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Abstract—This paper deals with the closed-loop identification 
of a two-tank process used in industry. The identified model is 
then utilized to develop robust controllers i.e. H∞ and sliding 
mode controllers. It is shown that these controllers guarantee a 
satisfactory performance in the face of both model/parametric 
uncertainties and external disturbances. The designed 
controllers have been successfully tested through extensive 
simulation. In addition, this paper shows that the designed 
robust controllers far outperform traditional controllers such 
as P, PI, and PID, in the face of parametric model uncertainties 
and the effects of external disturbances. The successful use of 
the designed robust controllers encourages their extension to 
other physical systems.    
        Keywords- Closed loop identification, tuning, H∞ control, 
sliding mode control, control of two-tank system. 

I.  INTRODUCTION  
losed -loop identification has always been recognized as 
being of primary importance and has been the subject of 

intense research since the late sixties. It is widely 
recognized that in a large number of practical situations, 
feedback cannot be removed for various reasons including 
the following situations: (i) feedback may be intrinsic in the 
physical mechanism generating the data or (ii) data may 
come from an industrial plant where feedback loops cannot 
be opened due to safety or production quality reasons or (iii) 
the physical mechanism might be too complex and may not 
be easily manipulated (for example a communication 
network). Another reason for performing identification in a 
closed- loop setting comes from the need to design 
experiments that would reduce the uncertainty in certain key 
frequency bands to a desired level. 

Employing closed-loop in process control has numerous 
drawbacks, notably, the absence of a quality-check in the 
midst of the process, which results in a faulty output. For 
example, in a plant that mass-produces television sets, the 
process involves assembling CRTs and television bodies. 
During this assembly, if a body or a CRT gets damaged in 
the process, or even if it were damaged beforehand, a faulty 
product will be produced and the loop will be mistakenly 
acknowledged as having produced an acceptable product 
and will be allowed to continue to do so, until a subsequent 
quality-control stage detects the faulty products and alerts 
the operators that a remedial action is in order.  

Identification of systems operating in a closed loop has 
received considerable attention in the System Identification 
literature [4], [8], [12], [14], [15]. 

There are safety and economic reasons for performing 

identification experiments in a closed loop. Also, it is 
known that the optimal experiment is usually performed in 
closed loop [5], [10], [11], [15], [17]. Indeed, recent 
research has established that, for a general class of systems, 
and when there is a constraint on the output power, the 
optimal experiment is necessarily closed loop [3]. 

Unfortunately, the identification of systems operating 
under the presence of feedback presents several difficulties 
[4], [15]. For example, correlation between the input signal 
and the noise is problematic in the context of several 
identification techniques. In fact, it is well known that the 
Prediction Error Method (PEM) provides a non-consistent 
estimate in the presence of under-modeling of the noise 
transfer function [4]. 

Several attempts to overcome this difficulty have been 
made. In particular, indirect identification is a popular 
approach to mitigate this difficulty. Traditional indirect 
identification is a two-step procedure where the 
identification of a plant object is first obtained and then the 
open-loop system is unraveled from this preliminary 
estimate. Here, and in the sequel, we use the term “plant 
object” to refer to a transfer function that depends on the 
system. In traditional indirect identification, the plant object 
to be identified is usually the complementary sensitivity 
transfer function relating the reference signal to the output 
[14].  

However, several difficulties are known to exist with this 
approach. For example, it is common that the identified 
open-loop process is not necessarily stabilized by the 
controller used in the identification experiment, even though 
it is known that the real system is stabilized by this 
controller. 

The aim of this paper is to find an open-loop model of a 
process using closed-loop data that has sufficient excitation 
exerted from the set-point and then design a robust 
controller to attain robustness against model/parametric 
uncertainties and the effect of external disturbances.  This 
paper aims to explore whether normal operating closed-loop 
data of a real process can be practically used to identify the 
open-loop process model and use these data to find the 
tuning parameters automatically. Hence, the objectives are 
as follows: 

1- To be able to use normal operating closed-loop data to 
model the open-loop process. 

2- To identify the tuning parameters using famous tuning 
techniques. 

3- To develop linear and nonlinear robust controllers for 
the identified model to make the model robust in practice. 

C 



An evaluation of the proposed scheme was performed on 
a benchmark laboratory-scale process control system using 
National Instruments LABVIEW. 

The paper is organized as follows. In Section II, the 
process control system is described. Section III describes the 
modeling of the two-tank bench mark model and the leaks. 
Section IV deals with the evaluation of the proposed 
schemes on the physical system and Section V contains the 
conclusion. 

II. THE PROPOSED SCHEME 
In order to find the model, the following stages were 

developed: 
♦ Data Pretreatment: remove bias and outliers. 
♦ Use the excitation test and make sure that at least a 

model of 5th order can be found. 
♦ Find the process delay by iteration of several least 

square estimations with varying delays. 
♦ Find a process model using the least squares 

method.  
♦ Find the model prediction errors and verify the 

accuracy of the model. 
♦ Find the tuning constants based on the reaction 

curve technique and lambda tuning rules. 
♦ Find a step response of the identified model and 

strive to obtain a better step response of the system 
by employing linear and robust controllers. 

 
The proposed scheme has been evaluated on a process 

control system. The proposed scheme has been evaluated on 
a Bench-marked laboratory scale two tank apparatus.  

III. A TWO TANK BENCH-MARK MODEL 
A benchmark model of a cascade connection of a dc 

motor and a pump relating the input to the motor, u, and the 
flow, iQ , is a first-order system: 

                   ( )i m i mQ a Q b uφ= − +                               (1) 
where ma and mb are the parameters of the motor-pump 
system and ( )uφ is a dead-band and saturation type of 
nonlinearity.  It is assumed that the leakage Q  occurs in 
tank 1 and is given by: 
 12dQ C gH=  (2) 

With the inclusion of the leakage, the liquid level system 
is modeled by: 

 ( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − −  (3)               

 ( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − −  (4) 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ= is the leakage 

flow rate, ( )0 0 2Q C Hϕ= is the output flow rate, 1H is the 
height of the liquid in tank 1, 2H is the height of the liquid 
in tank 2, 1A  and 2A  are the cross-sectional areas of the 2 
tanks, g=980 2/ seccm  is the gravitational constant, 12C  and 

oC  are the discharge coefficient of the inter-tank and output 
valves, respectively. 

The model of the two-tank fluid control system, shown 
above in Fig. 1, is of a second order and is nonlinear with a 
smooth square-root type of nonlinearity.  For design 
purposes, a linearized model of the fluid system is required 
and is given below in (5) and (6): 

 ( )1
1 1 1 1 2i

dh
b q a h a h

dt
α= − + +  (5)  

 ( )2
2 1 2 2

dh
a h a h

dt
β= − −  (6)                            

where 1h and 2h are the increments in the nominal (leakage-
free)  heights 0

1H and 0
2H : 

0
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and  the parameter α  indicates the amount of leakage.  
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Fig.1: Two-tank fluid control system 

A PI controller, with gains pk and Ik , is used to maintain 
the level of the Tank 2 at the desired reference input r  .                       
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The state space model is given by: 
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with 

1 1 11

2 22

3

0
0 0

, ,
0 1 0 0

0

0 0 1 , [1 0 0 0]

m p m I mi

T

m p

a a bh
a ah

x A
x

b k b k aq

B b k C

α
β

− −⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= =⎣ ⎦

         

where iq , q , 0q , 1h  and 2h  are the increments in 

iQ ,Q , oQ , 0
1H and 0

2H , respectively, the parameters 1a  and 

2a  are associated with linearization whereas the parameters 
α  and β  are respectively associated with the leakage and 
the output flow rate, i.e. 1q hα= , 2oq hβ= . 

IV. EVALUATION ON A PHYSICAL SYSTEM 
The physical system under evaluation is formed of two 

tanks connected by a pipe. The leakage is simulated in the 



tank by opening the drain valve. A DC motor-driven pump 
supplies the fluid to the first tank and a PI controller is used 
to control the fluid level in the second tank by maintaining 
the level at a specified level, as shown in Fig. 1.  

A step input is applied to the dc motor- pump system to 
fill the first tank.  The opening of the drainage valve 
introduces a leakage in the tank. Various types of leakage 
faults are introduced and the liquid height in the second 
tank, 2H , and the inflow rate, iQ , are both measured. The 
National Instruments LABVIEW package is employed to 
collect these data.       

As mentioned earlier, various types of leakages were 
introduced by opening the drainage valve and the liquid 
height profiles in the second tank were subsequently 
analyzed.  

A. Data pretreatment: removal of bias and outliers 
The input/output data of a flow controller of a real 

process was collected at a sample rate of 1 second to be 
used for this project.  A graph showing, from top to bottom, 
the process output y(t), the controller output u(t) and the 
input reference signal r(t) respectively as shown in Figure 
2(a). A total of 5000 samples were collected for this 
process.   

Flow is measured using differential pressure 
measurement across an orifice plate with flange tapings.  
The controller used is a PI feedback controller with a 
controller gain of 0.15 which is measured by percent of full 
range of process output measurement over the full scale 
percentage of the controller output which is 100%.  The 
integral constant Ti was 0.5 minute per repeat.   

The data is already filtered at the transmitter device stage 
using a second-order filter with damping constant of 0.4 to 
filter out any high frequency noise.  Hence, no further noise 
filtering of the data is necessary. 

The data pretreatment process for this project is designed 
to remove any outliers from the measurements. This is being 
shown in the following sections. 

B. Persistent excitation test 
The persistent excitation condition is the minimum 

requirement imposed on the test signal to guarantee that the 
estimation algorithms have unique solutions. For a finite 
impulse response model, the persistency-of- excitation test 
is found from the correlation matrix as follows: 
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−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

  
Here, our agenda is to find the maximum model order 

that can be found with reasonable accuracy.  The degree of 
excitation of the input signal is defined as the order of a 
model that the input is capable of estimating in an 
unambiguous way.  The process will do the following: 

1. Find the correlation matrix of different sizes. 

2. Determines the maximum matrix size by finding 
the singular values of the correlation matrices using 
a threshold of 1e-9. 

3. If the technique determines that the maximum 
order is less than 5, the process will be terminated. 

For the data provided, the result came out to be n=50.  
Hence, the process will continue. 

C. Finding the process delay 
The process delay is found by an estimation which is 

based on a comparison of ARX models with different delays 
nk.  

  
1 1( ) ( 1) .... ( ) ( )

... ( 1)
na

nb

y t a y t a y t na b u t nk
b u t nb nk
+ − + + − = −

+ + − − +       (9) 

 
The parameters are found using the least-squares method. 

The delay of the data used was found as 4 samples or 4 
seconds.  This is very reasonable for process control valves 
that have the speed of 0.15 inches per second for their stem 
movement.   
D. Finding a process model using least squares method 

The least-squares problem solution of a ARX model was 
found to be †ˆ .A Yθ =  
where †A is the pseudo-inverse of the A given by: 

1† T TA A A A
−

⎡ ⎤= ⎣ ⎦  
Where the minimization problem to be solved was: 

( ) ( ){ }{ }
min ( ) ( ) ( ) ( )TY n A n Y n A n
θ

θ θ− −  

 
The results were as follows: 

1 2 3 4

4 5 6 7

: ( ) ( ) ( ) ( ) ( )
( ) 1 0.7314 0.01969 0.06907 0.1476
( ) 0.1036 0.0312 0.03938 0.02451

1

Discrete time IDPOLY Model A q y t B q u t e t
A q q q q q
B q q q q q
Sampling Interval

− − − −

− − − −

= +

= − + − −

= − − −
=

 

E. Finding the performance of the identified model 
The commonly-used performance measures are 

unbiasedness, consistency and efficiency.  Unbiasedness is 
guaranteed for ARX models because the noise is 
uncorrelated with the input data matrix.  It measures the 
average value of the parameters and verifies that it is equal 
to the actual process parameter average.   

The consistency involves the sum of squares of the 
residuals.  One can validate the consistency of the identified 
model by verifying that: 

 
2)(][ v

T MNresresE σ−=  
where N and M are the number of rows and columns of 

matrix A, respectively. Or, validation can be performed by 
taking the autocorrelation of the residuals, which should 
show that they are close to zero for all nonzero lags, i.e. 



having a delta function-like shape.   
The efficiency can be measured by finding the covariance 

of the model parameters from the real process parameters as 
^

2 1cov[ ] ( ) .T
v A Aθ σ −=  The determinant of the covariance matrix 

of the prediction errors is the determinant of the noise 
variance matrix and it is called the Loss function (LossFcn).  
This value measures the prediction error reasonably well.  It 
also provides the so called FPE: Akaike's Final Prediction 
Error, defined as the LossFcn *(1+d/N}/(1-d/N), where d is 
the number of estimated parameters and N is the length of 
the data record. 

The LossFcn was used as a performance measure and it 
was found that Loss function=0.000633849 and 
FPE=0.000635884. 

All performance tests show very good and reliable results 
for the identified model.   Hence, we may proceed to the 
next step which is finding the tuning parameters of the 
controller.   

Note that, due to the presence of output feedback, the 
cross correlation between the input and the residuals showed 
negative values which is expected for feedback control 
loops as shown in the fig. 2(b). 

F. Finding the tuning constants based on the reaction 
curve technique 

The tuning constants can be found by using the reaction 
curve technique applied on the step response of the 
identified model found previously in step 6. The results of 
applying this technique and the comparison of the model 
approximation with the original step response model are 
shown in the fig. 3(a) and fig. 3(b) respectively.  

G. PID tuning 
There are many PID tuning rules around for first-order 

plus time delay system models. The following tuning table 
was derived by Ziegler-Nichols to provide a quarter-decay 
ratio (the ratio of the second peak over the first peak) as 
shown in Table 1. Controller settings are shown in Table 2. 
(alpha: time delay, tau: time constant, Kp: gain). 

The results were found as follows: 

Process gain: 0.120062, Time constant: 1.15871 sec,  
Time delay: 4 sec. 

H. Step response of the identified model using PID 
The step response model of the identified model is as 

shown below in Fig. 4(a). 
 

Table 1: Ziegler Nocholas settings 

Controller Kc Ti Td 

 P tau/(Kp*alpha)   

PI 0.9*tau/(Kp*alpha)  3.33*alpha   

PID 1.2*tau/(Kp*alpha)  2*alpha  0.5*alpha  

 

 

 

The open loop response of the system with leakage faults 
is as shown below in Fig. 4(b). The closed-loop step 
response has been simulated for the PID controller and is 
depicted in the fig. 4(c). Figure 4(c) shows that the process 
output step response reaches the steady state after 
approximately 180 seconds or 3 minutes. 

 
Table 2: Controller settings for P, PI and PID 

Controller Kc Ti Td 

P 2.4127   

PI 2.1715 13.32  

PID 2.8953 8 2 
 

 
Fig.2: (a) Process Output y(t), the controller output u(t),                           
and Input reference signal r(t), (b) Cross Correlation function between 
input u1 and output y1. 

 
Fig.3: (a) Reaction curve technique, (b) Comparison of model 

approximation and the original step response model 
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Fig.4: (a) Step response of the identified model, (b) Open loop response of 
the system with leakage faults, (c) Closed loop response for PID Controller 

I. Step response of the identified model using H∞ control 
H∞ controller has been often used for robust control of 

dynamical systems [18], [19], [20]. The aim of the H∞ 
controller design is to track the reference input given by the 
operator and achieve the desired position in a minimum time 
and at given performance level. For this purpose we 
employed H∞ controller for which the standard 
configuration is shown in Fig. 5. The signals involved are: 
the control variable ‘u’, the measured variables ‘v’, the 



exogenous inputs ‘w’ such as disturbances and commands 
and the exogenous outputs ‘z’. The closed-loop transfer 
function from w to z is given by linear fractional 
transformation [18]. 

( , )lz F P K w=                               (10) 
Where 

1
11 12 22 21( , ) ( )lF P K P P K I P K P−= + −  

The standard H∞ optimal control problem is to find all the 
stabilizing controllers K which minimize the following H∞ 
norm:  

              ( , ) max ( ( , )( ))l lF P K F P K j
ω

σ ω
∞
=              (11) 

 
 

 
Fig.5 General control configuration for H∞ control 

The H∞ norm has several interpretations in terms of 
performance [18] where it minimizes the peak of the 
maximum singular value of ( , )lF P K . The general algorithm 
used to compute the controller is based on the solution 
presented in  

 
H∞ loop shaping [18] is essentially a two-stage design 

procedure. First, the open-loop plant is augmented by a pre 
and a post-compensator as shown in Fig. 6 to give a desired 
shape to the singular values of the open-loop frequency 
response. Then the resulting shaped plant is robustly 
stabilized with respect to co-prime factor uncertainty using 
H∞ optimization. The employed weights allow us to modify 
the model dynamics with a view to improve its tracking by 
increasing the gains at lower frequencies and changing the 
slope at the cross-over frequency to ‘1’ so as to improve the 
controller’s robustness. The re-shaped model of the 
identified plant can be utilized for controller synthesis as 
described in [19].  The design procedure resulted in an H∞ 
controller with min 1.2817γ = , which confirms that our 
designed controller based on the identified model is robust 
against both external disturbances and system uncertainties. 
However, if we evaluate the performance of the system with 
the designed controller, we can observe that the system 
attains the desired level in less that 10 sec. which is much 
better than the results obtained with a PID controller. The 
step response in Fig.7 shows that there is an overshoot in the 
system and some percent of steady state error.  

 
Fig.6 LSDP implementation 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

Am
pl

itu
de

 
Fig.7 Step response of the identified model using H∞ control 

J. Step response of the identified model using sliding 
mode control 

As an alternate robust controller, a sliding mode 
controller has been designed for the identified model. In 
sliding-mode control design, a hyper-plane is defined as a 
sliding-surface. This design approach comprises of two 
stages: the first one is the reaching phase and the second one 
is the sliding phase. In the reaching phase, the system’s 
states are driven to a stable manifold by the help of an 
appropriate equivalent control law and in the sliding phase, 
these states slide to an equilibrium point. One advantage of 
this design approach is that the effect of nonlinear terms, 
which may be construed as a disturbance or as an 
uncertainty in the nominal plant, has been completely 
rejected. Another benefit accruing from this situation is that 
the system is forced to behave as a reduced order system; 
this guarantees the absence of overshoot while attempting to 
regulate the system from an arbitrary initial condition to the 
designed equilibrium point. The design of a sliding-mode 
controller for the identified model is carried out by defining 
the sliding manifold based on its error dynamics defined as: 

                             de x x= −  
where dx is the desired value of the system state at the 
equilibrium position. For the above-discussed design 
approach, the sliding manifolds are designed as follows: 

1S e=  
The system error tends to zero if 0S =  and the rate of 

convergence will be governed by the manifold dynamics. 
The Lyapunov function [20], [21], [22] for the surfaces 
defined above can be written as:  

21
2

V s=  

which are positive definite functions and their time 
derivative can be written as: 
                                         V ss=                                    (12) 

                          
The equivalent control equ  on the manifold 

1 1 0s e= = can be shown to be equal to: 

eq 1
0.04276u = x
0.0625

 

The control input vector ‘u’ that will make the system to 
converge at 0S =  can be written as: 



( )equ u Ksign s= −  
This control law will ensure both the system’s 

convergence to a sliding manifold and robustness against 
the system uncertainties and external disturbances. To avoid 
high frequency switching, i.e. chattering, implementation of 
the control laws have been performed by employing a 
saturation function ( )sat S [22] defined as:  

sat(s) = sign( ); abs( )>1

sat(s) = ; abs( )<1

s sif
s sif

ε ε

ε ε

             (13) 

The chattering reduction depends on the value of ε  in the 
range ‘ 1ε < ’ but at the cost of robustness. The higher the 
value of ε , the lesser the chattering will be and the more 
reduced the robustness will be too. Now by substituting the 
defined control laws in equation (12), we get:  

2V s= −  
V will always be negative definite for non-zero manifolds. 

In the first phase of controller validation, only 
simulations are carried out. But later, the designed controller 
was tested on real data extracted from a physical two-tank 
system, and it delivered the desired tracking control of the 
identified model as shown in Fig. 8 along with sliding 
manifolds convergence. The convergence of states is in 
finite time with no overshoot and steady state error. The 
robust nature of sliding mode control makes the identified 
systems indifferent to parametric uncertainties and external 
disturbances. However the performance of the system is best 
in the previously discussed and simulated controllers i.e. the 
system reaches the desired level in less than 6 seconds 
which is almost twice as fast as its linear counter-part.  
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Fig.8 Step response of the identified model using sliding mode control 

V. CONCLUSION 
In this paper, a new scheme for Closed Loop 

Identification has been proposed and successfully tested. It 
has been shown that it is possible to model a process while 
the controller is in an open loop model.  This work also 
makes use of the model to develop robust controllers. The 

designed robust controllers have been shown to outperform 
the traditional controllers of P, PI and PID and guarantee the 
desired performance of the system along with robustness 
against parametric and model uncertainties as well as the 
effects of external disturbances.   
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