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Abstract— Monitoring and control of electrical power grids are highly
reliant on the accuracy of the digital measurements. These digital measure-
ments reflect the precision of the installed sensors which are vulnerable to
the injection of unknown parameters in the form of device malfunction and
cyber-attacks. This may question the operational security and reliability of
many cyber-physical infrastructure such as smart grid. To resolve this is-
sue, a multi-sensor temporal prediction based wide-area control (TPWAC)
scheme is proposed in this paper. The feasibility of the designed scheme
is verified in an advanced synchrophasor measurements based wide-area
monitoring and control system (WAMCS). This WAMCS adopts a flexible
AC transmission system (FACTS) device (the primary controller) for con-
trolling the smart grid’s voltage profile. The algorithm is validated in a
real-time environment with an innovative software-in-the-loop (SIL) test-
ing setup. The performance of the proposed technique in the presence of
false data injection attacks shows promising results.

Index Terms—Cyber-physical systems, cyber security, distributed
Kalman filter, false data-injection attack, flexible AC transmission sys-
tem (FACTS), phasor measurement unit (PMU), real time digital simulator
(RTDS), smart grid, wide-area monitoring and control system (WAMCS).

I. INTRODUCTION

DUE to the emergence of the additional power sources and
loads, reliability and security are among the most signif-

icant concerns to be considered in smart grids nowadays [1].
These additional elements have the property to add pressure on
power grid operations which may lead to frequency deviations
and voltage instability. Consequently, the situational awareness
of power grid has been enhanced by introducing wide-area mon-
itoring and control systems (WAMCS), which provided an ad-
vanced visualization and control of the grid parameters. Among
WAMCS applications in smart grid, voltage control is identi-
fied as one of the most important schemes [2]. This scheme
is distinct in literature as the secondary voltage control method
(SVCM), which is a managerial control loop that assigns dis-
similar set-points for various reactive power components em-
ployed for reducing voltage profile deviations in smart grid [3].
The importance of this scheme is reinforced following the Au-
gust 14th, 2003 Northeast blackout, where it was recognized
that WAMCS could have helped to identify and prevent this
major voltage collapse [4]. The main profit of SVCM scheme
is improving the stability margin of the grid by reducing the
total voltage deviations [5]. SVCM has been explored widely
over the last few years. In [6], a straightforward approach to
automatic voltage control is considered where an optimization
problem is formulated for SVCM. Authors of [6, 7] proposed
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an adaptive SVCM where learning process and multiple opti-
mization problems are discussed. In [8], the employment of
model predictive control (MPC) in SVCM is deliberated where
different cases are studied and examined confirming a decent
performance of the suggested algorithm. Engagement of multi-
agent Systems (MAS) is presented in [9] where various agents’
organizations are built and compared. The majority of stud-
ies conducted on WAMCS are based on the speculation of hav-
ing full wide-area measurements, which is not applicable; still,
some authors have debated the use of phasor measurement units
(PMU) for data collections.

PMU applications in power systems have grown significantly
over the past few years [10]. Nowadays, PMUs are seen as
the foundation of WAMCS applications [11]. They provide
much improved grid-wide measurements compared to the asyn-
chronous and slow pace of measurements collected via classic
SCADA systems; this is due to the employment of the delicate
timestamp via the global positioning system (GPS) and the ad-
vanced information technology infrastructure [12]. However,
the dependency of WAMCS on digitalized tools such as PMUs
unleashes a huge set of threats of cyber-attacks [13,14]. Threats
are more evident when grid-wide control actions are based on
the measurements collected from those digital tools. The main
impact of cyber threats emerged from this perspective [15, 16].
In [17], the authors illustrate how disastrous the economic im-
pact of malicious data attacks on the grids’ market operations
could be. In 2016, a major cyber-attack took place in Ukraine
resulting in knocking out 200 Megawatts, which is about 20%
of the Kievs night-time energy consumption [18]. This incident
emphasized the importance of protection schemes against such
threats.

Conventional bad-data (false-data) protection techniques are
based on the classical weighted least-square estimation where
redundancy is a must in detecting the bad-data [19]. On the
other hand, advanced detection techniques adopted different ap-
proaches. For instance, three interleaved hop-by-hop authen-
tication schemes are presented in [20] to detect injected false
dataand discard it. Machine-learning based bad-data detection
algorithms have been introduced in [21] where two methods are
developed using supervised and unsupervised learning. Authors
of [22] proposed a novel bad data detection algorithm that re-
quires sensors to do a lightweight computation and report sta-
tistical data in addition to the current readings. Bad-data detec-
tion via Kalman filtering has been investigated in [23], where
the Euclidean detector is employed in the detection process. A
dynamic scheme for filtering bad-data in sensors networks is
developed in [24] where higher filtering capacity is achieved.
A pre-estimation based algorithm is developed in [25] to limit
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Fig. 1. Proposed TPWAC scheme for WACS application: A reactive power voltage control example

the malicious attacks’ effect on power state estimation. Sparsity
concept is employed in [26] for detecting bad-data injections
in smart grid. Authors of [27] proposed a whole network-aware
mitigation algorithm of data employed in state estimation which
yields a correct estimation process. Detection of bad data injec-
tions in power grid oscillations is deeply investigated in [28,29],
where a distributed estimation scheme based Bayesian algo-
rithm and a track fusion-based model prediction are utilized.
Distributed filtering architecture provides an enhanced filtering
and attacks detection capabilities as suggested in [30]. To the
authors’ best knowledge, no work has been reported on the mit-
igation techniques of false data-injection attacks on the phasor
measurements, which are collected from the actual PMUs with
real-time data flow, and further used for the voltage control in
WACMS applications.

Inspired from the above, this work contributes towards devel-
oping a real-time based signal processing solution to enhance
the resilience of voltage measurements against cyber-attacks
as well as cyber-physical attacks and device malfunction. A
temporal-prediction based wide-area controller is framed to
augment the resilience of the grid against the polluted measure-
ments and tackle the voltage control of the grid adaptively. This
will shrink the potential tribulations of bad-data injection at-
tacks. Consequently, a correct set-point of voltage will be sent
for the reactive power source realized via the static synchronous
compensator (STATCOM) in this study, which is a shunt power
electronics based flexible AC transmission system (FACTS) de-
vice [31]. This device controls the voltage magnitude by modi-
fying the reactive power generation or absorption.

A brief flowchart of the proposed methodology is shown in
Fig. 1. Here, the attacker is able to imitate regular variations of
voltage magnitude’s data used for voltage control in the power
grid. The temporal prediction based filter (TPF) is applied at
each i-th node to the magnitude of voltage collected via PMUs.
It starts by evolving the system models (1)-(4), where the non-
linear dynamical model (1), observation model (2), and initial
noise assumptions (3)-(4) are developed. This is followed by
depiction of an attack using observation analysis (5)-(8), which
helps to determine the impact of an attack on the collected mea-

surements. This is tackled further using the TPF via modifying
the estimated voltage magnitudes at all of the observable nodes
(9)-(17). This is achieved via developing a suitable gain and
covariance matrices in the presence of an attack. Then, the dis-
tributed fusion center (DFC) is framed for the error minimiza-
tion of filtering and estimation at each PMU (18)-(21). After
that, the filter is applied to reveal the injected information by
generating the residual (22)-(27). This measure is employed in
quantifying the injected information. In evaluating the residual,
a threshold is determined (28). Once, the voltage magnitude
is collected with the evaluation of fault-injection, the wide-area
controller is used to determine the set-point for the local-area
controller (29)-(37). The proposed algorithm is tested via a so-
phisticated real-time experimental setup developed in [32].

The paper is framed as follows: The proposed scheme is de-
tailed in Section II. The implementation and evaluation of a real-
istic case is discussed in section III, and the concluding remarks
are drawn in Section IV.

II. PROPOSED TPWAC SCHEME FORMULATION

Consider a smart grid susceptible to bad-data injection as-
sault. Each bus in the power grid is observable by a PMU,
which is also referred to as a node. It is assumed that all of
the PMUs employed operate at the same sampling rate at the
instant of time t, and there is no data lack from the PMU nodes.
Moreover, the model has the capacity to collect observations as:

xt+1 = f(xt,ut,dt) + νit , t= 0,1..., T (1)
zit = Hi

txt +wit, i= 0,1, ...., N (2)
where f(xt, ut, dt) is the recognized non-linear function de-
scribing the state transition model, r is the state vector dimen-
sion in the subspace IR, x0 ∈ IRr is the initial state, t is the
discrete-time instant, νt ∈ IRr is the random load fluctuation
based on process noise, and T is the total number of time in-
stants considered. Referring to (2), N is the number of PMU
installed at the grid substations, zit ∈ IRp

i×r is the vector of
observation of the measurements at the i-th node, pi is the do-
mestic simultaneous observation number made by the i-th node,
Hi
t ∈ IRp

i×r is the domestic observation matrix at the i-th node,
xt is the state vector for measurements, and wit ∈ IRp

i

is the lo-
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cal observation noise. Note that the system noises (wt and νt)
are assumed initially uncorrelated with white Gaussian zero-
mean. Given that, the proposed scheme can be formulated at
every PMU node in a distributed architecture after we construct
the observation model using the collected synchrophasor mea-
surements. Computation of individual measurement state xt is
required to find an estimate of a state which is vulnerable to
data-injection attacks. However, this is not reasonable since Ht

is an unobserved measurement latent variable with a probabil-
ity of an attack. Therefore, a regularization process is necessary
for solving this problem. This is achieved by depicting an at-
tack1using the observation analysis of measurements at every
i-th node at time instant t.

A. Depiction of an Attack using Observation Analysis

The depiction of the unobservable attacks can be made by the
conjugate-prior of distribution of observations. The conjugate-
prior is considered here due to its property of using a hyper prior
vector which represents the number of observations in each cat-
egory that is already observed. Let X be the realization of this
distribution, f it represents the underlying parameter of an attack
or failure given a time sequence T at i-th node, and zipr,t repre-
sents the predicted synchrophasor observations. The expected
value of the underlying attack parameter could be represented
as:

IE[f it |X,zit] =
zipr,t + zit

T +
∑T
t=1 z

i
t

(3)

This requires the calculation of the maximum a-posteriori of
the attack parameter f it as:

argmax
fi
t

P (f it |X) =
zit + zipr,t− 1∑T

t=1(zit + zipr,t− 1)
(4)

The residual rit+1 at the time instant for the measured and esti-
mated observation output can be derived as:

rit+1=zit+1−ẑit+1|t=z
i
t+1−Hi

t(Ftx̂
i
t) (5)

Here the bad-data injection attack is characterized by the at-
tack sequence ft such that:

limsup‖∆xt‖=∞,‖∆zt‖ ≤ 1, t= 0,1, ...., T (6)
where ‖∆xt‖ = xf,t− xt, ‖∆rt‖ = rf,t− rt. xf,t and rf,t are
the state variables and residual of the compromised system. The
temporal prediction-based filter (TPF) can be derived after the
attacked PMU nodes have been depicted.

B. Temporal Prediction-based Filter (TPF)

Consider a situation where the attacker is able to hack some
of the information from the PMU nodes resulting in loss of in-
formation. Specifying such knowledge is practically done by
setting the corresponding elements or the eigenvalues of the co-
variance of xt to infinity, or setting the corresponding elements

1 Since the proposed distributed scheme deem the relationship with the ad-
jacent PMU nodes, the attacks’ influence on the adjacent healthful PMU nodes
does not influence the gross execution. This is well supported by the fusion cen-
ter to provide an improved prediction accuracy of the measurements variables
with bad-data injections, thus making it not necessary that each substation must
be monitored by a PMU. Attacked nodes must be less than the healthy nodes
for the algorithm to give reliable results. This case is valid most of the time no
entire national grid could be hacked at the one time.

or eigenvalues of the inverse of the covariance of state to zero.
This is due to the impact of the information loss on the observa-
tion matrix and the covariance of the measurement noise.

Consider the observation output in (2) with known ν̄it =
IE[νit ]. A temporal prediction x̂it+1|t may exist if and only if
a full column rank is noticed for the observation matrix Hi

t , or
equivalently det(Hi∗

t H
i
t) 6= 0. Since there is information loss

involved, the resulting state-prediction will have no prior distri-
bution. It will be stated as:

x̂it+1|t=IE[xit+1e
i∗

t ]Ri
−1

e,t e
i
t=IE[xit+1e

i∗

t ]Ri
−1

e,t (zit−νit) (7)

where νit ⊥ zit, (IExt+1e
∗
t )R

−1
e,t is derived as the predicted gain

matrix indicated via Ki
pr,t. Due to the information loss of xt,

the computation is likely to give an error due to the affected ob-
servation and measurement matrix. This requires computation
of Ht and νt respectively. Considering information loss of xt, a
positive semi-definite symmetric but singular matrix H−1x,t , and
cross covariance Hxv,t, every symmetric matrix could be diag-
onalized using the orthogonal transformation as follows:

H−1x,t = Vtdiag(Λ1,t,Λ2,t)V
∗
t (8)

where Vt is an orthogonal matrix which diagonalizes H−1x,t .
Here Λ1,t= diag(λ1, ...., λn) > 0, nt= rank(H−1x,t ), and
Λ2,t = 0. Now let [J1,t J2,t] = J = V ∗t xt = [V ∗1,t V

∗
2 ]xt, and

[J̄1,t J̄2,t] = J̄ = V ∗t x̄t = [ν̄1,t ν̄2,t]x̄t. Note that J1,t and ν̄2,t
are the sub-vectors of J and J̄ that correspond to Λ1,t, such that
cov(J1 − v̄1,t) = Λ

−1)
1,t . Note that Λ2,t = 0 is equivalent to in-

formation loss about J2,t. Similarly, the information about xt
contained in x̄t, H−1x,t , and Hxv,t are equal to that of J1,t in-
cluded in J̄ , Λ1,t, and cov(J1,t, νt) = V ∗1 Hxv,t. Treating J̄1,t
as an observation y0,t of J1,t leads to the following data model:

y0,t = J̄1,t = J1,t + (J̄1,t− J1,t) = [I,0]ut + ν0,t (9)
This results in converting the model in (2) as:

yt =Htxt + νt = (Ht)Jt + νt (10)
Combining these two models yields:

z̄t=

[
J̄1,t
zt

]
=

[
[I,0]
HtVt

]
Jt +

[
J̄1,t− J1,t

νt

]
= H̄tJt + ν̄t (11)

The covariance cov(v̄t) of the measurement noise is calculated
via:
cov(ν̄t)=cov(

[
J̄1,t− J1,t

νt

]
)=

[
Λ−11,t −V ∗1,tHxν,t

−(V ∗1,tHxv,t)
∗ Ht

]
(12)

Once J̄1,t is taken as an observation, no prior information
about Jt exists at all. Thus, (1) becomes:

x̂it+1|t = VtKtV
∗
t x̂

i
t+1|t +VtKtz

i
t −VtKtV

∗
t (13)

Because at i-th node,

Ki
pr,t =IE[xt+1e

∗
t ]R

i−1

e,t

=Hi∗

t [I−P it|t−1(1−Hi
tH

i∗

t )(P ∗t|t−1)(1−H
i
tH

i∗

t )∗] (14)
where

Pt|t−1=cov(xit)−Ki
tcov(zit)K

i∗

t =GitQ
i
tG
∗
t−KtR

i
e,tK

∗
t (15)

After deriving the TPF at each i-th PMU node, the process
for information fusion takes place.

C. Information Fusion

The information fusion have two steps: 1) Distributed filter-
ing fusion for parameter estimation, and 2) Residual generation.
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1) Distributed Filtering Fusion: The estimated parameters of
every state are fused into the master filter using a distributed
architecture outlined in [33], the master filter measurement is
stated in the information form as:

P−1M,t|tx̂M,t|t = P−1M,t|t−1x̂M,t|t−1 +H∗M,tR
−1
M,tzM,t (16)

P−1M,t|t = P−1M,t|t−1 +H∗M,tR
−1
M,tHM,t (17)

The variable P−1M,t|t is the new a-posteriori estimate covariance
matrix of the voltage magnitude. Whereas P−1M,t|t−1 is the up-
dated a-priori estimate covariance matrix voltage. To integrate
the distributed architecture, local observations from N nodes
in the network are synthetically implemented into zM,t∈ IRpm.
Similar to (2) the master observation model at t is represented
as:

zM,t =HM,txt +wM,t, (18)
They can also be formulated as:

zM,t=

 z
1
t
...
zNt

 ,HM,t =

H
1
t

...
HN
t

 ,wM,t =

w
1
t
...
wNt

 (19)

2) Residual Generation: The generated residual of the esti-
mated parameter relies on two assumptions as follows:

Assumption 1: For every i-th node,L0 exists so that for every
norm bounded xi1,t,x

i
2,t ∈Rn, the beneath inequality holds:

‖f(uit,z
i
t,x

i
1,t)− f(uit,z

i
t,x

i
2,t)‖ ≤ L0‖xi1,t−xi2,t‖ (20)

Assumption 2: Taking into consideration the simplified form
of (1), the transfer-function matrixHi

t [sI− (Ait−Ki
tH

i
t)]
−1Bit

is precisely positive real, where Ki
t ∈ Rn×r is selected to sta-

bilize Ait−Ki
tH

i
t .

For a given positive-definite matrix Qit > 0 ∈ Rn×n at time
instant t, there exists covariance matrices P it = P i

∗

t > 0 ∈
Rn×n and a scalar covariance error Rt at each i-th node such
that:

(Ait−Ki
tH

i
t)
∗P it (A

i
t−Ki

tH
i
t)=−Qit, P itBit=Hi∗

t R
i
t (21)

To detect the fault-injection with residual generation at each i-th
node, the following is constructed:

x̂it = Ax̂it+g(uit,z
i
t)+B

i
tξf,tf(uit,z

i
t, x̂

i
t)+K

i
t(z

i
t−ẑit) (22)

ẑit = Hi
t x̂
i
t, r

i
t =Wt(z

i
t − ẑit) (23)

where the pair (At,Ht) are observable. The non-linear term
g(uit, z

i
t) depends on uit and zit, which are directly available.

The f(uit, z
i
t, x

i
t) ∈ Rr is a non-linear vector function of uit,

zit and xit. The ξit ∈ R is an unexpectedly changing parameter
once a fault-injection happens. Wt is a variable representing
the residual weighting matrix. Because the pair (At,Ht) have
been presumed to be observable, Ki

t can be selected to ensure
Ait−Ki

tH
i
t is a stable matrix. It is realized as:

eix,t = xit− x̂it, eiz,t = zit − ẑit (24)
The equations of error could be given via:

eix,t+1=(Ait−Ki
tH

i
t)e

i
x,t+B

i
t[ξ

i
tf(uit,z

i
t,x

i
t)

−ξif,tf(uit,z
i
t, x̂

i
t)], and eiz,t=H

i
te
i
x,t (25)

The above filter is guaranteed to converge using the following
theorem.

Theorem 1: With Assumption 2, the filter is asymptotically
convergent when no bad-data injection happens (ξit = ξif,t), i.e.
limt→∞e

i
z,t = 0.

Proof of Theorem 1: This is proved in the Appendix.
After the residual is computed, evaluations are necessary

for the threshold selection used for identifying a false data-
injection.

3) Residual Evaluation: The threshold Γ is computed using
the difference between voltage state and its resulting prediction
denoted by ε. The possible set of observations are iteratively fil-
tered using subsequent measurements with the objective func-
tion Ξ as:

Ξ =
√∑

(zit − zipr,t)2, Ξ =

{
fault if ε > Γ

no fault if ε ≤ Γ

}
(26)

Once the information fusion for the parameter estimation,
residual generation, and evaluation are completed, the next step
is to develop an adaptive controller for the information collected
from each i-th node respectively.

D. Wide-Area Control: Secondary Voltage Control Method

Considering the secondary level of the voltage control, the
dynamics of the slow behavior of the power grid are deemed.
In the control problem of this paper, primary voltage controllers
are assumed instantaneous. This is because they have a sub-
stantially smaller time step than the wide-area controller. Thus,
only steady-state power-flow equations are considered for the
wide-area controller. By using the decoupling estimation of the
active and the reactive power flow in power grid, a linear model
could be approximated which defines the relationship between
the reactive power and the voltage magnitude [1]. By rearrang-
ing grid nodes into controlled and uncontrolled voltage nodes,
the following system can be obtained:[

∆Qc,t
∆Qu,t

]
=

[
Bcc,t Bcu,t
Buc,t Buu,t

][
∆|Vc,t|
∆|Vu,t|

]
(27)

where Q is the reactive power, |V | is the voltage magnitude,
and B is the susceptance. The subscripts c and u are used to
represent the voltage-controlled nodes (with voltage controlling
device, e.g. STATCOM) and the voltage-uncontrolled nodes
(without voltage controlling device), respectively. Further, the
following equations are derived:

[∆Qu,t]t = −[Buc,t][∆|Vc,t|]− [Buu,t][∆|Vu,t|] (28)
(∆|Vu,t|) = −[Buu,t]

−1([∆Qu,t] + [Buc,t][∆|Vc,t+1|]) (29)
where [∆|Vu,t|] is the difference between the set-point
and measured voltage at the voltage-uncontrolled nodes,
[Buu,t]

−1[Qu,t] is the reactive power disturbance at the voltage-
uncontrolled nodes, and [Buu,t]

−1[Buc,t][∆|Vc,t|] is the con-
trolled voltage at the voltage-controlled nodes. Note that the
apparent control objective is to select a control action which
minimizes the deviation of the voltage magnitude at the voltage-
uncontrolled nodes. This requires an objective function of min-
imizing the voltage deviations [∆|Vu,t|] as follows:

min
∣∣−[Buu,t]

−1([∆Qu,t] + [Buc,t][∆|Vc,t+1|])
∣∣

subject toV min
c,t ≤ Vc,t ≤ V max

c,t (30)
This problem is generated from the Multi-Input Multi-Output
(MIMO) networked system (power grid). Any variation in volt-
age setpoint at any voltage-controlled node will have a con-
sequence on all other voltage-uncontrolled node in the grid.
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Nevertheless, this consequence contrasts from one node to an-
other depending on the electrical coupling between the nodes
acknowledged as the electrical distance [1].

Lemma II.1: Consider the model (1)-(2), with no control in-
put, i.e. ut = 0. If the system is asymptotically stable, and a
transfer function has been developed from wt to the observation
output zt, the following is implied:
• ‖Gt‖2 ≤ γ,
• There exist matrices Pt ≥ 0 and Zt ≥ 0 such that[
PtAt+A

∗
tPtPtBt PtBt

B∗t Pt −I

]
≤0,

[
Pt H

∗
t

H∗t Zt

]
≥0, trace(Zt)≤γ2 (31)

By minimizing the trace, feedback gains for the adaptive con-
troller can be obtained. The feedback of the control is dependent
upon the following assumption.

Assumption 3: The initial transition matrix xi0 from each i-th
node and wit are independent for all time instants t, such that
t≥ 0. This asserts that P it and P̂ it are the same. Hence, both of
them can be used to characterize the covariance matrix for the
feedback. Considering this assumption, P it satisfies the follow-
ing Lyapunov differential equation:

Q̂it = AitP
i
t +P itA

i∗

t , t≥ 0, (32)
where P i0 = IE[xi0x

i∗

0 ]− IE[xi0]IE[xi
∗

0 ]

Based on Assumption 1 and 2, the value of ξ̂it for an i-th node
is set to ξif,t until a bad-data injection is noticed. It is presumed
that after a bad-data injection happens, ξit = constant 6= ξif,t,
|ξif,t| ≤ ξi0. It is defined:

eix,t = xit− x̂it, eiz,t = zit − ẑit, ei0,t = ξif,t− ξ̂if,t (33)
The adaptive control is then obtained as:

eix,t+1 = (Ait−Ki
tH

i
t)e

i
x,t+B

i
t[ξ

i
f,tf(uit,z

i
t,x

i
t)

−ξ̂if,tf(uit,z
i
t, x̂

i
t)], e

i
z,t=H

i
te
i
x,t (34)

The above adaptive reconfiguration is guaranteed to converge
via the following theorem.

Theorem 2: Under the Assumption 1 and 2, the system (34)
and the following diagnostic algorithm.

∆ξif,t = Γf∗(uit,z
i
t, x̂

i
t)R

i
te
i
z,t (35)

can recognize limt→∞e
i
x,t = 0 and a bounded ei0,t ∈ L2

0. More-
over, limt→∞e

i
ξ,t = 0 under a constant excitation, where Rit is

computed by (21), Γ > 0 is a weighting scalar.
Proof of Theorem 2: This is proved in the Appendix.

III. IMPLEMENTATION AND EVALUATION

A typical IEEE 14 bus multi-machine system has been cho-
sen in this paper. It includes 2 synchronous generators (G) with
IEEE type-1 exciters, 3 synchronous condensers (C), 4 two-
winding power transformers, 20 transmission lines with Berg-
eron model, and 11 dynamic impedance loads as shown in Fig.
2. Grid’s modeling details are based on [34]. The primary local
controller used here is the FACTS device known as STATCOM
which has been designed and connected to bus 13 of the power
system [31]. PMUs with accuracy class P have been placed op-
timally in order to have a complete observability of the system
(each bus of the grid is observable by at least one PMU). The
placement of the PMUs in this paper is based on [35], and the
sampling rate of the PMUs is 5 samples/second.

Fig. 2. High-level view of the power grid model, WAMCS with bad-data
detection, and the proposed SIL testbed

Real time digital simulator (RTDS) has been used in this
study to simulate the power system and the local controller.
The PMU model in RTDS is constructed based on the standard
IEEE C37.118.1-2011 [12], which makes it reliable. Though,
since RTDS is intended purposely for power system mod-
els, there is a huge challenge to carry on the big mathemat-
ical tasks for the WAMCS in it; consequently, software in
the loop (SIL) scheme is adopted. SIL is preferred for ad-
vanced validations of embedded control logic in smart grid’s
studies [36]. A MATLAB built program is employed for the
SIL; it starts by creating TCP/IP sockets for the PMUs. Then,
it collects the PMU messages according to the IEEE PMU
standard C37.118.1-2011 and extracts the measurements. The
messages vary in forms and numbers of bytes. For instance,
‘AA4100120001448560000F0BBFD00002CE00’ represents a
command message for PMU1 to start sending the PMU mea-
surements. The program applies the bad-data detection and
wide-area controller equations and sends its action to the lo-
cal area controller in RTDS. The delay of this program is below
100ms. Two distinctive RTDS cards are used for the SIL: GT-
SYNC is employed for the synchronization (GPS 1PPS signal)
of the PMUs, and GTNETx2 is used for the network commu-
nication via two dissimilar protocols (GTNET SKT for TCP/IP
communication, and GTNET PMU for PMU data transfer ac-
cording to the IEEE C37.118.1-2011). Figure 2 shows the test-
ing setup for the SIL adopted.

In order to evaluate the proposed methodology, a test case
has been designed. This test case has multiple power system
disturbances as well as data-injections attacks which are spread
over the case duration which is 60 seconds. The power system
is distressed by five large disturbances. First, a three-phase-to-
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Fig. 3. Profiles of a) Bus 1, b) Bus 3, c) Bus 8, d) Bus 9, e) Bus 10, and f) Bus 11 with random fault injections. Estimation profile of Bus 9 with g) average
estimation error. Residual evaluation of h) Bus 1, i) Bus 3, j) Bus 8, k) Bus 9, l) Bus 10, and m) Bus 11 with random fault injections. Wide area controller
set-point change n) with and o) without data-injection attacks

ground fault took place at bus 4 at 10 second, and it is cleared
within 0.1 seconds. Second, an outage at line 1-5 occurred at
20 second for 5 seconds. Third, a unit outage of a synchronous
compensator took place at bus 8 at 30 second for 5 seconds.
Fourth, a three-phase-to-ground fault took place at bus 10 at 40
second, and it is cleared after 0.1 seconds. Lastly, an outage at
line 2-4 occurred at 50 second for 5 seconds. Furthermore, all
of the grid’s loads are randomly varied by 10-30 % all of the
time, which disturbs the grid’s voltage profile.

The proposed method here is evaluated against Kalman filter
(KF) technique in [23] which is also a main-stream technique
used in the application of power oscillation detection in [37].
However, KF is not originally framed to consider false bad-data

injection assaults in WAMCS applications. Similar is the pur-
pose of this paper, where WAMCS is not considered for nominal
and healthy conditions. Alternatively, the aim is to have bene-
ficial prudence to the possible variations that may come across
via bad-data injection assaults.

To simulate the attacks scenario, several deliberate data-
injections have been injected in some of the PMUs measure-
ments. These attacks are equally spread over the case duration
and are varied by magnitude and the number of affected mea-
surements. Simulated attack scenarios are as follows:
• First Injection: A 0.1 pu voltage decline is injected at bus

1 from 15 to 19 seconds.
• Second Injection: Voltage fluctuations at bus 3 are injected
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from 27 to 31 seconds.
• Third Injection: A 0.1 pu voltage decline is introduced at

bus 4, 7, 8, 9 from 41 to 46 seconds.
• Fourth Injection: A 0.05 pu voltage decline is introduced

at bus 6 and 10 from 52 to 57 seconds, and a 0.1 pu voltage
decline is introduced at bus 11 from 52 to 57 seconds.

The first and second injections imitate bad-data injections ex-
perienced when a single measurement device is malfunctioned.
Also, it imitates the scenario of physical-attacks imposed on a
single measurement device. The third and fourth attacks im-
itate the scenario of the cyber-attacks imposed on more than
one measurement device. The third attack represents the aim
of bringing down a regional voltage which consists of multiple
busses. The fourth attack represents a smart attack where the
attacker is trying to imitate a voltage decline at bus 11 which
would affect as well the neighboring buses 6 and 10 but with dif-
ferent magnitudes. The aim of injecting a well spread and var-
ied bad-data is to assess the robustness of the proposed scheme.
Figures 3 (a-f) show the attacks at some of the affected busses
where the black line shows the bad data merged to the clean
measurements colored in red.

Figure 3 (g) shows the comparison of estimation error for the
proposed scheme with regular Kalman filter. The profile is com-
pared at Bus 9 between 0 to 60 seconds time-window. The pro-
posed scheme demonstrated adequate estimation accuracy. This
is due to its property to use a hyper prior vector for the observa-
tions having probability of an attack. Furthermore, MSEx val-
ues in Table I show consistent estimation performance of TPF.
This is due to the novelty of TPF to recursively construct the
loss of information by orthogonal transformation. The magni-
tude of estimation error is between 10−3 and 10−4. This can
be further improved if information from more PMU nodes are
available to provide a conjugate-prior of the distribution of the
observations. In contrast, the estimation accuracy of KF is less.
It is due to the linear nature that KF was not able to distinguish
the contaminated measurements.

Once the estimation accuracy is guaranteed, the residuals are
produced to determine the existence of the data-injection at-
tacks. Fig. 3 (h-m) show the residual generated from the pro-
posed scheme for imposed attacks on buses 1,3,8,9,10 and 11.
The figures show the residuals as well as the upper and lower
thresholds for each bus. The choice of these thresholds is a very
critical procedure as misleading conclusions might be drawn if
unappropriated thresholds have been used. In other words, false
alarms might be generated for normal measurements generated
due to non-attacks grid conditions. It is clear that all the at-
tacks have been detected accordingly. However, the two faults
in the case have also crossed the thresholds values in some of
the windows. This may give a false alarm for detection of cyber-
attacks. This is a normal result as the residual test gives alarms
for any unusual measurement variations. This can be further
improved by evaluating the harmonics and repeatability of these
variations. Furthermore, a comparative study has been made to
evaluate the impact of fault-injection attacks on the wide-area
controller as shown in Fig. 3 (n-o). It is clear that the main
effect of the attack is noticed from 41 to 46 seconds. This is
due to the fact that the third attack is a major one where sev-

TABLE I
MEAN SQUARE ERROR COMPARISONS1

Technique MSEx Technique MSEv

TPF 1.93 × 10−4 WACDI 2.93 × 10−2

KF 1.40 × 10−3 WACWDI 2.16 × 10−2

1Note that MSEx =
√

1
N

∑N
i=1(zi−xi)2, MSEv =

√
1
N

∑N
i=1(∆|Vi|)2,

KF, TPF, WAC, DI and WDI, are the state root mean square error, the volt-
age root mean square error, Kalman filter, Temporal prediction filter, wide area
control, data-injection and without data-injection, respectively.

eral busses are attacked simultaneously with a voltage decline.
This leads the wide-area controller to increass the set-point of
the STATCOM as shown in Fig. 3 (o). The effect can also be
seen in Table I where MSEv value is slightly increased due to
the impact of injected faults.

IV. CONCLUSIONS

In conclusion, a novel technique is presented to enhance the
resilience of wide-area control systems against the bad-data in-
jections attacks. The temporal prediction attribute of the scheme
has assisted to accurately tackle the injection attacks while esti-
mating and controlling the voltage magnitude. In this paper, the
developed algorithm has been applied to an advanced wide-area
monitoring and control application. Measurements with real-
time data flow were taken from the phasor measurement units.
The developed scheme was able to elicit the voltage magnitude
accurately, which if not detected, may increase the voltage pro-
file deviations, which may lead to voltage instabilities or black-
outs. In future, more advanced cases studies shall be considered
where adverse and non-regional threats will be tackled.

APPENDIX

1) Proof of Theorem 1:
Consider the following Lyapunov function,

V (eit) = ei
∗

x,tP
i
t e
i
x,t (36)

where P it is the solution of (21), Qit is chosen such that ρ1 =
λmin(Qit)− 2‖Hi

t‖.|Rit|ξif,tL0 > 0. Along the trajectory of the
fault-free system, the corresponding Lyapunov difference along
the trajectory eit is:

∆V =IE{V (eit+1|eit,P it )}−V (eit)

=IE{ei
∗

t+1P
i
t e
i
t+1}− ei

∗

t P
i
t e
i
t

=(Aie,te
i
x,t+BL0,tu

i
e,t)

i∗P it (A
i
e,te

i
x,t+B

i
L0,tu

i
e,t)

− ei
∗

x,tP
i
t e
i
x,t

= ei
∗

t [(P it (A
i
t−Ki

tH
i
t) + (Ait−Ki

tH
i
t)
∗P it )

+P itB
i
tξ
i
f,t[f(uit,z

i
t,x

i
t)−f(uit,z

i
t, x̂

i
t)]]e

i
t (37)

From Assumption 1 and system described by (21), one can fur-
ther claim:

∆V ≤ −ei
T

x,tQ
i
te
i
x,t + 2‖eiz,t‖.|Rit|ξif,tL0‖eix,t‖

≤ −ρ1‖eix,t‖2 < 0 (38)
Thus, limt→∞ e

i
x,t = 0 and limt→∞e

i
z,t = 0. This completes

the proof.
2) Proof of Theorem 2:
Consider the following Lyapunov function,

V (eit) = ei
∗

x,tP
i
t e
i
x,t +Γ−1ei

2

ξ,t (39)
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From (34) and (35), its first forward difference is:

∆V = IE{V (et+1|eit,P it )}−V (eit)

= IE{ei
∗

t+1P
i
t e
i
t+1}− ei

∗

t P
i
t e
i
t

= (Aie,te
i
x,t +BiL0,tu

i
e,t)
∗P it (A

i
e,te

i
x,t +BiL0,tu

i
e,t)

−ei
∗

x,tP
i
t e
i
x,t

= ei
∗

t [(P it (A
i
t−Ki

tH
i
t) + (Ait−Ki

tH
i
t)
∗P it )

+ P itB
i
t[ξ

i
f,tf(uit,z

i
t,x

i
t)

− ξ̂itf(uitξ
i
t,z

i
t, x̂

i
t)]e

i
t−2eiξ,tf

∗(uit,z
i
t, x̂

i
t)R

i
te
i
y,t (40)

According to Assumption 1 and 2, one can state:

∆V ≤ −ei
∗

x,tQ
i
te
i
x,t− 2eiξ,tf

∗(uit,z
i
t, x̂

i
t)R

i
te
i
z,t

2e∗x,tH
i∗

t R
i
t{eiξ,tf(uit,z

i
t,x

i
t)−ξ̂itf(uit,z

i
t, x̂

i
t)} (41)

where ρ2 = λmin(Qit)−2‖Hi
t‖.|Rit|ξi0L0,|ξif,t| ≤ ξi0, Qit > 0 is

chosen such that ρ2 > 0. Inequality (41) implies the stability of
the origin eix,t = 0, eiξ,t = 0, and the uniform boundedness of
eix,t and eiξ,t with eix,t ∈ L2. On the other hand, from (34), ėix,t
is uniformly bounded as well. According to Barbalat’s Lemma,

lim
t→∞

eix,t = 0 (42)

The persistent excitation condition means there exist two posi-
tive constants σ and t0 such that for all t the following inequality
holds:

t+t0∑
m=t

f∗(zit,u
i
t,x

i
t)B

i∗

t B
i
tf
∗(zit,u

i
t,x

i
t)≥ σI. (43)

Subsequently, from (34), (35), (42) and (43), one can conclude
that limt→∞ e

i
ξ,t = 0. This completes the proof.
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