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Abstract—Utilization of synchrophasor measurements for wide area
monitoring applications enables system operators to acquire real-time grid
information. However, intentional injections of false synchrophasor mea-
surements can potentially lead to inappropriate control actions, jeopardiz-
ing the security and reliability of power transmission networks. To resolve
this issue, a multi-sensor track-level measurement fusion-based model pre-
diction (TFMP) has been proposed. It has been demonstrated on a ma-
ture wide area monitoring application, which detect electromechanical os-
cillations. In this study, to extract the initial correlation information about
attacked oscillation parameters, Kalman-like particle filter (KLPF)-based
smoother has been used at each monitoring node. To reduce its computa-
tional burden, the KLPF-based smoother is diagonalized into subsystems.
The scheme is further supported by the characteristics of moving horizon
estimates (MHE) for handling continuous load fluctuations and perturba-
tions caused by data-injections in power grids. Performance evaluations
are conducted using different data-injection scenarios in the IEEE New
England 39 Bus system. Results show the proposed TFMP accurately ex-
tracted oscillatory parameters from the contaminated measurements in the
presence of multiple system disturbances and random data-injections.

Index Terms—Kalman filter, inter-area oscillation, model prediction,
multi-sensor data fusion, phasor measurement unit, power system stabil-
ity, synchrophasor, track-level measurement fusion.

I. INTRODUCTION

MODERN electrical grids demand accurate sensor mea-
surements and communication channels to perform ef-

fective coordinated operations. Recent deployment of Phasor
Measurement Units (PMUs) in transmission networks enables
real-time grid dynamics to be recorded and transmitted to local
data acquisition servers. Subsequently, signal processing algo-
rithms can be applied to extract system information for online
grid operations. However, the close coupling between cyber
and physical operations can make system operations vulnera-
ble to cyber-attacks [1, 2]. In this paper, the focus is towards
cyber-attacks in the form of data-injections [1–10]. Abnormal
data superimposed into collected synchrophasor measurements
can cause false system information to be interpreted by installed
monitoring algorithms. This can then lead to delays in mitiga-
tion actions. Among monitoring schemes using PMU measure-
ments, state estimation and oscillation detection are more pop-
ular applications. Despite several methods are proposed for bad
data detection in state estimation [4–6], none explored in the
field of oscillation detection. Thus, the motivation of this paper
improves the immunity of oscillation detection schemes against
data-injections.

Power oscillations are electromechanical dynamics between
synchronous generators in an interconnected grid. The fre-
quency of local oscillation ranges from 0.8 to 2 Hz, while the
frequency of intra-area mode are from 0.1 to 0.8 Hz [11, 12].
Inter-area oscillations are difficult to monitor and are prone in
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ACRONYMS AND ABBREVIATIONS OF MATHEMATICAL FORMULATIONS

KLPF Kalman like particle filter
MHE Moving horizon estimate
PMU Phasor Measurement Unit
TEMP Track-level fusion-based model prediction
TFC Track fusion center
α constant matrix with compatible dimensions

f(.) nonlinear function for state transition model
x0 initial condition of the oscillation state
w random process noise
t time instant
T number of time instants
z observation vector
p number of synchrophasor observations

h(.) nonlinear function for local observation matrix
x state matrix for oscillations
υ observation noise
N number of sensors

X, V, W Gaussian probability distribution function
ν measurement noise
IE expectation operator
Rt residual covariance
δgh Kronecker delta
Q process noise correlation factor

ak ,bk complex amplitudes of k-th mode
σ damping factor
f oscillatory frequency
Ts sampling time

κ, Ψ , Hi Jacobian matrices
x̃ linearized approximation of the system state
µ mean
P variance

x1,t,x2,t states of subsystem 1 and 2
κ̄, Ψ̄ , H̄ , v̄ diagonalized variables
P

S1,2

1,t|t smoothing error covariance of state x1,t

P
S1,2

2,t|t smoothing error covariance of state x2,t

ϖ interaction between subsystem 1 and 2
L, Θ positive functions
ξ fault parameter
Kt gain matrix
V residual weighting matrix

G(ω) fault-free operating output
Gf (ω) faulty operating output

ω frequency in rad/s

c(Ĝ(ω), Ĝf (ω)) magnitude-squared coherence spectrum
teststat test statistic

systems that are operating near their technical transfer capac-
ity. As a result, monitoring algorithms to detect inter-area os-
cillation using synchrophasor measurements are proposed in re-
cent time [12–18]. The objective is to detect lightly damped
oscillations at early stage before they trigger angular and volt-
age instabilities. Inter-area oscillation was responsible for the
North America northwestern blackout [12]. The present re-
search trend is moving towards recursively monitoring oscil-
lations under ambient situations. Recursive techniques can be
categorized into 1) curve-fitting, and 2) an a-priori knowledge-
based. The first refers to publications that extract oscillatory
parameters directly from measurements [14–16]. The latter are
associated with methods that approximate parameters using pre-
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vious knowledge of the system as well as the collected measure-
ments [17]. An a-priori knowledge-based approach provides
higher estimation accuracy under ambient or noisy conditions
when accurate model is provided [18]. In this case, approxi-
mating electromechanical oscillations as a sum of exponentially
damped sinusoidal signals is considered an accurate model rep-
resentation in oscillation monitoring research [13]. Hence, the
emphasis of this work is towards enhancing a-priori knowledge
based techniques.

Despite published methods in oscillation detection can oper-
ate under noisy conditions, they are not proven to be resilient
against data-injection attacks. Such attack is an emerging threat
due to the increasing dependency of digital measurements for
monitoring and control applications in recent years [7]. Major-
ity of published monitoring methods are formulated based on
the assumption of the measurements are not contaminated by
human interventions. According to [3] and [8], cyber-attacks
through introducing periodic or continuous bias to system mea-
surements are possible. There are no guarantees that all cyber-
attacks can be prevented. Any successful attack will cause ex-
isting monitoring schemes to generate inaccurate system infor-
mation, which may then lead to cascading failures [7, 9, 10].
In recent literature, several methods are proposed to identify
abnormal data segments and isolate attacked sensors [4, 7–10].
However, they usually require a large data batch and are com-
putational intensive. Although an attacked sensor can be even-
tually identified, the time between the start of the attack until
successful isolation can be in minutes or hours. This is a sig-
nificant time window to trigger wide-area blackouts as opera-
tors are still being fed with false information. Referring to [12]
and [19], it only takes minutes to make inter-area oscillation be-
come lightly damped and generate wide area angular and volt-
age instabilities. Coming from the system operational perspec-
tive, the key objective is to minimize the potential damage of
data-injection attack through novel processing of information
collected from distributed sensors. To the authors’ knowledge,
such enhancement in oscillation monitoring algorithms has not
been proposed.

Therefore, this paper contributes towards proposing a signal
processing solution to enhance the resilience of existing oscilla-
tion monitoring methods against contaminated measurements.
Since data-injection attacks in electrical grids can be consid-
ered as a regional event, the use of distributed architecture such
as [18] is an adequate option against data contaminations. How-
ever, given the uncertainties of data-injection attack in the pre-
scribed error statistics, it can be inappropriate to spend a huge
amount of computational power to filter erroneous information
as used by the algorithmic structure. Referring to [13], monitor-
ing algorithms shall meet: 1) robustness against random fluc-
tuations and bias, and 2) the computational cost of the prop-
agation of estimation of each electromechanical oscillations.
To achieve the robustness, while optimizing the computational
complexity, constraints of perturbation and random fluctuations
shall be considered. The aim is to maintain the accuracy of
extracting oscillatory parameters as well as detecting potential
monitoring nodes that are being attacked. In this paper, we inte-
grated a modified KLPF-based smoother from [18] into the pro-
posed track-level measurement fusion-based model prediction

Fig. 1. Proposed TFMP scheme to estimate and detect data-injection attacks
during power oscillations monitoring

(TFMP) approach. This concept is inspired from multi-sensor
data fusion theory [21], and derived to support the formulation
of providing immunity towards data-injection attacks. Here the
track-fusion center represents the collection of measurements
from all local sensors. The concept is developed in a distributed
feedback environment.

To understand the integration of data-injection attacks into
the oscillation monitoring application, an overview of the pro-
posed multi-sensor TFMP is illustrated in Fig.1. The consid-
ered scenario assumed that the attacker is smart enough to in-
ject data that can imitate regular variations of small-signal sys-
tem dynamics. TFMP can resolve this concern by manipulating
estimated oscillation parameters from all local sensor monitor-
ing nodes. In this paper, a local sensor monitoring node refers
to a site where KLPF-based smoother will be applied to extract
oscillation parameters from PMU measurements collected at a
substation. Furthermore, each monitoring node is assumed to
be able to interact with its neighbors through substation com-
munication channels. The estimated parameters are then com-
municated to the track fusion center and followed by track as-
sociation and track fusion at the global level. Note the track
fusion center is developed to compute and minimize the errors
of filtering, prediction, and smoothing within each local sensor
monitoring node.

The paper is organized as follows: The proposed scheme is
formulated in Section II. In Section III the implementation and
evaluation on a test case is discussed, and finally conclusions
are drawn in Section IV.
Notations: In this paper, E is the expectation operator. A sym-
bol ̂ over a variable indicates an estimate of that variable e.g.
x̂ is an estimate of x. The individual entries of a variable like
x are denoted by x(l). When any of these variables become a
function of time, the time index t appears as a subscript (e.g. xt,
Ht, zt). When any of these variables are collected from a sub-
system 1 or 2, it will appear also as a part of subscript (e.g. x1,t,



3

Fig. 2. Formulation framework of the proposed scheme

x2,t, H1,t, H2,t, z1,t, z2,t). The notation xT
0 is used to denote

the time sequence (e.g. x0, x1, ...., xT ).

II. THE PROPOSED SCHEME

This section derives the formulation of the proposed scheme.
It begins with outlining the assumed system model, followed by
the state representation of electromechanical oscillations. The
TFMP algorithm is then built on it for calculating the estimates.
An overview of the formulation framework of this section is il-
lustrated in Fig. 2. It summarizes the formulation and equations
involved at each step while tackling random data-injection at-
tacks.

Note the formulation is derived from a perspective of a data-
based approach. It is not restricted to linearized differential
equations, which is merely a simplified model of the true sys-
tem. In the field of real-time dynamic monitoring, especially
for Wide Area Monitoring System (WAMS) applications, the
notion is to become less dependent on classic models and adopt
real-time system identification techniques. The reason is clas-
sic differential equations are less representative of continuous
random load variations, line temperature variations, and other
operational uncertainties. Although using differential equation
based models are suitable for some steady-state or static appli-
cations like state estimation or automatic generation control, it
is not suitable for monitoring electromechanical interactions of
synchronous generators [13]. Therefore, system parameters are
not extracted from offline predetermined power system models.
Instead, the proposed method extract desired parameters from

PMU measurements.
A. State Representation of Observation Model

A power grid prone to data-injection attacks can be expressed
as a nonlinear dynamical system model. Perturbations and ran-
dom fluctuations are part of noise-induced transitions in a non-
linear system with dynamics. It is expresses as:

αxt+1 = f(xt,wt), t= 0,1, ...., T (1)

where α is the constant matrix with compatible dimensions to
the model dynamics, f(.) is the nonlinear function representing
the state transition model, x0 ∈ IRr is the initial condition of
the oscillation state, superscript r is the size of the oscillation
state vector in the subspace IR. In addition, wt ∈ IRr is the ran-
dom process noise, t is the time instant, and T is the number
of time instants. Note Eq. (1) represents the equation of a sys-
tem which has non-linear dynamics. Perturbations and random
fluctuations are part of noise-induced transitions in a nonlinear
system. These can be from load variations or switching tran-
sients of installed devices. Eq. (1) can also be represented by
any other dynamical system model. It is not only limited to
power systems.

It is assumed that the power grid described in (1) will be mon-
itored by N number of synchronized sensors in a track-level
measurement fusion environment. Computation is conducted at
a central station, i.e. track fusion center (TFC), which involves
control signals at each local node and predictive estimation se-
quences are generated in the presence of random noise fluctua-
tions. These local sensors will basically be PMUs installed in
high-voltage substations, and all will operate at the same sam-
pling rate. The observations vector for extracting electrome-
chanical oscillations at the i-th node possibly affected by the
attack can be defined as:

zit = hi
t(xt)+ υi

t, i= 1, ..., N (2)

where zit ∈ IRpi

, pi is the number of synchrophasor observations
made by the i-sensor, hi(.) is a nonlinear function representing
the local observation matrix of i-th sensor, xt is the state matrix
for oscillations, and υi

t ∈ IRpi

is the observation noise of the
i-th sensor. A dynamical power grid will be governed by the
following constraints:

xt ∈ Xt,wt ∈ Wt,υt ∈ Vt (3)

where Xt, Vt and Wt are assumed to have Gaussian probability
distribution function.

Assumption II.1: The noises wt and νt are all initially as-
sumed to be uncorrelated zero-mean white Gaussian such that
IE[wt] = IE[νt] = IE[wgν

T
h ] = 0, ∀t. Note IE denotes the expecta-

tion operator, and superscript ∗ denotes the transpose operator.
Also, IE[wgw

T
h ] =Rtδgh, IE[νgνTh ] =Qtδgh, ∀ t, where Rt rep-

resents the residual covariance, δgh is a Kronecker delta which
is one when variables g and h are the same. Qt is the process
noise correlation factor.

Once the observation model is constructed from synchropha-
sor measurements collected from the affected location, the cor-
responding state representation of electromechanical oscilla-
tions can then be formulated in the frequency domain.
B. Electromechanical Oscillation Model Formulation

Suppose a measured noise-induced signal contained K num-



4 SUBMITTED TO IEEE TRANSACTIONS ON SMART GRID

ber of electromechanical oscillations. Referring to (2), the ob-
servation output signal zit from an i-th sensor at time t can be
modeled in the frequency domain as:

zit =
K∑

k=1

ake
(−σk+j2πfk)tTs + υi

t, t= 1,2, ....., T (4)

where ak is the complex amplitude of k-th mode, σk is the
damping factor, fk is the oscillatory frequency, and Ts is the
sampling time [17]. Eq. (2) has been transformed to Eq. (4), i.e.
time domain to the frequency domain, using the Laplace trans-
form. The system’s poles and zeros are then analyzed in the
complex plane. Moreover, it is especially important to trans-
form the system into frequency domain to ensure whether the
poles and zeros are in the left or right half planes, i.e. have real
part greater than or less than zero. For convenience, the term
−σk + j2πfk is represented in the rectangular form as λk. In
this paper, the k-th oscillation or eigenvalue within a mentioned
signal is described by two states denoted as xk,t and xk+1,t,
respectively. They can also be expressed for an i-th sensor as:

xi
k,t=e(−σk+j2πfk)tTs , xi

k+1,t=bk+1e
(−σk+1+j2πfk+1)tTs(5)

The term bk represents the complex amplitude of the k-th mode.
Based on (5), a signal consisting of K number of exponen-
tially damped sinusoids will be modeled by 2K number of
states. Note that the k-th eigenvalue of a particular signal is
described by two states denoted as xk,t and xk+1,t, i.e. for k-
th and k + 1-th mode respectively. The eigenvalue represents
the electromechanical oscillations between synchronous gener-
ators in the physical world. Details can be referred to [12, 13].
In addition, the damping factor σk and the corresponding fre-
quency fk of each oscillation will be computed from the state
xt. Estimating oscillatory parameters in the presence of a ran-
dom data-injection attack will require the complete observabil-
ity of the oscillation observation matrix. For a nominal case
without data-injections, this was previously achieved by using
an expectation maximization (EM) algorithm that utilized the
initial correlation information extracted from KLPF [18]. Ini-
tial correlation information can be defined as the information
collected from the initial estimates of the observation model
Ĥ0

t . The superscript 0 represents the initial estimates. How-
ever, considering a data-injection attack situation, taking an av-
eraged form of the log-likelihood function to improve estimate
as in [18] is not sufficient. Instead, the initial correlation shall be
iteratively calculated by 1) using the first and seconds moments
of the input model for a node i, and then 2) getting a-priori in-
formation from the constraints, followed by 3) its observation
estimates through time and frequency correlation for each i-th
sensor. Note in this paper, monitoring power oscillation is used
as an application. The proposed scheme can be utilized by any
other application as well.
C. Initial Correlation Information

To estimate xt in (1) and (2) from zit at node i may be a
difficult problem. This is both due to the nonlinear grid dynam-
ics and the noise constraints outlined in (3). Referring to (1)
and (2), a reasonable estimate will be to linearize the system
to smooth-out nonlinearities. Thus the linearized model of the

power grid will be:

ft(xt,wt) ≈ ft(x̃t|t,0)+κt(xt − x̃t|t)+Ψtwt (6)

hi
t(xt) ≈ hi

t(x̃t|t−1)+Hi
t(xt − x̃t|t−1) (7)

where κ, Ψ , and Hi are the Jacobian matrices with compatible
dimensions used to linearize the nonlinear dynamics:

κt =
∂

∂x
ft(x,0)|x=x̂t|t ,Ψt =

∂

∂w
ft(x̂t|t,w)|w=0,

Ht =
∂

∂x
ht(x,0)|x=x̂t|t−1

(8)

and x̃t is the linearized approximation of the system state xt.
This transformed (1) and (2) into:

αxt+1 = κxt +Ψwt (9)
zit = Hixt + υi

t, i= 1,2, ..., N (10)

where the oscillation system state xt ∈ IRn, the synchrophasor
measurements zit ∈ IRmi , wt ∈ IRr, and υi

t ∈ IRmi . Variables α,
κ, Ψ , and Hi are the constant matrices with compatible dimen-
sions. The system model described by (9) and (10) is derived
based on the following assumptions:

• rank α = n1 < n, and rank κ ≥ n2, where n1 + n2 = n.
• System (9) is regular, i.e. det(sα− κ) ̸≡ 0, where s is an

arbitrary complex number which can be expressed as a sum
of real and imaginary components.

• The initial state x0, with mean µ0 and variance P0, is inde-
pendent of wi

t and υi
t.

1) Diagonalization of the System Model at Node i into Subsys-
tems:

Accurate monitoring of power oscillations in the presence of
data-injection attacks can prove to be computational expensive.
However, to tackle the additional computational cost due to the
calculation of initial estimates and the error covariance matrix
Pt|t−1 may be demanding. This is due to the size of error co-
variance matrix which is equal to the size of the state vector, and
therefore directly proportional to the size of the modelled power
grid. To reduce the computational cost of the initial estimates
and the error covariance matrix, diagonalizing the main sys-
tem model into subsystems is proposed. This is derived on the
structure for the KLPF-based smoother which can be referred
to (19)-(26) in [18]. In [18], the KLPF-based smoother x̂S

t|t of
the state xt is calculated based on measurements (zit, ......, z

i
T ).

Note the attacked system at node i can be diagonalized up to N
number of subsystems. To simplify the formulation, diagonal-
ization of N = 2 subsystems is considered in this paper. This
reflects that each i-th node consists of two subsystems. Using
the theory of robust eigenvalue assignment from [22], the sys-
tem described by (9) and (10) can be decomposed into L and R
non-singular matrices.

LαR=

[
α1 0
α2 0

]
,LκR=

[
κ1 0
κ2 κ3

]
,LΨR=

[
Ψ1

Ψ2

]
,HiR=

[
Hi

1

Hi
2

]∗
(11)

where α1 ∈ IRn1×n2 is non-singular lower-triangular, κ1 ∈
IRn1×n1 is quasi-lower-triangular, κ3 ∈ IRn2×n2 is non-singular
lower-triangular. Transforming xt = R [x∗

1,t x
∗
2,t]

∗, where x1,t

∈ IRn1 , x2,t ∈ IRn2 . The system can be transformed into the
following two diagonalizable subsystems by taking the inverse
of high dimensional matrices of (1) and (2) using a linear mini-
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mum variance [23]:

x1,t+1 = κ0x1,t +Ψ0wt (12)
x2,t = κ̄x1,t + Ψ̄wt (13)
zit = H̄i

tx1,t + v̄it (14)

where x1,t and x2,t are the states of subsystem 1 and subsystem
2, respectively. κ0, Ψ0, κ̄, Ψ̄ , H̄ and v̄ are diagonalized vari-
ables, which are computed from the inverse of weighted ma-
trices α1 and κ3 as shown in the Appendix. In the subsystem
transformation, only first subsystem will have the prediction and
filtering stage, whereas the rest of N − 1 subsystems will only
have filtering stage. Referring to (12)–(14), the resultant noises
w̄t and v̄t will have the diagonalizable expected value:

IE{
[
w̄t

v̄1t

]
,
[
w̄∗

t v̄
2∗

t

]
}=Q1,2

t δ1,2t (15)

where Q1,2
t is the process noise correlation factor between sub-

system 1 and 2, δ1,2t is the Kronecker delta function used for
shifting the integer variable after the presence or absence of
noise. Q1,2

t can be expressed as:

Q1,2
t =

[
Qw̄ α2

α1∗ Qv̄1,2

]
(16)

where α1 = Qw̄ Ψ i∗

3 , Qv̄i = Ψ i
3 Qw̄ Ψ i∗

3 +Qvi and Qv̄1,2 = Ψ i
3

Qw̄ Γ i∗

3 , Ψ i
3 is defined in the Appendix.

Once the subsystems are constructed from the system af-
fected by the data-injection attacks, the interactions between
them shall be evaluated. This will require extracting the signa-
ture of random variations, which can be obtained by comparing
measurements with known system dynamics. This interaction
is evaluated here by using cross-covariance analysis. It is pro-
posed to improve the goodness of fit of random variations, while
enhancing the predictive accuracy and covariance estimates of
the KLPF.
D. Computation of Cross-covariance

From (12)-(16) and considering (19)-(26) in [18], the state of
subsystem 1, x1,t, and subsystem 2, x2,t can be derived. This is
to have complete observability on the dynamics of power oscil-
lations in the presence of random data-injection attacks. First,
suppose the a-priori equation of state x1,t at node i is computed
as:

x̃i
1,t+1|t=κ̄i

0(In1−βi
tH̄

i
t)x̃

i
1,t|t−1+Ψ0wt−(κ̄i

0β
i
t +J i)ῡi

t (17)

where x̃i
1,t|t−1 is the difference between x1,t and x̂i

1,t|t−1, κ̄i
0 =

κ0−J iH̄i
t , J i = Ψ0α

iQ−1
ῡi , κi

t = κ̄(In1−βi
tH̄

i
t)−Ψ̄αiQ−1

εi,tH̄
i.

In1 is an n1 × n1 identity matrix. For notation convenience,

βi
t =

P i
tH

i∗
t

Hi
tP

i
tH

i∗
t +σ2

υ

. The corresponding updated a-posteriori
equation of state x1,t at node i will be:

x̃i
1,t|t=(In1 −βi

tH̄
i
t)x̃

i
1,t|t−1 −βi

t)ῡ
i
t (18)

where x̃i
1,t|t is the difference between x1,t and x̂i

1,t|t. Thus, the
updated and predicted error equations of state x1,t are achieved.
The state x2,t of second diagonalized subsystem at node i can
also be expressed as:

x̃i
2,t|t = F i

t x̃
i
1,t|t−1 +Di

t[w̄
∗
t , ῡ

i∗

t ]∗ (19)

where x̃i
2,t|t=x2,t − x̂i

2,t|t, F
i
t = κ̄(In1 −βi

tH̄
i
t)− Ψ̄αiQ−1

εi,tH̄
i
t

and Di = [Ψ̄−H̄tβ
i
t−Ψ̄αiQ−1

εi,t]. Once the subsystem states are
derived, the cross-covariance between them can be formulated
to filter any random variations caused due to the attack within
collected synchrophasor measurements.

1) Cross-covariance of State x1,t (12) for Subsystem 1:
Using the projection theory proposed in [24], cross-

covariance equation of the prediction and filtering errors of state
x1,t between the subsystems 1 and 2 of the i-th node can be
computed as:

P 1,2
1,t+1|t = κ̄1

0[In1
−β1

t H̄
1
t ]P

1,2
1,t|t−1[In1

−β2
t H̄

2
t ]

∗ + [Ψ0

− κ̄1
0β

1
t −J1]Q1,2[Ψ0 − κ̄2

0β
2
t −J2]∗ (20)

where the subscript 1 and 2 represents the subsystem 1 and 2
for i-th node, respectively. The initial value of P 1,2

1,t+1|t is P 1,2
1,0|t.

which is the first n1 × n1 block of R−1P 1,2
1,0|0R

−1∗ . Subse-
quently, the error equation of the updated a-posteriori estimates
will be:

P 1,2
1,t|t=[In1−β1

t H̄
1
t ]P

1,2
1,t|t−1[In1−β2

t H̄
2]∗ +β1

tQῡ1,2β2
t (21)

2) Cross-covariance of State x2,t (13) for Subsystem 2:
The covariance matrix of the filtering errors for state x2,t be-

tween the subsystem 1 and 2 for the i-th node can be expressed
as:

P 1,2
2,t|t = F 1

t P
1,2
1,t|t−1F

2∗

t +D1
tQ

1,2D2∗

t (22)

where P 1,2
2 (t|t) is the filtering error covariance of x2,t based on

the subsystem 1 of i-th node .i.e. P 1
2,t|t.

Considering the cross-covariance computation of subsystem
1 and 2, the smoother of [18] is re-derived here to further im-
prove the estimation of suboptimal correlation information pro-
vided by the diagonalized subsystems. Moreover, the estimated
output of the smoother will be more superior in providing in-
sight to the power oscillation dynamics to those obtained from
the subsystem 1 and 2 as it extrapolates backwards in time.

3) Cross-covariance of Smoothing:
The cross-covariance of the smoothed a-posteriori estimate

between the subsystem 1 and 2 of the i-th nodes are extended
on (25)-(26) from [18]. The state estimate x̂t|T , given the whole
time sequence, can be represented as:

x̂1,2
t|T = x̂1,2

t|t−1 +P 1,2
t|t−1r

1,2
t|T (23)

where t = N − 1, N − 2, ...., 1. Here r is an n × n vector
that satisfies the backward recursive equation where rT+1|T =

0. Pα1,2

t|T is the covariance matrix of rt|T with a size of n×n and
satisfies the backward recursive equation. The resultant cross-
covariance of rt|T will be:

r1,2t|T = κ̄1∗

p [In1 −β1,2
t H̄2

t ]rt|t−1 +H2∗ [H2P 1,2
t|t−1H

2∗

t

+ Rt]
−1(z̃2t+1 − H̃2

t+1x̃
2
t+1) (24)

where κt+1|t = κt+1|t[I −KtHt]. According to the smoothing
property, the covariance matrix Pt|T shall depend on of the time
sequence T such that:

P 1,2
t|T = P 1,2

t|t−1 −P 1,2
t|t−1P

S1,2

t|T P 1,2
t|t−1 (25)

This is followed by the smoothed-run updated a-posteriori es-
timate, which will update the error covariance matrix in the
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smoothed run:

P
S1,2

t|T = κ̄1∗

p [In1 −β1,2
t H̄2]∗P

α1,2

t|t−1κ̄
2
p[In1 −β1,2

t H̄1]

+ H1∗ [H2Pt|t−1H
2∗ +Rt]

−1H2 (26)

The derived cross-covariance matrices for smoothing the state
xt between subsystem 1 and 2 are:

P
S1,2

1,t = In1P
1,2
1,t I

∗
n1

+(H1Pt|t−1H
2∗)−1 (27)

P
S1,2

2,t = F 1
t P

1,2
1,t F

2∗

t +D1
t (H

1Pt|t−1H
2∗)−1D1∗

t (28)

where P
S1,2

1,t|t and P
S1,2

2,t|t are the smoothing error covariance of
state x1,t and x2,t respectively. Up to now, the formulations
of the cross-covariance for prediction, filtering and smoothing
error for the subsystems are derived. The next step will be to
combine them into an interaction filter so that the variance of
interaction errors among the state x̂ϖ

2,t|t can be determined.
4) Interaction filter Structure based on Cross-covariance

Computation:
Based on (12)-(14) for subsystem 1 and 2, the interacted filter

can be stated for state x1,t of subsystem 1 as:

x̂ϖ
1,t|t = (e∗1,tΥ

−1
1,t e1,t)

−1e∗1,tΥ
−1
1,t [x̂

i∗

1,t, x̂
i∗

2,t, ...., x̂
N∗

1,t|t] (29)

where superscript ϖ denotes the interaction between subsys-
tem 1 and 2. e1,t = [In,1, ...., In,1] is an n1N × n1 matrix,
Υ1,t = P 1,2

1,t|t is an n1N × n1N positive definite matrix. Simi-
larly, the resultant diagonalized interacted filter for state x2,t of
subsystem 2 became:

x̂ϖ
2,t|t = (e∗2,tΥ

−1
2,t e2,t)

−1e∗2,tΥ
−1
2,t [x̂

i∗

1,t, x̂
i∗

2,t, ...., x̂
N∗

2,t|t] (30)

where e2,t = [In,2, ...., In,2] is an n2N × n2 matrix. Υ2,t =

P 1,2
2,t|t, is an n2N ×n2N positive definite matrix. Variances of

x̂ϖ
1,t|t and x̂ϖ

2,t|t are given by:

Pϖ
1,t|t = (e∗1Υ

−1
1,t e1)

−1, Pϖ
2,t|t = (e∗2Υ

−1
2,t e2)

−1 (31)

where Pϖ
1,t|t ≤ P i

1,t|t and Pϖ
2,t|t ≤ P i

2,t|t. Restoring the vari-
ances of (12)-(14) to the main singular system described by (9)
and (10) made the filter into:

x̂ϖ
t|t = R[x̂ϖ∗

1,t|t x̂
ϖ∗

2,t|t]
∗ (32)

The variance of the filtering error of x̂ϖ
t|t in (32) can be com-

puted by:

Pϖ
t|t =R

[
P 1,2
1,t|t P 1,2

12,t|t
P 1,2
21,t|t P 1,2

2,t|t

]
R∗ (33)

where covariance matrix P 1,2
1,t|t and P 1,2

2,t|t are computed by (21)
and (22), respectively. The covariance matrix P

ϖ1,2

t|t between
filtering errors x̃ϖ

1,t|t and x̃ϖ
2,t|t can then be defined as:

P
ϖ1,2

t|t = Pϖ
1,t|te

∗
1Υ

−1
1,t Υ

1,2
t Υ−1

2,t e2P
ϖ
2,t|t (34)

where P
ϖ1,2

t|t = P
ϖ∗

2,1

t|t = and Υ 1,2
t = P 1,2

t|t . P 1,2
t|t can be com-

puted as follows:

P
ϖ1,2

t|t = (In1 −β1
t H̄

1
t )P

1,2
1,t|t−1F

2∗

t + [0,−β1
t ]Q

1,2D2∗(35)

where P 1,2
t|t = P 2,1∗

t|t . Likewise, the variance of smoothing error
of x̂S

t|t is computed by (26).
The developed diagonalized interacted filters will be used

to determine the initial correlation information. However, up

to now, the initial correlation information has not considered
the constraints outlined in (3). This means the initial corre-
lation will only be good enough to give the first estimates of
the oscillation monitoring procedure, where its performance is
enhanced by computing the interaction parameter between the
subsystems. To take the constraints into account, the maximum
a-posteriori (MAP) estimate shall be calculated. Note that by
handling the noise and state constraints of (3), the immunity of
the estimation results during data-injection can be increased. To
achieve this, a moving horizon estimate (MHE) is proposed. It
involved a state prediction stage to mitigate data-injection at-
tacks.

E. Moving Horizon Estimate (MHE)
Given the observation measurement sequence (z1, ......zT ) at

time t, the MAP criteria for calculating the oscillation estimate
with constraints can be expressed as:

x̂MAP
t = arg max

x0......xT

p(x0......xT |z0, .....zT−1) (36)

Considering the constraints (3) and the observation vector (2),
the log-likelihood is implemented with state variables as:

= arg min
x0,....,xT

T−1∑
t=0

||υ||2
R−1

t
+ ||wt||2Q−1

k

+ ||x0 + x̄0||2P−1
0

(37)

Considering (37), the minimization problem can be formulated
as:

min
x0,wt,υt

T−1∑
t=0

Lt(wt,υt)+Θ(x0) (38)

where Lt and Θ are positive functions, and Lt(wt, υt) =
||υ||2

R−1
k

+ ||wt||2Q−1
t

, Θ(x0) = ||x0 − x̄0||2P−1
0

. The MAP es-
timate from each local i-th sensor can then be gathered. Using
previously derived expressions and computed information, the
track fusion architecture can now be established.

F. Track Fusion Center (TFC)
The TFC functions to estimate oscillatory parameters from

all the local monitoring nodes in the presence of data-injection
attacks. Its purpose is to improve the accuracy of the covariance
and estimated states in each node. Subsequently, all local sensor
observations from N number of sensors are integrated into the
track observation vector zTF

t ∈ IRpTF . The superscript TF denotes
the track fusion, and pTF is the track fusion-based observation
measurements collected from N number of sensors. Thus, the
track fusion-based observation model at time-instant t can be
represented as,

zTF
t =HTF

t xt +wTF
t , (39)

Similar to (2), the corresponding observation model is HTF
t ,

and the noise vector is wTF
t . They can also be expressed as

an array of information collected from all substations as zTF
t =

[z1t , ....z
N
t ]∗, HTF

t = [H1
t , ....H

N
t ]∗, wTF

t = [w1
t , ....w

N
t ]∗, where

N is the number of sensors. Considering the track estimation-
based variables zTF

t , HTF
t , and wTF

t , the oscillation state estimate
at TFC can be presented as:

x̂TF
t|t = P TF

t|t

N∑
i=1

P i−1

t|t x̂i
t|t (40)
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where P TF
t|t = [

∑N
i=1P

i−1

t|t ]−1. Apart from calculating the cross-
covariance computation of subsystems at each i-th node, TFC
also calculated the interactions of neighboring sensors. Con-
sidering the interactions between local sensors, the covariance
matrix for i-th and j-th sensors can be expressed as:

P ij
t|t = IE[x̃i

t|tx̃
j∗

t|t] = [1−wi
tH

i
t ]P

ij
t|t−1[1−wj

tH
j
t ]

∗ (41)

where x̃t|t = xt|t− x̂t|t. This is derived based on the same prin-
ciples as the covariance of the subsystems within one monitor-
ing node. Hence, P ij

t|t−1 can be calculated based on the diago-
nalized subsystem variance by (33), while its smoothed variance
by (26). The TFC will provide estimation of the oscillation pa-
rameters in the presence of data-injections. To detect the occur-
rence of injected data, residuals can be continuously generated
and evaluated from each sensor.

Note the track fusion center receives tracked measurements
from each sensor node. This may cause processing and com-
munication delays between local sensors and fusion center. This
delay has been tackled by the model-prediction property of the
proposed scheme. It can be observed from Eq. (36)-(38) that
the moving horizon estimate (MHE) considers the whole time
sequence for the calculation of model-prediction. This idea cov-
ers any time-delays which are actually measurement delay less
than, equal to, or more than one sampling period. Moreover, to
tackle this problem at a large-scale, the delayed measurements
can be determined by deriving the cross-covariance for each de-
layed measurement and at each time interval.
G. Generation and Evaluation of Residuals for detecting Data-
Injection Attacks:

The residual of the estimated parameters is generated to de-
tect any variations due to system-bias and injected faults. To de-
tect variations from a residual generation for each measurement,
there exists L0 such that for any norm bounded x1,t,x2,t ∈Rn,
the inequality ∥(ut, zt,x1,t)− (ut, zt,x2,t)∥ ≤ L0∥x1,t − x2,t∥
holds. Considering the simplified form of system as (9), the
transfer function matrix Ht[sI − (κt −KtHt)]

−1Ψt is strictly
positive real, where Kt ∈Rn×r is chosen such that At−KtHt

is stable. Thus, the following expression is constructed as:

x̂t = κx̂t +(ut,zt)+ ξf,t(ut,zt, x̂t)+Kt(zt − ẑt) (42)

where ξt ∈ R is a parameter that changes unexpectedly when
a fault occurred, Kt is the gain matrix. ẑt = Htx̂t and rt =
V (zt − ẑt), where the variable V is the residual weighting ma-
trix. Since the pair (κt,Ht) is assumed to be observable, Kt can
be selected to ensure κt −KtHt will be a stable matrix. This
can be defined as:

ex,t = xt − x̂t, ez,t = zt − ẑt (43)

Error equations will then become:

ex,t+1=(κt−KtHt)ex,t+[ξt(ut,zt,xt)−ξf,t(ut,zt, x̂t)] (44)
ez,t = Htex,t (45)

Once the residual is found, evaluations are required to determine
the threshold selection for identifying a fault.

The residual evaluation is performed by a coherence function
[25, 26]. A function based on magnitude of squared coherence
spectrum is employed to determine the fault-injection status of a
power grid at its outputs. Let Ĝ(ω) and Ĝf (ω) be the estimates

of the frequency response of the power grid under normal fault-
free and faulty operating output regimes, respectively. Here ω
is the frequency in rad/s. The magnitude-squared coherence
spectrum of the two signals can be defined as:

c(Ĝ(ω), Ĝf (ω)) =
|Ĝ(ω)Ĝf (ω)|2

|Ĝ(ω)|2|Ĝf (ω)|2
(46)

where c(Ĝ(ω), Ĝf (ω)) is the magnitude-squared coherence
spectrum, and Ĝ∗(ω) is the complex conjugate of Ĝ(ω). In the
presence of noise, a threshold value is estimated to give a high
probability of detection and a low probability of false alarms.
The test statistic teststat is chosen to be the mean value of the
coherence spectrum teststat = µ1/2(c(Ĝ(ω), Ĝf (ω))) as:

teststat =

{
≤ th ∀ω ∈Ω fault
> th ∀ω ∈Ω no fault

(47)

where 0≤ th≤ 1 is a threshold value, Ω is the relevant spectral
region, e.g. bandwidth. This gives the coherence function-based
thresholds for detection of fault-injections.

III. IMPLEMENTATION AND EVALUATION

Validation of the proposed TFMP estimation scheme is con-
ducted using simulated synchrophasor measurements collected
from IEEE 39-Bus New England system shown in Fig. 3. Mod-
eling details are based on [27, 28]. In this study, synchrophasor
measurements are collected from Bus 15, 16, 17, 29, 30, 35, 37,
38, and 39. From these data, three dominant electromechanical
modes are detected using Welch power spectral density. Their
pre-disturbance values are: 1) 0.69 Hz with a damping ratio of
3.90%, 2) 1.12 Hz with a damping ratio of 5.71%, and 3) 1.17
Hz with a damping ratio of 5.62%. The 0.69 Hz mode will be
considered as an inter-area oscillation. All loads are continu-
ously being subjected to random small magnitude fluctuations
of up to 10 MW per second. Furthermore, the system is ex-
cited by four large-signal disturbances over a period of 60 sec-
onds. Firstly, a three-phase-to-ground fault occurred at Bus 24
at 5 second and is cleared after 0.1 second. Secondly, the ac-
tive and reactive power demands of the load connected at Bus
21 is ramped up by 30% and 10% over ten seconds, respec-
tively. Thirdly, the line connecting Bus 16 and 17 is discon-
nected at 25 second and reconnected after 5 seconds. Lastly,
the active and reactive load demands at Bus 4 increased by 20%
and 10%, respectively. This occurred over a 5 second ramp.
All simulations are performed using DIgSILENT PowerFactory
Ver. 15.1 [29]. From the collected measurements, monitoring
schemes updated the averaged oscillatory parameters every 5
second. In this study, the proposed method is evaluated against
the distributed technique of [18].

To simulate deliberate attack scenarios, data-injections are
carried out in the collected synchrophasor measurements. Since
all three electromechanical modes are observable at Bus 16 and
17, these two locals are selected as attack nodes. Their neigh-
boring nature shown in Fig. 3 helped to create a situation of
regional attacks on measured data. Simulated attack scenarios
at Bus 16 and Bus 17 are:

• First injection: Random data-injections are introduced at
Bus 16 from 7 to 12 seconds.
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Fig. 3. Single line diagram of the IEEE 39-Bus New England System
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Fig. 4. Profile of a) Bus 16 and b) Bus 17 with random fault injections

• Second injection: Signal with relatively high energy po-
tency are injected at Bus 16 from 22 to 27 seconds.

• Third injection: Small signature of random sinusoidal
waveforms are introduced at Bus 16 during 44 to 49 sec-
onds. Also, ambient disturbance-like injections are intro-
duced at Bus 17 during 48 to 55 seconds.

• Fourth injection: Small signature of random sinusoidal
waveforms are introduced at Bus 16 during 44 to 49 sec-
onds. Also, a data-repetition attack was introduced at Bus
17 from 55 to 60 seconds. This attack replaces the normal
oscillation behavior with those recorded at Bus 17 from 40
to 45 seconds.

The first injection illustrates a pure random attack with no bias
towards any signal characteristics. The second injection imi-
tates an attack attempting to bring down a local/regional net-
work. The third injection represents an ambient attack with the
aim to generate a cascading failure in the longer form that can
often led to wide-area blackouts. Ambient disturbance-like in-
jections are also introduced at Bus 17 to create a multi-sensor
injection attack situation as part of the third injection scenario.
The fourth injection represents a data-repetition attack at Bus
17. The purpose of injecting different nature of signals and at
multiple locations are to assess the robustness of the proposed
scheme. These data segments, outlined in black, are added to
the original synchrophasor measurements, colored in red, as
shown in Fig. 4a and 4b.

The monitoring performance is summarized in TABLE I.
Firstly, the tracking performance in windows without the pres-
ence of data-injections are discussed. Overall, both methods
are able to accurately estimate all three electromechanical pa-
rameters. A slight increase in mean squared error (MSE) values
for the distributed method is observed between 30 to 40 sec-
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Fig. 5. Performance of proposed method at different iterations at Bus 16

ond period. They are in par with the case of the line outage
event in the previous time window. The reason can be due to the
dominance of non-linear dynamics in the measurements, which
caused the linear-based distributed monitoring scheme to strug-
gle. In contrast, the proposed scheme is less influenced due to
its cross-covariance computation at each local sensor. Overall,
both methods generated low MSE while the proposed TFMP
estimation scheme achieved higher accuracy. Next, the perfor-
mance under deliberate data-injections are analyzed as follows:

The first injection scenario consisted of a few large spikes
spread across two monitoring windows. As a result, the accu-
racy of 5-10 and 10-15 second windows are impacted. Since the
larger spike as well as the three-phase-to-ground fault occurred
in the 5-10 second period, both methods incurred their highest
MSE values. However, the proposed scheme is still able to pro-
vide oscillatory parameters with adequate precision whereas the
distributed method failed to track one electromechanical mode.
This is due to initial estimates collected from the interaction of
neighboring sensors.

In the second injection scenario, the system contained less
non-linear dynamics and oscillations are more dominant in mea-
surements. Here, the largest spike was introduced during the 20
to 25 second window, which has caused the distributed scheme
to fail to track one oscillation. Although high energy signals
were injected, they did not flood the entire monitoring window.
Hence, the distributed scheme managed to track all three oscil-
lations in the following time window. Nevertheless, the lowest
frequency mode (0.69 Hz) incurred noticeable estimation errors.
For the proposed TFMP, the removal of abnormal data segments
through subsystem diagonalization helps to avoid them from in-
curring errors into the estimation stage. As a result, the pro-
posed scheme maintained similar estimation accuracy as in the
case of without data-injections.

Next, the third injection scenario is examined. Since the in-
jected measurements from Bus 16 and 17 contained amplitudes
and characteristics similar to collected synchrophasor measure-
ments, extracting oscillatory parameters is more challenging
than previous scenarios. This can be reflected by the consec-
utive high MSE values generated by both methods during the
time of 40 to 50 seconds. The filtering stage of the distributed
method was not able to remove injected data, which caused it
to lose track of one oscillatory mode due to slow convergence
of EM. In contrast, the proposed TFMP estimation scheme still
computed accurate oscillation parameters. An interesting ob-
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TABLE I

TEST CASE I − NEW ENGLAND SYSTEM: DETECTING MULTIPLE OSCILLATIONS IN THE PRESENCE OF RANDOM DATA-INJECTION ATTACKS1

Measurements ζD fD ζTFMP fTFMP ζD fD ζTFMP fTFMP ζD fD ζTFMP fTFMP ζD fD ζTFMP fTFMP

Time 0 s–5 s 5 s–10 s 10 s–15 s 15 s–20 s

4.1 0.69 3.7 0.69 3.9 0.73 3.8 0.70 4.0 0.69 3.8 0.69 4.2 0.68 3.9 0.69
6.0 1.07 5.9 1.07 − − 5.9 1.05 5.5 1.12 5.7 1.12 5.9 1.07 5.9 1.07
5.8 1.12 5.7 1.13 5.4 1.17 5.5 1.17 5.4 1.17 5.6 1.17 5.7 1.11 5.8 1.12

MSE 2.1× 10−2 1.8× 10−3 5.5× 10−1 4.8× 10−2 2.5× 10−2 3.1× 10−3 2.2× 10−2 2.1× 10−3

Time 20 s–25 s 25 s–30 s 30 s–35 s 35 s–40 s

3.9 0.71 3.9 0.69 4.0 0.72 3.9 0.68 4.3 0.69 3.9 0.69 4.0 0.69 3.9 0.69
5.8 1.11 5.6 1.11 5.9 1.07 5.9 1.07 5.7 1.08 5.8 1.08 5.6 1.11 5.6 1.11
− − 5.6 1.17 5.7 1.12 5.7 1.14 5.2 1.12 5.7 1.13 5.5 1.15 5.5 1.16

MSE 2.1× 10−1 2.4× 10−3 4.2× 10−1 3.6× 10−3 5.5× 10−2 2.5× 10−3 4.5× 10−2 3.9× 10−3

Time 40 s–45 s 45 s–50 s 50 s–55 s 55 s–60 s

4.3 0.70 3.9 0.69 4.3 0.69 3.9 0.70 4.5 0.66 3.9 0.69 4.4 0.69 3.9 0.69
− − 5.6 1.11 − − 5.8 1.10 5.7 1.13 5.9 1.09 − − 5.6 1.11
5.2 1.14 5.6 1.15 5.8 1.14 5.7 1.14 5.9 1.00 5.7 1.14 5.1 1.11 5.6 1.17

MSE 8.3× 10−1 6.8× 10−3 6.5× 10−1 5.7× 10−3 2.2× 10−1 1.9× 10−3 9.8× 10−1 2.7× 10−3

1In this table, ζ is the damping ratio i.e. ζ = −σ√
σ2+(2πf)2

× 100. f is the frequency in hertz, MSE is the mean-square error, subscript D and TFMP

are the acronyms of Distributed approach [18] and the proposed TFMP, respectively.
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Fig. 6. Estimation comparison analysis of different methods at Bus 16

servation is made during the sole injection of ambient data at
Bus 17 throughout the entire 50-55 second window. Despite the
distributed method from [18] has detected all three oscillations,
the frequency and associated damping factor of the inter-area
oscillation (0.69 Hz mode) incurred most errors compared with
all other windows. The estimated incorrect higher damping ra-
tio can delay subsequent damping strategies, and reduce the ef-
fectiveness of the system damping capability. As a result, a
cascading failure leading to wide-area blackouts can potentially
occur at a later stage. In comparison, the proposed TFMP es-
timation is able to mitigate such abnormalities and maintained
reasonable estimation accuracy for all oscillatory modes. The
removals of ambient grid-like dynamics are illustrated in Fig.5
for Bus 16. Referring to these plots, the proposed scheme itera-
tively minimize data abnormalities by removing them as outliers
using the derived cross-covariance relationships.

Finally, the fourth injection scenario is presented. There is
a more realistic and challenging scenario to mitigate the previ-
ous events. During the attack at Bus 16 from 44-49 seconds,
both schemes performed well due to their property of retrieving
missing measurements to make an accurate estimation of oscil-
lations. However, during the data-repetition attack at Bus 17
from 55-60 second window, the distributed scheme of [18] was
unable to predict the model and tackle the noise variances inde-

0 6 12 18 24 30 36 42 48 54 60
−10

−5
0
5

10
15
20
25
30

                            time window (s)                           
                           (a)                                        

R
es

id
ua

l S
ig

na
l

 

 

0 6 12 18 24 30 36 42 48 54 60
−40

−30

−20

−10

0

10

                               time window (s)                            
                            (b)                           

R
es

id
ua

l S
ig

na
l

 

 

Bus 16 Residual
Lower Threshold
Upper Threshold

Bus 17 Residual
Lower Threshold
Upper Threshold

Fig. 7. Fault residual evaluation in a) Bus 16, and b) Bus 17

pendently. This resulted in a high MSE value generated by the
distributed algorithm. Moreover, the algorithm is also not able
to track one of the nearby oscillation modes. In contrast, the
proposed TFMP scheme estimated all oscillations accurately.
The incorporation of the model prediction demonstrates that us-
ing MHE and calculating the covariances of each local sensor
helps to achieve better MSE values. To observe the impact of
Bus 16 during all these data-injections, an MSE based com-
parison has been made between the proposed TFMP scheme,
the distributed scheme of [18], and the distributed scheme pro-
posed of [20]. Results are shown in Fig. 6, where all three
schemes performed reasonably well. However, if the level of
precision is considered, the proposed TFMP supersede the other
two schemes especially when estimating the oscillatory modes
between 40 to 60 seconds.

Once the estimation accuracy is achieved, the residuals are
generated to quantify any system variations. Referring to Fig.
7, all attacks have been detected using the threshold selection
by a coherence function. The threshold selected for Bus 16 and
Bus 17 residuals are ±5 and ±10, respectively using the coher-
ence spectrum function. As observed in Fig. 7(a), some wiggles
within the threshold limits correspond to the dynamics of real-
time system. However, they can also be mistaken as system
faults if inappropriate thresholds are selected. In this case, the
threshold selection algorithm is adequate to detect the system
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faults while avoiding the false alarms. Overall, residuals ex-
ceeded the thresholds coincide with the time of data-injection
events. Meanwhile, the residual profile of Bus 17 shows less
variations as observed in Fig. 7(b). This is because the loca-
tion has been subjected to less data-injection attacks than Bus
16. Nevertheless, the more challenging data-repetition attack
has been well-detected by the coherence function-based thresh-
old.

IV. CONCLUSIONS

In this paper, the proposed TFMP based monitoring scheme
is proposed and demonstrated to estimate power oscillations
modes during data-injection attacks. The model prediction
property of the algorithm has helped to remove bias and noise
while accurately extracting the system parameters. It is further
facilitated by the derived diagonalized interaction filter, which
tackles the error covariance in the form of subsystems, and thus
improving the initial oscillatory state estimates. As a result, the
incorporation of the proposed algorithm into oscillation detec-
tion has provided more accurate results than existing oscilla-
tion monitoring schemes in the presence of data-injection at-
tacks. The immunity of monitoring applications against inten-
tional data-injections has been enhanced. In the future, studies
to quantitatively verify the effectiveness and robustness of the
proposed method to more adverse non-regional threats will be
conducted.

APPENDIX

A. Computation of Matrix weights for (12) to (14)

The matric weights have been computed by taking inverse
of (1) to (2) using linear minimum variance [23]. It is as
follows: κ0 = α−1

1 Ψ1, Ψ0 = α−1
1 Ψ1, H̄i

t = Hi
1,t +Hi

2,tκ̄,
v̄it = Ψ i

3wt + vit, Ψ i
3 = Hi

2,tΨ̄ , κ̄ = κ−1
3 α2α

−1
1 κ1 − κ−1

3 κ2,
Ψ̄ = κ−1

3 α2α
−1
1 Ψ1 −κ−1

3 Ψ2.
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