has a length of 0.1 m, as shown in Figure P16.9. The
position of this wire is given by 1 0 1 sin 10 .
Find the induced emf defined by the difference in
emf’s 1 and 2 .

x

X
X

X X X X
X X

X X X X
X X X X

X X

X X

0

X +
e1(t)

1

e2(t)
+

––

e(t)
–+

Figure P16.9

A conducting bar shown in Figure 16.48 in the
text, is carrying 4 A of current in the presence of a
magnetic field; 0 3 Wb/m2. Find the magnitude
and direction of the force induced on the conducting
bar.

A wire, shown in Figure P16.11, is moving in the
presence of a magnetic field, with 0 4 Wb/m2.
Find the magnitude and direction of the induced
voltage in the wire.

X    X    X    X    X    X    X    X    X    X    X 

X    X    X    X    X    X    X    X    X    X    X 

X    X    X    X    X    X    X    X    X    X    X 

X    X    X    X    X    X    X    X    X    X    X 

X    X    X    X    X    X    X    X    X    X    X 

45

u = 5 m/sec.
l = 2m

Figure P16.11

a. Find the reluctance of a magnetic circuit if a
magnetic flux 4 2 10 4 Wb is established by
an impressed mmf of 400 A t.

b. Find the magnetizing force, H, in SI units if the
magnetic circuit is 6 inches in length.

For the circuit shown in Figure P16.13:
a. Determine the reluctance values and show the

magnetic circuit, assuming that 3 000 0.
b. Determine the inductance of the device.
c. The inductance of the device can be modified by

cutting an air gap in the magnetic structure. If a gap
of 0.1 mm is cut in the arm of length 3, what is the
new value of inductance?

d. As the gap is increased in size (length), what is the
limiting value of inductance? Neglect leakage flux
and fringing effects.
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l1
A1

N

l3
A3

l2
A2

i

N = 100 turns

l1 = 30 cm

A1 = 100 cm2

l2 = 10 cm

A2 = 25 cm2

l3 = 30 cm

A3 = 100 cm2

Figure P16.13

The magnetic circuit shown in Figure P16.14 has
two parallel paths. Find the flux and flux density in
each of the legs of the magnetic circuit. Neglect
fringing at the air gaps and any leakage fields.

1 000 turns, 0 2 A, 1 0 02 cm, and
2 0 04 cm. Assume the reluctance of the magnetic

core to be negligible.

i

N lg24 cm lg1

1 cm
2 cm

1 cm

1 cm

1 cm
1 cm

Cross-section

Figure P16.14

Find the current necessary to establish a flux of
3 10 4 Wb in the series magnetic circuit of

Figure P16.15. Here, iron steel 0 3 m,
Area (throughout) 5 10 4 m2, and 100 turns.

N turns

Cast iron Cast steelI

Figure P16.15

a. Find the current, , required to establish a flux
2 4 10 4 Wb in the magnetic circuit of

Figure P16.16. Here, Area throughout
2 10 4 m2, ab ef 0 05 m, af be 0 02
m, bc dc, and the material is sheet steel.

b. Compare the mmf drop across the air gap to that
across the rest of the magnetic circuit. Discuss your
results using the value of for each material.

0.003 m

N = 100 t

a

f e

b

d

c
I

Figure P16.16

Find the magnetic flux, , established in the
series magnetic circuit of Figure P16.17.

0.08 m

I = 2 A

N = 100 turns

Cast steel

Area = 0.009 m2

Figure P16.17

For the series-parallel magnetic circuit of
Figure P16.18, find the value of required to establish
a flux in the gap of 2 10 4 Wb. Here,
ab bg gh ha 0 2 m, bc fg 0 1 m,
cd ef 0 099 m, and the material is sheet steel.

N = 200 turns

I

a

h g f

e

d

cb 1T

2

Area = 2 10-4 m2 Area for sections
other than bg
= 5 10-4 m2

Figure P16.18
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Refer to the actuator of Figure P16.19. The entire
device is made of sheet steel. The coil has 2,000 turns.
The armature is stationary so that the length of the air
gaps, g 10 mm, is fixed. A direct current passing
through the coil produces a flux density of 1.2 T in the
gaps. Determine:
a. The coil current.
b. The energy stored in the air gaps.
c. The energy stored in the steel.

140

80

17.5

17.535 35

17.5

35

/2 /2

All dimensions
are in mm

Figure P16.19

A core is shown in Figure P16.20, with
2 000 and 100. Find:

a. The current needed to produce a flux density of
0.4 Wb/m2 in the center leg.

b. The current needed to produce a flux density of
0.8 Wb/m2 in the center leg.

N

8 cm

8 cm

8 cm

20 cm

8 cm

8 cm

8 cm
26
cm

i

Cross-section

Figure P16.20

For the transformer shown in Figure P16.21,
1 000 turns, 1 16 cm, 1 4 cm2, 2 22

cm, 2 4 cm2, 3 5 cm, and 3 2 cm2. The
relative permeability of the material is 1 500.
a. Construct the equivalent magnetic circuit, and find

the reluctance associated with each part of the
circuit.

b. Determine the self-inductance and mutual
inductance for the pair of coils (i.e., 11, 22, and

12 21).

l1, A1

N turns l3, A3

l2, A2

N turns

i

Figure P16.21

A transformer is delivering power to a 300-
resistive load. To achieve the desired power transfer,
the turns ratio is chosen so that the resistive load
referred to the primary is 7,500 . The parameter
values, referred to the secondary winding, are:

1 20 1 1 0 mH 25 mH

2 20 2 1 0 mH

Core losses are negligible.
a. Determine the turns ratio.
b. Determine the input voltage, current, and power

and the efficiency when this transformer is
delivering 12 W to the 300- load at a frequency

10 000 2 Hz.

A 220/20-V transformer has 50 turns on its
low-voltage side. Calculate
a. The number of turns on its high side.
b. The turns ratio when it is used as a step-down

transformer.
c. The turns ratio when it is used as a step-up

transformer.

The high-voltage side of a transformer has 750
turns, and the low-voltage side 50 turns. When the
high side is connected to a rated voltage of 120 V,
60 Hz, a rated load of 40 A is connected to the low
side. Calculate
a. The turns ratio.
b. The secondary voltage (assuming no internal

transformer impedance voltage drops).
c. The resistance of the load.
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A transformer is to be used to match an 8-
loudspeaker to a 500- audio line. What is the turns
ratio of the transformer, and what are the voltages at the
primary and secondary terminals when 10 W of audio
power is delivered to the speaker? Assume that the
speaker is a resistive load and the transformer is ideal.

The high-voltage side of a step-down transformer
has 800 turns, and the low-voltage side has 100 turns.
A voltage of 240 VAC is applied to the high side, and
the load impedance is 3 (low side). Find
a. The secondary voltage and current.
b. The primary current.
c. The primary input impedance from the ratio of

primary voltage and current.
d. The primary input impedance.

Calculate the transformer ratio of the transformer
in Problem 16.26 when it is used as a step-up
transformer.

A 2,300/240-V, 60-Hz, 4.6-kVA transformer is
designed to have an induced emf of 2.5 V/turn.
Assuming an ideal transformer, find
a. The number of high-side turns, , and low-side

turns, .
b. The rated current of the high-voltage side, .
c. The transformer ratio when the device is used as a

step-up transformer.

For the electromagnet of Example 16.9:
a. Calculate the current required to keep the bar in

place. (Hint: The air gap becomes zero and the
iron reluctance cannot be neglected.)

b. If the bar is initially 0.1 m away from the
electromagnet, what initial current would be
required to lift the magnet?

With reference to Example 16.10, determine the
best combination of current magnitude and wire
diameter to reduce the volume of the solenoid coil to a
minimum. Will this minimum volume result in the
lowest possible resistance? How does the power
dissipation of the coil change with the wire gauge and
current value? To solve this problem you will need to
find a table of wire gauge diameter, resistance, and
current ratings. Table 2.2 in this book contains some
information. The solution can only be found
numerically.

Derive the same result obtained in
Example 16.10 using equation 16.46 and the definition
of inductance given in equation 16.30. You will first
compute the inductance of the magnetic circuit as a
function of the reluctance, then compute the stored
magnetic energy, and finally write the expression for
the magnetic force given in equation 16.46.

Derive the same result obtained in
Example 16.11 using equation 16.46 and the definition
of inductance given in equation 16.30. You will first
compute the inductance of the magnetic circuit as a
function of the reluctance, then compute the stored
magnetic energy, and finally write the expression for
the magnetic force given in equation 16.46.

With reference to Example 16.11, generate a
simulation program (e.g., using SimulinkTM) that
accounts for the fact that the solenoid inductance is not
constant, but is a function of plunger position.
Compare graphically the current and force step
responses of the constant- simplified solenoid model
to the step responses obtained in Example 16.11.

With reference to Example 16.12, calculate the
required holding current to keep the relay closed.

The relay circuit shown in Figure P16.35 has the
following parameters: gap 0 001 m2; 500
turns; 0 02 m; 0 4 10 7 (neglect the
iron reluctance); 1000 N/m, 18 . What is
the minimum DC supply voltage, , for which the relay
will make contact when the electrical switch is closed?

M
k

x = L

x = 0

NV

RSwitch

Movable part

Spring
+
_

Figure P16.35

The magnetic circuit shown in Figure P16.36 is a
very simplified representation of devices used as
surface roughness sensors. The stylus is in contact
with the surface and causes the plunger to move along
with the surface. Assume that the flux in the gap is
given by the expression , where is a
known constant and is the reluctance of the gap.
The emf is measured to determine the surface profile.
Derive an expression for the displacement as a
function of the various parameters of the magnetic
circuit and of the measured emf. (Assume a
frictionless contact between the moving plunger and
the magnetic structure and that the plunger is
restrained to vertical motion only. The cross-sectional
area of the plunger is .)
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x
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A surface roughness sensor
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Figure P16.36 A surface
roughness sensor

The electrodynamic shaker shown in
Figure P16.37 is commonly used as a vibration tester.
A constant current is used to generate a magnetic field
in which the armature coil of length is immersed.
The shaker platform with mass is mounted in the
fixed structure by way of a spring with stiffness . The
platform is rigidly attached to the armature coil, which
slides on the fixed structure thanks to frictionless
bearings.
a. Neglecting iron reluctance, determine the

reluctance of the fixed structure, and hence
compute the strength of the magnetic flux density,

, in which the armature coil is immersed.
b. Knowing , determine the dynamic equations of

motion of the shaker, assuming that the moving coil
has resistance and inductance .

c. Derive the transfer function and frequency response
function of the shaker mass velocity in response to
the input voltage S.

N Field coil

If

Platform

Gap = d

x

Cross-sectional
area in gap = A

Armature coil

Supporting spring

VS
+
_

Figure P16.37 Electrodynamic shaker

A cylindrical solenoid is shown in Figure P16.38.
The plunger may move freely along its axis. The air gap
between the shell and the plunger is uniform and equal
to 1 mm, and the diameter, , is 25 mm. If the exciting
coil carries a current of 7.5 A, find the force acting
on the plunger when 2 mm. Assume 200
turns, and neglect the reluctance of the steel shell.

Coil Cylinder steel shell

25 mm
x

lg

lg

d

Cross-
section

Figure P16.38

The double-excited electromechanical system
shown in Figure P16.39 moves horizontally. Assuming
that resistance, magnetic leakage, and fringing are
negligible, the permeability of the core is very large,
and the cross section of the structure is , find
a. The reluctance of the magnetic circuit.
b. The magnetic energy stored in the air gap.
c. The force on the movable part as a function of its

position.

Spring

k

Fixed core

x

i

v1

N2 lg

h

w x

+

–
N1

Figure P16.39

Determine the force, , between the faces of the
poles (stationary coil and plunger) of the solenoid
pictured in Figure P16.40 when it is energized. When
energized, the plunger is drawn into the coil and comes
to rest with only a negligible air gap separating the
two. The flux density in the cast steel pathway is 1.1 T.
The diameter of the plunger is 10 mm.

Plunger

Stationary coil

Figure P16.40
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An electromagnet is used to support a solid piece
of steel as shown in Example 15.10. A force of 10,000
N is required to support the weight. The
cross-sectional area of the magnetic core (the fixed
part) is 0 01 m2. The coil has 1,000 turns. Determine
the minimum current that can keep the weight from
falling for 1 0 mm. Assume negligible reluctance
for the steel parts and negligible fringing in the air
gaps.

The armature, frame, and core of a 12-VDC
control relay are made of sheet steel. The average
length of the magnetic circuit is 12 cm when the relay
is energized, and the average cross section of the
magnetic circuit is 0 60 cm2. The coil is wound with
250 turns and carries 50 mA. Determine:
a. The flux density, , in the magnetic circuit of the

relay when the coil is energized.
b. The force, , exerted on the armature to close it

when the coil is energized.

Derive and sketch the frequency response of the
loudspeaker of Example 16.13 for (1) 50 000 N/m
and (2) 5 106 N/m. Describe qualitatively how
the loudspeaker frequency response changes as the
spring stiffness, , increases and decreases. What will
the frequency response be in the limit as approaches
zero? What kind of speaker would this condition
correspond to?

A relay is shown in Figure P16.44. Find the
differential equations describing the system.

120 VAC

1 cm

0.5 cm

To high-
voltage load

2 cm

Movable structure

C1 C2

Push-button
start (momentary contact)

N
turns

Push-button
stop

1 cm

1 cm

1 cm

240 VAC

5 cm

Figure P16.44

A solenoid having a cross section of 5 cm2 is
shown in Figure P16.45.
a. Calculate the force exerted on the plunger when the

distance is 2 cm and the current in the coil (where
100 turns) is 5 A. Assume that the fringing

and leakage effects are negligible. The relative
permeabilities of the magnetic material and the
nonmagnetic sleeve are 2,000 and 1.

b. Develop a set of defferential equations governing
the behavior of the solenoid.
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Figure P16.45
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