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Abstract - In this paper, an efficient scheme to detect the 
unprecedented changes in system reliability and find the failed 
component state by classifying the faults is proposed using 
kalman filter and hybrid neuro-fuzzy computing techniques.  
A fault is detected whenever the moving average of the Kalman 
filter residual exceeds a threshold value. The fault 
classification has been made effective by implementing a 
hybrid Genetic Adaptive Neuro-Fuzzy Inference System 
(GANFIS). By doing so, the critical information about the 
presence or absence of a fault is gained in the shortest possible 
time, with not only confirmation of the findings but also an 
accurate unfolding-in-time of the finer details of the fault, thus 
completing the overall fault diagnosis picture of the system 
under test. The proposed scheme is evaluated extensively on a 
two-tank process used in industry exemplified by a 
benchmarked laboratory scale coupled-tank system. 
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I.  INTRODUCTION  
hallenging design problems arise in modern fault diagnosis 
systems. Unfortunately, the classical analytical techniques 
often cannot provide acceptable solutions to such difficult 

tasks. This explains why soft computing techniques such as 
fuzzy logic, neural networks and evolutionary algorithm 
become more and more popular in industrial applications of 
fault diagnosis. Process faults, if undetected, have a serious 
impact on process economy, product quality, safety, and 
productivity and pollution level. In order to detect, diagnose 
and correct these abnormal process behaviors, efficient and 
advanced automated diagnostic systems are of great 
importance to modern industries. The main objective of 
fault detection and isolation (FDI) is to provide early 
warnings to operators, such that appropriate actions can be 
taken to prevent the break down of the system after the 
occurrence of faults. This will improve the reliability and 
safety of the system, and avoid unnecessary and costly 
stoppages. Complete reliance on human operators to 
monitor the conditions of the systems is often difficult, 
especially as engineering systems are becoming more 
complex. 

For example, in chemical processes several kinds of 

failures may compromise safety and productivity. In fact, 
the occurrence of faults may affect efficiency of the process 
(e.g., lower product quality) or, in the worst scenarios, could 
lead to fatal accidents (e.g., temperature run-away) with 
injuries to personnel, environmental pollution, equipments 
damage. Major failures to be considered in chemical 
processes are: actuator failures (e.g., electric-power failures, 
pump failures, valves failures), process failures (e.g., abrupt 
variations of some process parameters, side reactions due to 
impurities in the raw materials) and sensor failures. To 
tackle these difficulties, FDI techniques are developed. 

The model-based approach is popular for developing FDI 
techniques [1][2]. It mainly consists of two stages [3]. The 
first one is to generate residuals by computing the difference 
between the measured output and the estimated output 
obtained from the model of the system. Any departure from 
zero of the residuals indicates a fault has likely occurred [4]. 
Several model-based works on the detection and 
identification of faults and tuning parameters were 
considered in [7-8]. However, these methods are developed 
mainly for linear systems assuming that a precise 
mathematical model of the system is available. This 
assumption, however, may be difficult to satisfy in practice, 
especially as engineering systems in general are nonlinear 
and are becoming more complex [5][6].  

To overcome these problems of fault diagnosis, soft 
computing is considered as an emerging approach, which 
parallels the remarkable ability of the human mind to reason 
and learn in circumstances characterized by uncertainty and 
imprecision. In contrast with hard computing methods that 
only deal with precision, certainty, and rigor, it is effective 
in acquiring imprecise or sub-optimal, but economical and 
competitive solutions to real-world problems. As we know, 
qualitative information from practicing operators may play 
an important role in accurate and robust diagnosis of motor 
faults at early stages.  

The paper is organized as follows: Fault Diagnosis 
problem statement is considered in Section II.  Section III 
discusses the implementation and simulation results. Section 
IV does the discussion for all the techniques implemented. 
Finally some conclusions are given Section V. 

II. THE FAULT DIAGNOSIS PROBLEM STATEMENT 
Fault is an undesirable factor in any process control 
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industry. It affects the efficiency of system operation and 
reduces economic benefit to the industry. The early detection 
and diagnosis of faults in mission critical systems becomes 
highly crucial for preventing failure of equipment, loss of 
productivity and profits, management of assets, reduction of 
shutdowns. 

To have an effective fault diagnosis of highly non-linear 
systems, hybrid techniques have been introduced here by 
showing the genetic neuro-fuzzy Based- FDI as shown in 
figure 1. 

 
Figure 1. Implementation plan for the evaluation of the proposed scheme 

 
A. System Description 

A Benchmark laboratory-scale two-tank process control 
system has been used to collect data at a sampling rate of 50 
milliseconds. The system is considered as a multi-input 
single-output (MISO) process with hydraulic height and 
liquid output flow-rate of the second tank being the two 
inputs while leakages fault level on a discrete scale of 1 to 4 
being the output. The objective of the benchmark dual-tank 
system is to reach a reference height of 200ml in the second 
tank. To achieve this objective, a Proportional Integral (PI) 
controller works in a closed loop configuration. Data is 
collected by introducing leakage fault in the closed loop 
system. (See. Fig 2). This is done through the pipe clogs of 
the system using drainage valve between the two tanks. The 
PI controller tends to treat the introduced fault as a 
disturbance and acts to suppress it. The closed-loop nature of 
the experiment also tends to suppress the faults introduced in 
the system, thereby making it more difficult to detect these 
faults. 
B. Model of the Coupled Tank System  

The physical system under evaluation is formed of two 
tanks connected by a pipe. The leakage is simulated in the 
tank by opening the drain valve. A DC motor-driven pump 
supplies the fluid to the first tank and a PI controller is used 
to control the fluid level in the second tank by maintaining 
the level at a specified level, as shown in Fig 3.  

A step input is applied to the dc motor- pump system to 
fill the first tank.  The opening of the drainage valve 
introduces a leakage in the tank. Various types of leakage 
faults are introduced and the liquid height in the second 
tank, 2H , and the inflow rate, iQ , are both measured. The 
National Instruments LABVIEW package is employed to 
collect these data.       

 

 
Figure 2 A – The two tank system interfaced with the Labview through 

a DAQ and the amplifier for the magnified voltage , B – The labview setup 
of the apparatus including the ciruit window and the block diagram of the 
experiment. 

A benchmark model of a cascade connection of a dc 
motor and a pump relating the input to the motor, u, and the 
flow, iQ , is a first-order system: 

( )i m i mQ a Q b uφ= − +&   (1) 
where ma and mb are the parameters of the motor-pump 

system and ( )uφ is a dead-band and saturation type of 
nonlinearity.  It is assumed that the leakage Ql  occurs in 
tank 1 and is given by: 

12dQ C gH=l l  (2) 

 With the inclusion of the leakage, the liquid level system 
is modeled by: 

         ( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − − l  (3) 

( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − − (4) 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ=l l is the leakage 

flow rate, ( )0 0 2Q C Hϕ= is the output flow rate, 1H is the 

height of the liquid in tank 1, 2H is the height of the liquid in 
tank 2, 1A  and 2A  are the cross-sectional areas of the 2 

tanks, g=980 2/ seccm  is the gravitational constant, 12C  and 

oC  are the discharge coefficient of the inter-tank and output 
valves, respectively. 
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The model of the two-tank fluid control system, shown 
above in Fig. 3, is of a second order and is nonlinear with a 
smooth square-root type of nonlinearity.  For design 
purposes, a linearized model of the fluid system is required 
and is given below in (5) and (6): 

( )1
1 1 1 1 2i

dh
b q a h a h

dt
α= − + + (5) 

( )2
2 1 2 2

dh
a h a h

dt
β= − −          (6) 

where 1h and 2h are the increments in the nominal 

(leakage-free)  heights 0
1H and 0

2H : 

0
1 1 0 0 0

1 1 2 2

1 , ,
2 2 ( ) 2 2

dbC C
b a

A g H H gH
β= = =

−
,

2 1 0 0
2 12 2 2 2

do dC C
a a

gH gH
α= + = l   

and the parameter α  indicates the amount of leakage. 
A PI controller, with gains pk and Ik , is used to maintain 

the level of the Tank 2 at the desired reference input r  as:  
3 2

3p I

x e r h

u k e k x

= = −

= +      (7)

 

The linearized model of the entire system formed by the 
motor, pump, and the tanks is given by: 

x Ax Br y Cx= + =
                      (8) 

where 

1 1 11

2 22

3

0

0 0
, ,

1 0 0 0

0

0 0 1 , [1 0 0 0]

i m p m I m

T

m p

a a bh
a ah

x A
x
q b k b k a

B b k C

α

β

⎡ ⎤− −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤= =⎢ ⎥⎣ ⎦

(9)
 

where iq , ql , 0q , 1h  and 2h  are the increments in 

iQ ,Ql , oQ , 0
1H and 0

2H , respectively, the parameters 1a  and 

2a  are associated with linearization whereas the parameters 
α  and β  are respectively associated with the leakage and 
the output flow rate, i.e. 1q hα=l , 2oq hβ= . 

 

   

 
Fig. 3  Process control system: A Lab-scale two-tank system 

 
III. IMPLEMENTATION AND SIMULATION RESULTS 

A. Fault Detection Using Kalman Filter 
The Kalman filter is designed for the normal fault-free 

operation. The model of the system for a fault-free, which is 
obtained from the system identification process described in 
the previous section, is given by: 

0 0( 1) ( ) ( ) ( )x k A x k B u k d w k+ = + − +  

0( ) ( ) ( )y k C x k kυ= +  
 

(7) 

Where ( )y k  is the output, e.g., the height of the water in a 
tank, ( )0 0 0, ,A B C  are obtained from the discretized model of 
( ), ,A B C for the ideal fault-free case, ( )w k  and ( )v k  are zero-
mean white plant and measurement noise signals, 
respectively, with covariances: 

( ) ( )TQ E w k w k⎡ ⎤= ⎣ ⎦ , and ( ) ( )TR E v k v k⎡ ⎤= ⎣ ⎦  
(8) 

The plant noise, ( )w k , is a mathematical artifice 
introduced to account for the uncertainty in the a-priori 
knowledge of the plant model. The larger the covariance Q  
is, the less accurate the model ( )0 0 0, ,A B C is and vice versa.   
The Kalman filter is given by: 

( )0 0 0 0ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k Ax k B u k d K y k C x k+ = + − + −  

0 ˆ( ) ( ) ( )e k y k C x k= −  

 
  (9) 

where d is the delay and e (k) the residual.  
0K  is the filter gain. The larger the 0K is, the faster the 

response of the filter will be and the larger the variance of 
the estimation error becomes. Thus, there is a trade-off 
between a fast filter response and a small covariance of the 
residual. An adaptive on-line scheme is employed to tweak 
the a- priori choice of the covariance matrices so that an 
acceptable trade-off between the Kalman filter performance 
and the covariance of the residual is reached. 

It is noteworthy that the fault-free model of the system is 
identified using a recursive least-squares identification 
scheme. The order of the estimated model was iterated to 
obtain an acceptable model structure using a combination of 
the AIC criterion and the identified pole locations.  

The identified model is essentially a second-order system 
with a delay even though the theoretical model is of a fourth 
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order. Using the fault-free model together with the 
covariance of the measurement noise, R, and the plant noise 
covariance, Q, the Kalman filter model was finally derived. 
As it is difficult to obtain an estimate of the plant 
covariance, Q, a number of experiments were performed 
under different plant scenarios to tune the Kalman gain, 0K . 

( )0 0 0 0ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k Ax k B u k d K y k C x k+ = + − + −
   

0 ˆ( ) ( ) ( )e k y k C x k= −  

(10) 

The Kalman filter was evaluated under different fault 
scenarios for an on-off controller, a P controller, and a PI 
controller, as shown in Fig.4.    
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(a)                                                          (b) 

Fig. 4. Kalman filter results for an (a) On-Off and (b) PI Controller: for 
Flow and Height under various leakage magnitudes 

IV. ANFIS BASED FAULT DIAGNOSIS USING 
SUBTRACTIVE CLUSTERING 

 
Figure 5. Implementation Scheme (GANFIS system) 

 

The tasks of our fault diagnosis scheme, GANFIS system 
(Fig.5) are executed with an increasing precision 
accompanied with a more detailed fault picture. Firstly, the 
data collected from the plant has been normalized which 
comprises of the pre-processing of the data. Then, the 
optimal cluster has been tested through ANFIS using the 
subtractive clustering technique. Then, the genetic 
optimization of the subtractive clustering radius has been 
performed and the performance has been validated by 
checking the root mean square error and the performance 
targets of the performance targets. 
A.  

The Subtractive Clustering technique has been applied 
here in order to form hybrid versions of Neuro-Fuzzy.  The 
procedure for the Subtractive Clustering proceeds by 
defining a cluster center based on the density of surrounding 
data points. All the data points within the RADII of this 
point form then a cluster. This process is repeated until all 
the data is clustered.  
    This scheme has been followed and employed to get a 
final trained ANFIS. It has been shown that the Predicted 
ANFIS is performing better in following the Original output 
when the radius is 0.7 rather than when the radius is 0.2 as 
shown in the figure 6.  
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Figure 6. (a)Predicted ANFIS using Subtractive Clustering when radius: 
0.7, (b) Predicted ANFIS using Subtractive Clustering when radius: 0.2 
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As can be seen in the previous section that a slight change 
in the radius of subtractive clustering has showed in the 
change of results. So, the genetic optimization of the 
parameters is used in order to get the optimal shape of the 
fault prediction. Figure 7 shows the four various phases in 
which the performance of genetic optimization can been 
seen. The original graph is drawn in red which is showing 
step sizes indicating different levels of faults. The green 
graph is showing the prediction with the subtractive 
clustering technique followed the blue graph in each of all 
the four phases which is showing the genetic optimization 
of the radius parameter of the sub-clustering technique.   

These functions when implemented in the genetic 
algorithm gives the best fitness function value as follows: 
 

Fitness Function Value:0.187462 
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Figure 7. (a-d) Four random Phases for predicted subclustered ANFIS with 
GA  

B. ANN-Based Fault Diagnosis 
The analysis of the ANN is a difficult task and it requires 

an expert opinion with a hit and trial scenario by putting 
different types training sets and functions and finding the 
final outcome of the best possible hidden layers and 
activation layers as per according to the problem at hand. A 
generic model of the ANN in fault diagnosis is as follows in 
figure 8. and a generic activation evaluation on a sigmoid 
activation function is shown in figure 9. 

 

 
Figure 8. Evaluation of Neural Network-Based Fault Diagnosis 

 

 
Figure 9. Neural Network Based Activation Function Evaluation 

 

C. Discussion 
In this paper, two modeling techniques have been used, a 

kalman filter-based approach for fault detection and the 
hybrid techniques have been implemented for the fault 
classification. A good comparison of the techniques can 
been in the histographs shown in figure 9 and figure 10. The 
chart in figure 10 shows the comparison with the error rates 
between fuzzy, ANN, ANFIS and the present method of 
genetic neuro-fuzzy.  It is to no worthy that the error rate for 
the GANFIS is the least one because the genetic algorithm 
has performed well in optimization the subtractive 
clustering. In figure 11, it can be seen, that when the radius 
of the subtractive clustering chosen randomly, it is showing 
improvements in the results.  
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Figure 10. Comparison of error rates 
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Figure 11. Comparison of subtractive clustering radius tuning 

V. CONCLUSION 
In this paper, we presented a model-free approach to the 

fault diagnosis problem, based on a combination of different 
learning strategies like ANN, adaptive neuro-fuzzy and 
ANFIS.  This model-free approach detects a presence of a 
possible fault from the profiles of the sensor outputs. 
Changes in the fault signatures such as settling time, steady-
state value, and the coherence spectral changes give a quick 
indication that a fault may be in the making. An abrupt 
change in the sensor output profile indicates a possible onset 
of a fault. As such, this model free approach can be made an 
effective part of an overall integrated approach that tackles 
both fault detection and isolation where isolation part would 
be handled by an additional section using a model-based 
approach. 
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