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Abstract The critical importance of sustaining fault diagnosis, as a major system tool, is unquestionable if the high performance 

and reliability of increasingly-complex engineering systems is to be sustained over time and across a wide operating range. 

However, it is quite difficult to retain the joint ability of fault detection and isolation as it requires a strong system architecture. 

That is why, before designing an industrial supervision system, the determination of a system’s monitoring ability based on 

technical specifications is important, as finding the source of the failure is not trivial in systems with a large number of 

components and complex component relationships. This paper presents an efficient and cost-effective fault detection and 

isolation (FDI) scheme that evolved from an earlier work [1]. FDI specifications are translated into constraints of the 

optimization problem considering that the whole set of analytical redundancy relations has been generated, under the 

assumption that all candidate sensors are installed and later on tested by an optimization algorithm using binary and relaxed 

versions of linear and non-linear programming. By doing so, the critical information about the presence or absence of a fault is 

gained in the shortest possible time, with not only confirmation of the findings, but also an accurate unfolding-in-time of the 

finer details of the fault, thus completing the overall diagnostic picture of the system under test. The proposed scheme is 

evaluated extensively on a two-tank process used in industry, exemplified by a benchmarked laboratory scale coupled-tank 

system.  

Keywords Sensor location. Optimization. Fault detection and isolation. Analytical redundancy relations. Linear programming. 
Benchmarked laboratory-scaled two-tank system  

 

 
1 Introduction 
 
Process faults, if undetected, have a serious impact on process economy, product quality, safety, and productivity and 
pollution levels. In order to detect, diagnose and correct these abnormal process behaviors, efficient and advanced automated 
diagnostic systems are of great importance to modern industries. Fault diagnosis and process supervision are an increasingly 
important topic in many industrial applications and also in an active academic research area. Considerable research has gone 
into the development of such diagnostic systems [2]. Most approaches for fault detection and isolation (FDI) in some sense 
involve the comparison of the observed behavior of the process to a reference model. While probing into this research area 
more, the problem of monitoring the quality of the plant through diagnosis of unprecedented changes has been the subject of 
intense research [3] as well as finding an optimal control while tackling such non-linear constrained procedures [4].  

The process behavior is inferred using sensors measuring the important variables in the process. Hence, the efficiency of 
the diagnostic approach depends critically on the location of sensors used for monitoring process variables. The emphasis of 
most of the work on model-based fault diagnosis has been more on procedures to perform diagnosis given a set of sensors 
and less on the actual location of sensors for efficient identification of faults. The problem of sensor placement for FDI 
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consists of determining the optimal set of instruments such that a predefined set of faults are detected and isolated. In many 
cases, this set is defined in order to design some remedial actions such that the control loop is able to continue operating even 
in the presence of a fault (fault-tolerant control). 

 

NOMENCLATURE 
Qi is the initial flow of water β is associated with the leakage q0 = βh2 
Ql is the increment in the nominal (leakage-free) of flow Ql

0 qv is the Valve Flow 
Q0 is the output flowrate qp is the Pump Flow 
φ(u) is the dead-band and saturation type of non-linearity uv is the Valve Control Input 
am is the motor system up is the Pump Control Input 
bm is the pump system  f1 is the tank 1 leak 
u is the input to the motor f2 is the tank 2 leak 
Ql is the leakage in Tank 1  fh1 is the wrong tank 1 level sensor reading 
C0 is the Discharge coefficient of output valves fh2 is the wrong tank 2 level sensor reading 
C12 is the Discharge coefficient of Inter tank fqv is the wrong valve flow sensor reading 
A1 is the Cross-Sectional Area of Tank1  fqp is the wrong sensor flow sensor reading 
A2 is the Cross-Sectional Area of Tank2 fuv is the wrong valve control input sensor reading 
H1 is the Height of Tank1 fup is the wrong pump control input sensor reading 
H2 is the Height of Tank2 q is the vector of binary elements 
g=980 cm/sec2 is the gravitational constant m is the total number of candidate sensors 
h1 is the increment in the nominal (leakage-free) of height H1

0 wj is the cost of sensor  sj comprising purchase, maintenance  
h2 is the increment in the nominal (leakage-free) of height H2

0 ysi is the measured sensor output 
q0 is the increment in Q0 ysi

0
 is the true or fault-free output 

qi is the increment in Qi υi is the additive noise 
ql is the increment in Ql ksi  is the gain in sensor-network 
kp is the proportional gain in PI Controller Gi  is the subsystem monitoring the sensor-outputs yi 
kI  is the Integral gain in PI Controller yi

ssis the steady state values of the sensor output yi 
α is associated with the leakage ql = αh1 ^

ikM and 
^

ilM are the matrices generated from the FD
I and FD

II  
fp are the process faults 

iρ  be the binary ARR selector 

fs are the sensor faults  

 
2 Related works 
 

In sensor location optimization, the usual objective to minimize in the sensor placement problem is the sensor cost. There 
are several articles devoted to the study of the design of sensor networks using goals corresponding to normal monitoring 
operation. Aside from cost, other objective functions, such as precision, reliability, or simply observability were used. 
Different techniques were also used, such as graph theory, mathematical programming, genetic algorithms and multi-
objective optimization, among others. The problem has also been extended to incorporate upgrade considerations and 
maintenance costs. In [5], it is noticed that the problem of sensor placement in the model-based FDI community is still an 
open problem. However, some contributions have already been made in this direction [6-12], among others. 

In model-based FDI, faults are modeled as deviations of parameter values or unknown signals, and diagnostic models are, 
in such cases, often brought back to a residual form. For works based on continuous differential/difference-equation-based 
models (e.g., see [2] and [13] and the references therein for discrete-event models [14-15] and for diagnosis of hybrid 
systems [16]. To be able to perform model-based supervision, some redundancy is needed, and this redundancy is typically 
provided by sensors mounted on the process. Scientific attention has mainly been devoted to design a diagnosis system, given 
a model of a process equipped with a set of sensors. Special attention is needed to decide which sensors to include in the 
process. Deciding where to put sensors correctly, which makes it possible to meet a given diagnosis performance 
specification, is the topic of this paper. There are many types of performance measures in diagnosis, for example, detection 
performance, false alarm probabilities, time to detection, etc. In this paper, sensors are placed such that maximum isolability 
is possible, i.e., faults in different components should, as far as possible and desired, be able to be isolated from each other. 
Since sensor placement is often done early in the design phase, possibly before a reliable process model can be developed, 
the method developed in this paper is based on a structural process model.  

The main approaches to construct residuals are based on using analytical redundancy relations (ARRs) generated either 
using the parity space [17] or observer approaches [18]. In [19] the sensor placement problem is solved by the analysis of a 
set of possible ARRs using algorithms of cycle generation in graphs. Some other results devoted to sensor placement for 
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diagnosis using graph tools can be found in [20-24]. All these works use a structural model-based approach and define 
different diagnosis specifications to solve the sensor placement problem. In [25], the sensor placement problem is solved by 
the analysis of a set of possible ARR using algorithms of cycle generation in graphs. 

In [1], an optimal sensor placement is introduced for model-based FDI, which requires finding the set of all possible ARRs 
and considering that all possible candidate sensors are installed. Then, a set of sensors that minimizes the total cost of the 
network is selected such that the resulting ARRs satisfy that a pre-established set of faults can be detected and isolated. For 
sensor placement, it is required to use an ARR generation algorithm that is complete. Otherwise, the sensor placement could 
exclude from consideration some sensor configurations just because some ARRs were not generated. Excluded 
configurations could provide better FDI results that the ones that were generated. Or, even in some dramatic cases, the sensor 
placement could not find a solution because of this lack of completeness, whereas, in fact, if all ARRs were generated a 
solution would have been found. 

The structure of the paper is as follows. Section 1 provides the introduction and section 2 gives the details of the related 
works. In section 3, the sensor location optimization problem statement is presented. In section 4, the implementation and 
results are shown. Finally, some conclusions and extensions are suggested in section 5. 
 
3 Sensor location optimization problem statements 

 
A most critical and important issue surrounding the design of automatic control systems with successively increasing 

complexity, is guaranteeing a high system performance over a wide operating range and meeting the requirements of system 
reliability and dependability. To have an effective and optimal implementation of this performance, an optimal sensor 
placement is required.  

 
Fig. 1 Proposed scheme 

In this paper, a sensor location optimization approach is proposed to meet the requirements for a quick and reliable fault 
detection and isolation scheme and thus promoting to a FDI Optimization. The tasks of our fault diagnosis scheme (See 
Fig.1) are executed by the implication of binary and relaxed versions of linear and non-linear programming, by targeting the 
optimal sensor placement and an optimal objective cost value. The proposed scheme has been evaluated on a laboratory 
scaled based two-tank system. It is the most used prototype applied in the wastewater treatment plant, the petro-chemical 
plant, and the oil/gas systems.  

3.1 Model of the coupled tank system 
The physical system under evaluation is formed of two tanks connected by a pipe. The leakage is simulated in the tank by 

opening the drain valve. A DC motor-driven pump supplies the fluid to the first tank and a PI controller is used to control the 
fluid level in the second tank by maintaining the level at a specified level, as shown in the figure (see Fig. 2).  

A step input is applied to the DC motor- pump system to fill the first tank. The opening of the drainage valve faults 
introduces a leakage in the tank. Various types of leakage are introduced and the liquid height in the second tank, 2H  and the 

inflow rate, iQ  are both measured. The National Instruments LABVIEW package is employed to collect these data.   
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Fig. 2 Two-tank model 

  
As mentioned earlier, various types of leakages were introduced by opening the drainage valve and the liquid height 

profiles in the second tank were subsequently analyzed. Three variables being measured in this process are hydraulic height, 
hydraulic flow and the control output. In all, there are four internal variables and two input variables in the system, as 
summarized (see Table 1). So the candidate sensor set comprises up to six sensors S = {hu, hl, qv, qp, uv, up}. Eight 
hypothetical faults are considered in the system (see Table 2): leaks in the tank 1 and tank 2, and wrong readings of each 
candidate sensor. So the fault sets are F = P SF F∪  = {fu , fl} ∪  {fhu , fhl , fqv , fqp , fuv , fup} where Fp stands for Process faults 
and Fs stands for sensor faults. 

 
Table 1 Variables of the coupled tank system  

Variable Description 
h1 Tank 1 level 
h2 Tank 2 level 
qv Valve flow 
qp Pump flow 
uv Valve control input 
up Pump control input 

 
 

Table 2 Hypothetical faults of the system 
Variable Description 

f1 Tank 1 leak 
f2 Tank 2 leak 
fh1 Wrong tank 1 level 

sensor reading 
fh2 Wrong tank 2 level 

sensor reading 
fqv Wrong valve flow 

sensor reading 
fqp Wrong sensor flow 

sensor reading 
fuv Wrong valve control 

input sensor reading 
fup Wrong pump control 

input sensor reading 
 

A benchmark model of a cascade connection of a DC motor and a pump relating the input to the motor, u, and the flow, 
iQ , is a first-order system: 

( )i m i mQ a Q b uφ= − +&  (1) 
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Where ma and mb are the parameters of the motor-pump system and ( )uφ is a dead-band and saturation type of nonlinearity.  

It is assumed that the leakage Ql  occurs in tank 1 and is given by: 

12dQ C gH=l l  (2) 

With the inclusion of the leakage, the liquid level system is modeled by: 

( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − − l  

(3) 

( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − −  

(4) 

Where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ=l l is the leakage flow rate, ( )0 0 2Q C Hϕ= is the output flow rate, 1H is the height of 

the liquid in tank 1, 2H is the height of the liquid in tank 2, 1A  and 2A  are the cross-sectional areas of the 2 tanks, 

g=980 2/ seccm  is the gravitational constant, 12C  and oC  are the discharge coefficient of the inner-tank and output valves, 
respectively. 

The model of the two-tank fluid control system, shown above in Fig. 2, is of a second order and is nonlinear with a smooth 
square-root type of nonlinearity. For design purposes, a linearized model of the fluid system is required and is given below in 
(5) and (6): 

( )1
1 1 1 1 2i

dh
b q a h a h

dt
α= − + +               (5) 

( )2
2 1 2 2

dh
a h a h

dt
β= − −                      (6) 

Where 1h  and 2h  are the increments in the nominal (leakage-free) heights 0
1H and 0

2H : 

0
1 1 0 0 0

1 1 2 2

1
, ,

2 2 ( ) 2 2
dbC C

b a
A g H H gH

β= = =
−

, 2 1 0 0
2 12 2 2 2

do dC C
a a

gH gH
α= + = l   

 
and the parameter α  indicates the amount of leakage. 

A PI controller, with gains pk and Ik , is used to maintain the level of the tank 2 at the desired reference input r  .  

Where iq ,ql , 0q , 1h  and 2h  are the increments in iQ ,Ql , oQ , 0
1H and 0

2H , respectively, the parameters 1a  and 2a  are 
associated with linearization, whereas the parameters α  and β  are respectively associated with the leakage and the output 
flow rate, i.e. 1q hα=l , 2oq hβ= . 

 
4 Implementation and results 
 

 4.1 Generation of ARR table using fuzzy rules 
 

The main approaches to construct the residuals using ARRs generated are either using parity space or observer-based 
approaches. The approach developed over here for the ARR generations is by using the observer-based technique improvised 
by using a sensor network (see Fig. 3).  
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Fig. 3 Sensor network 

 
A sensor is modeled by a gain and an additive noise, as given below: 
 

0
i si i iy k y v= +  (7) 

 
Where siy , 0

siy and iv are the measured sensor output, true or fault-free output and additive noise, respectively.  

Here the gain is such that 0 1sik≤ ≤ , with the degree of the fault ranging from no fault at all for 1sik =  to a complete 

failure for 0sik = . The subsystems such as actuators, processors and controllers are denoted by transfer functions, iG . Many 
systems consisting of several closed loops, each with its own reference input, can be viewed as a sensor network that can be 
described by a ring-type topology. 
The objective of the sensor network is to diagnose faults in both the sensors, through the gains sik  and in the subsystems iG  

by monitoring the sensor outputs iy .  

The mathematical relations governing the sensor outputs iy  to the input to 0G , denoted by e  are: 
 

1 0 0 0sy G k e v= +  

2 0 1 1 1sy G G k e v= +  

3 0 1 2 2 2sy G G G k e v= +  
. 
. 

0 1 2 1 ( 1) 1...i i s i iy G G G G k e v− − −= +  

 
 
 
 
 
 
(8) 

Where e r y= − . 

The fuzzy rules are being defined by using the steady-state values of the sensor outputs, iy , denoted by ss
iy . A change in 

the gain sik , or a change in the steady-state gain of the transfer function iG , denoted by ss
iG , is indicative of a fault in the i-th 

sensor and i-th subsystem, respectively (see Fig.3). Assuming that the noise term is subsumed in the fuzzy membership 
function, the steady-state model takes the form: 
 

0 1 2 1 ( 1)...ss ss ss ss ss
i i s iy G G G G k e− −=  (9) 

 
Let us now define linguistic variables such as zero, and non-zero. For simplicity, we will consider the case where only one 

device can be faulty at any given time, i.e. the fault is assumed to be simple. In this case, the fuzzy rules may take the 
following form: 
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Rule 1: If ss
iy  is non-zero, then there is a fault in the steady-state gain 0

ssG or 1
ssG or 2

ssG or…or ss
iG  or ith sensor gain sik  

Rule II: If ss
iy  is zero, then there is no fault in the subsystem’s steady-state gain 0

ssG or 1
ssG or 2

ssG or…or ss
iG or ith sensor 

gain sik  

Rule III: If ss
iy  is zero and ( 1)s iy + is non-zero then there is a fault in subsystem 1

ss
iG + or sensor ( 1)s ik +  

Rule IV: If ss
iy  is non-zero and ( 1)s iy + is zero then there is a fault in sensor sik  

Note: These rules may be generalized to multiple faults. 

4.2 Optimization Problem formulation  
 

As in [1], the optimal sensor placement problem can be formulated as the following optimization problem, as shown in 
equation (10). Let q be a vector of binary elements that denotes which candidate sensors is installed or not. qj = 1 means that 
sensor js S∈  is installed, whereas qj = 0 means that js is not. 

 
 

1

min : ( )
m

j j
j

J q w q

subject to
=

=∑  

(10) 

 
                       DF  is detectable ( Fault diagnosis used for detectibility of the fault) 

               DF  is isolable (Fault diagnosis used for the isolability of the fault) 

where m is the total number of candidate sensors and jw  is the cost of sensor js  comprising purchase, maintenance, 

installation and reliability costs. 
Problem (1) will be solved for two general cases: 

♦ Case I: I
D PF F=  

♦ Case II: II
D P SF F F= ∪  

In CASE I, the Target Fault Set is known a priori, before solving the optimization problem. In CASE II, this is not true, 
since *S

F  will be known a posteriori, after the optimization problem is solved. Considering these cases, the following 

constraint equations are being used:  
 

:I
DF I

D PF F=  
I

DF  is detectable 
^

^

1,
i

ik i k P

r R

M f Fρ
∈

↔ ≥ ∀ ∈∑  
  (11) 

Note: PF  contains 1 2 3 4, , ,f f f f . 

:II
DF II

D P SF F F= ∪  

II
DF  is detectabl

^

^ 1

i

k P
ik i k

k k Sr R

if f F
M f F

q if f F
ρ

∈

∈ 
↔ ≥ ∀ ∈ ∈ 
∑  

(12) 

Note: PF  contains 1 2 3 4, , ,f f f f  and SF  contains 5 6 7 8, , ,f f f f . 
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^

^ ^

1, , ,
i

I
D

ik il i k l P k l

r R

F is ISOLABLE

M M f f F f fρ
∈

↔ − ≥ ∀ ∈ ≠∑  

(13) 

II
DF  is isolable 

^

^ ^

1 ,

,
i

k l P

k l P k S
ik il i k

l k P l Sr R

k l k l S

if f f F

q if f F and f F
M M f F

q if f F and f F

q q if f f F

ρ
∈

∈ 
 ∈ ∈ ↔ − ≥ ∀ ∈ ∈ ∈ 
 ∈ 

∑  

(14) 

Let iρ  be the binary ARR selector denoting whether ARR ri is valid ( iρ  =1) or not ( iρ = 0) and 
^

ikM and 
^

ilM are the 
matrices generated from the FD

I and FD
II . 

4.3 Implementation of fuzzy rules on the coupled tank system to generate the ARR table 
 

We will use a set of fuzzy logic rules to detect a leakage. The fuzzy IF and THEN rules for the two-tank fluid system are 
derived using the sensor network shown in Fig.3. For the fault diagnosis problem, the equivalent of Fig. 3, is shown in Fig. 4 
whose various sub-systems and sensor blocks are all explained below. First, note that the first two blocks in Fig. 4, i.e. 

0G and 0
1 1 aG G γ= , represent the controller and the actuator sub-systems, respectively.  

 
ym y2 y1 y0 

y 

ql  
leakage 

r e 

tank

actuator controller 

ua u 
G0 

���  ���  γa 1-γl γ s 

γl 

ks1 ks2 ks0 ks3 

 
Fig. 4 Fluid system subject to a leakage 

 
As shown in Fig. 4, the leakage is modeled by the gain γ l , which is used to quantify the amount of flow lost from the 

tank1. Thus the net outflow is quantified by the gain (1 γ− l ). Since the two blocks 0
2G  and (1 γ− l ) cannot be dissociated 

from each other, they are fused into a single block labeled ( )0
2 2 1G G γ= − l . The feedback sensor, modeled by the gain sfk , is 

used to feed the plant output y back to the controller, and is modeled by the last block 3G  in Fig. 3, where 3 sfG k= . An 

additional sensor, termed as the redundant sensor of gain 2sk , is used here to discriminate between faults in the height sensor 
and feedback sensor. Even though the control input u does not necessitate a separate sensor to monitor its output, as it is 
freely available from the digital controller ( 0G ), a separate unit gain, labeled 0 1sk = , is attributed to it. Similarly, the last 

sensor, used to monitor the feedback sensor output, is also attributed a unit gain, i.e. 3 1sk = . The reason for adding these two 
unit gains to Fig. 4 is motivated by our desire to make the overall sensor network structure for the leakage detection problem 
fit in well within the general sensor network. By doing so, the two fuzzy rules (Rules 1 and 2 given earlier) can be readily 
applied to Fig. 4. The four residuals, 0r , 1r , 2r  and 3r , are the deviations between the fault-free and fault-bearing 
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measurements of the control input , flow rate, height from the redundant sensor, and height from the feedback sensor, 
respectively. 

1  Comments: The physical two-tank fluid system is nonlinear, including dead-band nonlinearity and has fast dynamics. 
The identified model order is different from that of the model derived from the physical laws. This makes it difficult to 
employ the conventional parameter identification technique [6], as the function (.)ϕ  is difficult to obtain. Performing a 
number of offline experiments on the physical system, by varying the detection parameters, captures the influence of the 
detection parameters on the input-output behavior reliably.  
 

 
 

Table 3 Example of an ARR table 
 h1 h2 qp qv up uv 

ARRs1 0 1 0 1 1 1 

ARRs2 0 1 0 1 1 1 

ARRs3 0 1 0 1 0 1 

ARRs4 0 1 0 1 1 0 

ARRs5 0 0 0 1 1 1 

ARRs6 0 1 0 0 1 1 

 
Table 4 Example of a fault signature matrix 

 f1 F2 fh2 fqv fup fuv 

ARRs1 0 1 1 1 1 1 

ARRs2 1 0 1 1 1 1 

ARRs3 1 1 1 1 0 1 

ARRs4 1 1 0 1 1 1 

ARRs5 1 1 0 1 1 1 

ARRs6 1 1 1 0 1 1 

 
Applying the exhaustive ARR generation algorithm described in [22] a full ARR table and a full fault signature matrix was 

created, a sample of which is shown in Table 3 and Table 4, where for example ARRs1 denotes the 1st sample generated.  

4.4 Optimization results 
Cost distribution table of six sensors, as per the fault signature matrix, was generated as follows (see Table 5): 

 
Table 5 Cost distribution table 

Variable Description Cost Distribution of the six sensors 

h1 Tank 1 level 10  X X  X X 

h2 Tank 2 level 100   X X  X 

qv Valve flow 10 X   X X X 

qp Pump flow 10 X X X X X X 

uv Valve 
control 
input 

10 X X X X  X 

up Pump 
control 
input 

100 X X   X  

 

Various techniques have been employed, which are a) binary non-linear programming technique b) non-linear 
programming with relaxation c) binary linear programming and d) linear programming with relaxation. The cost function is 
given as follows:  

Min 10qhu+100qhl+10qqv+10qqp+10quv+100qup (15) 
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4.5 Constraints for binary non-linear programming:  

 

A sample of non-linear constraints is shown as below (see equation 16-22): 
 
Note : During constraint formulation, qhu =q3, q hl =q4, qqv =q5, qqp =q6, quv =q7, qup =q8 

 
q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1                                                              (16) 

q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q7>=1                                                              (17) 

q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1                                                             (18) 

q4*q5*q7*q8+q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q4*q7*q8=q4                                                          (19) 

q4*q5*q7*q8+q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8>=q5                                                                                         (20) 

q4*q5*q7*q8+q4*q5*q7*q8+q4*q5*q7+q5*q7*q8+q4*q7*q8>=q7                                                      (21) 

q4*q5*q7*q8+q4*q5*q7*q8+q4*q5*q8+q5*q7*q8+q4*q7*q8>=q8                                                                                         (22) 

 
4.6 Constraints for linear programming with LP relaxation:  
 
 
In the linearized version of programming, the constraints are linearized in the following manner, for the following non-linear 
constraints:  
 

q4*q5*q7*q8                                         (23) 

 
The linearized version of equation (23) can be written as follows (see equation 24-28):  
 

q4+q5+q7+q8<=x11+1+1+1 ; (24) 

x11<=q4 ; (25) 

x11<=q5 ; (26) 

x11<=q7 (27) 

x11<=q8 ; (28) 

 
Note: The remaining equations and inequalities can be seen in the Appendix A. 

A sample of detailed results for linear programming with relaxation technique is as follows (see Table 6): 
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Table 6 Sample of detailed results for linear programming with relaxation 

 
 

Moreover, it is shown that out of six sensors, i.e. {h1, h2, qv, qp ,uv, up}, the optimal sensor placement is of four sensors, 
which are h2, qv ,  uv and  up. Thus, the optimal sensor configuration for the 6 sensors being experimented is as follows:   

 
S* = {h2, qv, uv, up} (29) 

 
The objective value and the computational time results for the four techniques employed are as follows (Result # 1- 4): 
 

Result # 1:  
 
    BINARY NON-LINEAR PROGRAMMING  

**** OBJECTIVE VALUE = 220.00 
GENERATION TIME = 0.031 SECONDS 

 
Result # 2:  
 
    NON-LINEAR PROG. WITH RELAXATION 

**** OBJECTIVE VALUE = 161.4214 
GENERATION TIME = 0.046 SECONDS 

 
Result # 3:  
 
    BINARY LINEAR PROGRAMMING 

**** OBJECTIVE VALUE = 220.00 
GENERATION TIME = 0.035 SECONDS 
 

Result # 4:  
 

    LINEAR PROG. WITH RELAXATION 
**** OBJECTIVE VALUE = 161.4214 
GENERATION TIME = 0.094 SECONDS 
 
It can be seen from the results that the objective value of binary non-linear programming and linear programming are the 

same, but the linear programming is taking more computational time, which is required while linearization. However, with 
LP relaxation, the linear programming with relaxation took a slightly larger computational time. But, the objective value 
results for linear programming with relaxation are better than non-linear programming. One can also notice that the relaxed 
version has more optimal objective value cost, as the sensors are not bound to straddle only between 0 and 1.   
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5 Conclusions 
 
The sensor location problem has been addressed in this paper. Considering [1], the detectability and isolability 

performance are considered for optimal sensor placement. It allows for the determination of the set of sensors that minimizes 
a pre-defined cost function, satisfying at the same time a pre-established set of FDI specifications, for a given set of faults. 
Sets of all possible ARRs have been generated through a set of fuzzy rules, considering all possible candidate sensors 
installed. The optimization techniques of linear and nonlinear programming have been applied, which shows an improved 
cost function, accompanied by a reduction in computational time.  

Nevertheless, there are still some open issues that could be considered for further research. Firstly, the causality constraints 
involved in the structural modeling of dynamic equations are not taken into account. Secondly, faults that change the 
structure of the model are not considered either, only additive faults on measurable variables have been dealt with here. The 
variable values with the relaxation technique show a particular behavior that, if analyzed as per the behavior of the system, 
warrants further study. Fault detectability and isolability constraints have been formulated in this paper, but other 
specifications, such as fault identifiability, fault sensitivity, etc., could be easily included in the optimal sensor placement 
problem. 
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APPENDIX A 

 
(a) Non-linear constraints 

 
q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1 ; 
q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q7>=1 ; 
 
q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1 ; 
q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1 ; 
q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q4*q7*q8>=q4 ; 
q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8>=q5 ; 
q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q7+q5*q7*q8+q4*q7*q8>=q7 ; 
q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q8+q5*q7*q8+q4*q7*q8>=q8 ; 
 
q4*q5*q7*q8+q5*q7*q8>=q4 ; 
q4*q5*q7*q8+q5*q7*q8>=q4 ; 
q4*q5*q7*q8+q4*q7*q8>=q5 ; 
q4*q5*q7*q8+q4*q7*q8>=q5 ; 
q4*q5*q7*q8+q4*q5*q8>=q7 ; 
q4*q5*q7*q8+q4*q5*q8>=q7 ; 
q4*q5*q7*q8+q4*q5*q7>=q8 ; 
q4*q5*q7*q8+q4*q5*q7>=q8 ; 
 
q4*q5*q7*q8+q5*q7*q8>=q4 ; 
q4*q5*q7*q8+q5*q7*q8>=q4 ; 
q4*q5*q7*q8+q4*q7*q8>=q5 ; 
q4*q5*q7*q8+q4*q7*q8>=q5 ; 
q4*q5*q7*q8+q4*q5*q8>=q7 ; 
q4*q5*q7*q8+q4*q5*q8>=q7 ; 
q4*q5*q7*q8+q4*q5*q7>=q8 ; 
q4*q5*q7*q8+q4*q5*q7>=q8 ; 
 
q4*q5*q7+q5*q7*q8>=q4*q8 ; 
q4*q5*q7+q4*q5*q8>=q7*q8 ; 
q4*q5*q7+q4*q7*q8>=q5*q8 ; 
q5*q7*q8+q4*q5*q7>=q4*q8 ; 
q4*q5*q8+q4*q7*q8>=q5*q7 ; 
q4*q5*q8+q5*q7*q8>=q4*q7 ; 
q4*q7*q8+q5*q7*q8>=q4*q5; 
 

 

(b) Linear constraints 

 

 
 
q4+q5<=x1+1 ; 
x1<=q4 ; 
x1<=q5 ; 
q4+q7<=x2+1 ; 
x2<=q4 ; 
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x2<=q7 ; 
q5+q7<=x3+1 ; 
x3<=q5 ; 
x3<=q7 ; 
q4+q8<=x4+1 ; 
x4<=q4 ; 
x4<=q8 ; 
q5+q8<=x5+1 ; 
x5<=q5 ; 
x5<=q8 ; 
q7+q8<=x6+1 ; 
x6<=q7 ; 
x6<=q8 ; 
q4+q5+q7<=x7+1+1 ; 
x7<=q4 ; 
x7<=q5 ; 
x7<=q7 ; 
q4+q5+q8<=x8+1+1 ; 
x8<=q4 ; 
x8<=q5 ; 
x8<=q8 ; 
q4+q7+q8<=x9+1+1 ; 
x9<=q4 ; 
x9<=q7 ; 
x9<=q8 ; 
q5+q7+q8<=x10+1+1 ; 
x10<=q5 ; 
x10<=q7 ; 
x10<=q8 ; 
q4+q5+q7+q8<=x11+1+1+1 ; 
x11<=q4 ; 
x11<=q5 ; 
x11<=q7 ; 
x11<=q8 ; 
 
x11+x7+x8+x10+x9>=1 ; 
x11+x11+x7+x8+x9>=q4 ; 
x11+x11+x7+x8+x10>=q5 ; 
x11+x11+x7+x10+x9>=q7 ; 
x11+x11+x8+x10+x9>=q8 ; 
x11+x10>=q4 ; 
x11+x9 >=q5 ; 
x11+x8 >=q7 ; 
x11+x7>=q8 ; 
x11+x10>=q4 ; 
x11+x9>=q5 ; 
x11+x8>=q7 ; 
x11+x7>=q8 ; 
x7+x10>=x4 ; 
 
x7+x8>=x6 ; 
x7+x9 >=x5 ; 
x10+x7>=x4 ; 
x8+x9>=x3 ; 
x8+x10>=x2 ; 
x9+x10>=x1  
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