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Abstract Due to aging and environmental factors, system corapts may either fail or not function as expectedich causes
unprecedented changes in the quality of the systetimely detection of the onset of a fault in amqmonent is crucial to a quality
monitoring of a process if costly failures are wdvoided. However, finding the source of the failis not trivial in systems with a
large number of components and complex componéatiamships. In this paper, an efficient schemeetect adverse changes in
system reliability and find the failed componentpmposed in order to have an effective procesdityuaonitoring. The
monitoring scheme has been made effective by imgheimg first the techniques of fixed-parameter Sheaty MEWMA and
Hotelling’s T control chart, and then the adaptive versionsheidart Chart, MEWMA and?lcontrol chart for counter-checking
the precision of quality reports. Once detected,ftult isolation scheme uses a Bayesian decisiategy based on the maximum
correlation between the residual and one of a numbleypothesized residual estimates to generédelareport. By doing so, the
critical information about the presence or absefaefault, and its isolation, is gained in a tignelanner, thus making the quality
monitoring system an effective tool for a variefynmaintenance programs, especially of the prevertiipe. The proposed scheme
is evaluated extensively on simulated examples,cemd physical fluid system exemplified by a benahaad laboratory-scale two-
tank system to detect and isolate faults includieigsor, actuator and leakage ones.

K eywords Quality monitoring: Fault detection Adaptive Shewhart chariAdaptive EWMA" Adaptive F chart Benchmarked
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1 Introduction

The problem of monitoring the quality of a plansta@ways been recognized as being of primary inapog and has been the
subject of intense research for quality engineeragnosis of unprecedented changes in system ildjiadnd detection of the
source of the change is essential for removingtyfacbmponents, replacing them with better onestruetiring system
architecture, and thus improving the overall systeliability. However, modern complex systems agecttallenges for systems
engineers to understand and trouble-shoot possyistem problems. Therefore due to the large sysieen the use of efficient
monitoring and fault diagnosis methods become udabbe for complex systems [1].

Measurements are needed to monitor process efficiend equipment condition. Data from a faulty comgnt is composed
of a time series of measurements of all the statlles describing this component.

For example, in the case of a simulated leak,dhk flow is initially set to zero for the first efent of the series, and its value
is gradually increased with time.

A single excursion of a component out of its lim&sot enough to detect safely the presence afilhih the process. An error
is only flagged when a component remains out ohldswduring several consecutive steps.

Monitoring is a continuous real-time task adftermining the conditions in a physical systemcdnsists of recording
information, recognizing changes and detecting abatities in the system’s behavior. The faults ® rbonitored that are
considered here include sensor, actuator and ledladts, and can be classified broadly as eitlaeametric faults or additive
ones. An additive fault manifests itself as an tdeliexogenous signal in the measured data, whdarametric one induces a
variation in the system parameters.

2 Related works

Related studies conducted in this area consigtregtcategories: quality monitoring models, stastprocess control tools and
both univariate and multivariate approaches to tooinig.

2.1 Quality monitoring

Various hydraulic models have been proposed toctiégaks in water distribution systems. Minimizitige difference between
measured and calculated pressure and flow givesallaéion to an inverse problem [2].

Ligget and Chen [3] extended this method to traridlew. These approaches can detect network leakhgodal points only
and require large amounts of data. Liou and TigndgVeloped a time marching algorithm to detectlsarad moderate size
leaks under both steady and transient flow comnulitidn the impulse response method, Liou [5] ineelcross correlations
between low amplitude pseudo random binary dishobanput and systems output. One or more leaksbeadetected and
located by the impulse response method. Mpesh& §-@] applied a frequency response method usirgiep excitation to
detect and locate leaks. Statistical methods ftediieg leakage rates include a variety of appreacuch as: the generalized
likelihood ratio test in Mukherjee and Narasimh&h Etratified random sampling with leak flow gamgiin Arregui’n-Cortes
and Ochoa-Alejo [9], and standard weighted leashrsgp state-estimation in Andersen and Powell. [D®]the leak detection
methods mentioned above, it is noteworthy that onky has actually been tested in the field.

Quality monitoring of production systems includdsservation of the product quality, process quaditd functioning of
machines. Also the reporting can be considered msritoring method. Information about process ctods and quality data
enables the analysis and implementation of proeask quality control mechanisms. In the followingctsmns, a general
framework for monitoring of a real-time closed lopmcess control system is presented.

2.2 Statistical process control tools

The authors of [11] used Multivariate statisticabgess control MSPC to an electrolysis processy Bigo showed that the
univariate analysis gives confusing results witharels to outlier detection, while the multivariajgproach identifies two types
of outliers. The study in [12] describes the depeient of Multivariate Statistical Process ContribISPC) procedures for
monitoring batch processes and demonstrates itiicappn with respect to industrial tylosin bioskesis. In [13], the authors
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analyze multivariate statistical techniques forntifging and isolating abnormal process behavidne§e techniques include
contribution charts and variable reconstructiora tklate to the application of principal componamalysis (PCA). In [14], the
author has implemented different multivariate statal approaches for analyzing wastewater tredtnpeocess data and
compared them with each other. In [15], the mudtite principal component analysis (MSPCA) is usadfdult detection and
diagnosis.

2.3 Multivariate and univariate approaches to quationitoring

Conventional, well-established statistical proaassitoring charts, such as Shewhart, CUSUM (curivdagum) charts [16] are
of a univariate nature. These charts commonly pelynit investigation into the magnitude of the d¢iain of any one variable,
independently of all other variables, at a givemetj often resulting in inaccurate, delayed conohsibeing drawn [17].

Recently multivariate CUSUM and multivariate EWMAahemes [18][19] have been proposed and shown heatgtrmore
powerful than T control chart particularly for small or moderat®gess shifts. In order to increase the power efattiginal
control chart, Grigoryan [20] proposed the multisge multiple sampling (MMS) control chart schemdjch is a multivariate
extension of a double sampling (DS) X chart witheaist two sampling stages. The assumption of MMB® charts is that the
minimum time between successive samples is netgigithe DS X chart was proposed by Daudin [2lihtprove the statistical
efficiency of the X chart without increasing thergding. Daudin’s work has also been successfultgrded to the monitoring of
process variability [22] as well as the joint monihg of process mean and variability [23].

The main contributions of this paper is the intéigraof various fixed and adaptive techniques foalily monitoring and the
Bayesian inference system for fault isolation tbiage both accuracy and reliability of Quality Mtmting Scheme.
This paper is organized as follows: Section 1 gihesintroduction, Section 2 describes comprehehsithe related work done
in quality monitoring. The problem statement foaljty monitoring and fault detection is presentedsection 3. Section 4 gives
the implementation and results of the proposedmehé&ection 5 discusses the criteria to assesg warhing detection and
finally some conclusions are given Section 6.

3 The quality monitoring and fault detection problem statement

Fault is an undesirable factor in any process ocbmdustry. It affects the efficiency of the syst®peration and reduces the
economic benefit to the industry. The early detectind diagnosis of faults in mission critical sys¢é becomes highly crucial
for preventing failure of equipment, loss of protivity and profits, management of assets, reduabioshutdowns.

To have an effective plan for fault detection amalgsis, a quality monitoring approach is emplogaedas to meet the
requirements for a quick and reliable fault detatind isolation scheme and thus ensuring a soualitygmonitoring program.
The proposed scheme has been evaluated on a pamrgssl system. Quality monitoring and fault dei@e are carried out by
jointly interpreting model outputs. The implemeidatplan for the proposed scheme is as shown iar€id. It should be noted
that a fault report is also considered as parhefQuality monitoring of the system. The proposgteme has been evaluated on
a benchmarked laboratory scale two-tank appardtuis. the most used prototype applied in wastewateatment; petro-
chemical, and oil/gas plants. The evaluation ofgfeposed scheme is done by considering the fatigwtructured diagram.

3.1 System description
The benchmarked laboratory-scale process contstesy has been used to collect data. The data hes dmlected at a

sampling time of 50 millisecond. The different datts have been generated for a PI-Controlled viewet control. Different
fault scenarios have also been considered for@hergtion of the data sets.

Set values for variables |F1xEd and Adaptive Univariate Shewhart ‘
Product and material
— Measured variable 1 information, cycle times. ‘leed and Adaptive Multivariate EWA |
- .\ * |F1xed and &daptive Multivariate T-hoteling |
‘ | 10 Model Bank
Data Preprocessing Signal model — I Quality |
Normal condition model
Parameter
imati Fault condition 1 model \‘
1.0 |, ; |
* variable 2 Fault condition 2 model ¥
Fault report
Sensor |
measurements of i -
signal Fault condition N model

Figure 1: Implementation plan for the evaluationtaf proposed scheme
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3.2 Experimental setup

The process Data has been generated through arireptal setup as shown in Figure 2. A two-tankesyshas been used in
order to collect the data with the introductionamftuator and sensor faults through the system mdeaseen in the labview
circuit window. An amplified voltage of 18 volts fidbeen used to handle the controller effectivelytiie changes/fluctuation
produced in the system. So, the fault diagnosis deee here in a closed-loop set-up where the citertris actually trying to
suppress the faults as though they were disturisance

Figure 2 A — The two tank system interfaced wita tlabview through a DA and the amplifier for thagnified voltage , B — The labview setup of the
apparatus including the circuit window and the kldagram of the experiment.

3.3 Process data collection and description

The process data has been collected at 50 millisecgampling time. The main objective of the benatikad dual-tank system

is to reach a reference height of 200 ml of the@sddank. During this process, several faults Haaen introduced such as the
leakage faults, sensor faults and actuator fatilie. leakage faults have been introduced througipithe clogs of the system,

knobs between the first and the second tank, dte.sEnsor faults have been simulated by introdugiggin in the circuit as if

there is a fault in the level sensor of the taniil@rly, the actuator faults have been simulatgdntroducing a gain in the setup
for the actuator that comprises of the motor ansipuA PI controller has been employed in orderetach the desired reference
height. Due to the inclusion of faults, the corlolvas finding it difficult to reach the desirezl/el. For this reason, the power of
the motor has been increased from 5 volts to 1&wolorder to provide it with the maximum throtttereach the desired level.
This enabled the actuator to perform well in acimignits desired level but led to the controller prgssing the faults injected
into the system. So, this made the fault detedi@sk rather difficult. After the data collectiorskawas completed, techniques
such as settling time, steady-state value, andreahe spectra were used to help us get an ingighthe faults present in the
system.

3.4 Model of the coupled tank system

The physical system under evaluation is formedwaf tanks connected by a pipe. The leakage is stedilan the tank by
opening the drain valve. A DC motor-driven pump digs the fluid to the first tank and a PI conteolis used to control the
fluid level in the second tank by maintaining teedl at a specified level, as shown in Fig. 2.

A step input is applied to the dc motor- pump gyste fill the first tank. The opening of the drageavalve faults introduces a
leakage in the tank. Various types of leakage mreduced and the liquid height in the second tahk,and the inflow rateQ ,
are both measured. The National Instruments LABVIgaktkage is employed to collect these data.

A benchmark model of a cascade connection of aatomand a pump relating the input to the motognd the flow,Q , is a
first-order system:
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Q=-3,Q+hay (1)
wherea, and b, are the parameters of the motor-pump systemgnilis a dead-band and saturation type of nonlineartitys
assumed that the leaka@e occurs in tank 1 and is given by:

Q =C,y29H (2

With the inclusion of the leakage, the liquid lesgstem is modeled by:

ATE=Q-Ch(H-H)-Co(H) B

Az%zclzgﬁ(Hl_ Hz)_cdﬁ( Hz) (4)

where ¢(.) = sign(./29(.),Q, = C,¢(H,) is the leakage flow rateQ, = C,¢( H,)is the output flow rateH, is the height of the
liquid in tank 1, H, is the height of the liquid in tank 2 and A, are the cross-sectional areas of the 2 tanks,@sr88sec€ is
the gravitational constanC,, andC, are the discharge coefficient of the inter-tan# antput valves, respectively.

The model of the two-tank fluid control system, whoabove in Fig. 3, is of a second order and idinear with a smooth
square-root type of nonlinearity. For design psgs a linearized model of the fluid system is megland is given below in (5)
and (6):

d
d—?=blq ~(a+a)h+ah(s)

LU
o ceh-(a-Ah ©

whereh and h, are the increments in the nominal (leakage-fregightsH, and HY :
bl:i' 61: Cdb , :8: CO ,a2:a1+ Cdo a= Cdi
A 229 (H) - H?) 2/ 2gH? 2,/2gH? 2/ 2gH?
and the parametar indicates the amount of leakage.
A PI controller, with gainsk and k, , is used to maintain the level of the Tank 2 atdbsired reference input

where q, ,q,, g,,h and h, are the increments iQ, ,Q,,Q,,H,and H?, respectively, the parametees and a, are
associated with linearization whereas the parameteand S are respectively associated with the leakage lamautitput flow

rate, i.e.q, =ah,, q, = 8h,.

e T=N—T—T=T—1=1=1=)

Tank 2 Level Sensor

DC motor

Leakage Knob

|-
3 %Qu

qr
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&

Figure 3. Two-tank model

4 |mplementation and simulation results
4.1 Analysis of fixed and adaptive Shewhart chart

An analysis of the fixed and adaptive shewhart imdrtthart is carried out here and which has beenotighly tested through
extensive simulation runs and also through an ewian on the physical system. As mentioned eanigrious types of leakage
faults were introduced by opening the drainage evawnd the liquid height profiles in the second tavdre subsequently
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analyzed. Also, the actuator and sensor faults aiseintroduced. The univariate adaptive Shewddgdrithm can be described
as follows:

4.2 Adaptive Shewhart algorighm:

Step | Select a number of samplasGreat mean of input variablmight?l, Great mean of input variabﬂmwx_z, Standard
Deviation of heighG,eign, Standard Deviation dfow S;o,,. Which is plotted on a chart.

Step It Determine Upper Control Limit{CL) of the chartJCL=(sum(flow/height,1)/N)+((3*s)/sqrt(N)Y9)
Where s is the standard deviation of the flow/hieggid N is the number of samples.

Adaptive Shewhart Control Chart

Select sample sizes,n, control limits k,ko warning
q limit wy w, and sampling interval

| itl?rl(_)cet_ss Check the process aftby
nitialization.
selct kM > fesew

Check the process aftbg

v

Check the process aftbg
If W<X>UCL or W<X>LCL

v
Continue the Continue the Stop.Fix the
process.Start

with Scheme 1

process with process with

Considering the sample size, sampling
fr n n ntrol limi

Figure 4. Flow Chart for adaptive Shewhart

Step lIt Determine Lower Control LimitL{CL) of the chartUCL=(sum(flow/height,1)/N)-((3*s)/sqrt(N)}10)
Where s is the standard deviation of the flow/hieggid N is the number of samples.

Step IV: Considering the following sampling timedt the cases:
Sampling time_usual=10;

Sampling time_upper control limit=5;

Sampling time_lower control limit=5;

Step V:Now while everything is usual, the usual samplimgetis appliedIf flow/height>UCL, then sampling time=sampling
time_upper control limit,Else sampling time=sampling time_usudl flow/height<LCL then sampling time=sampling
time_lower control limit Elsesampling time=sampling time_usual.

Note: It should be noted that the parameters wihiate been made adaptive here are the sample simglisg frequency and
the UCL/LCL control limits to capture the faulteffively.

A general flow chart for the implementation of théaptive shewhart algorithm is as shown in Fig. 4.

It has been found that both fixed and adaptiveigessperformed well for medium and high levels efkage, sensor and
actuator faults as shown in Table | and Fig. ®&8bfoth flow and height profiles. However, the Shavt scheme was unable to
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detect incipient faults. Also, as there are twdalaes to be measured, so fixed and adaptive vessibshewhart were not found
to be consistent in showing the same results ftr lmput variables to be measured.

Univariate Shewhart Control Chart: 0.25 Leakage Flow Case
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Adaptive Shewhart Control Chart: 0.25 Leakage Flow Case

UCL=0.73288
X=0.73042
LCL=0.72796

v‘ﬁ* % S
M\vﬂwa

1 3 5 7 9 19
Sample

Figure 5 (a)

Univariate Shewhart Control Chart00_8akage Flow Case (b) Adaptive Shewhart Conthalr€ 0.50 Leak

age Flow Case

Sample Mean

Univariate Shewhart Control Chart: 0.25 Leakage Height Case
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4.3 Analysis of fixed and adaptive MEWMA chart

An analysis of fixed and adaptive EWMA control ahar carried out here and which has been thorouggdyed through
extensive simulation runs and also through an ewian on the physical system. As mentioned eanigrious types of leakage
faults were introduced by opening the drainage evadnd the liquid height profiles in the second tavdre subsequently
analyzed. Also, the actuator and sensor faults hsgebeen introduced in this experiment. The waliate EWMA algorithm is

as follows:

4.2.1 Multivariate exponentially weighted movingeeage(MEWMA) algorithm:
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Step | Find z corresponding to each sample value.

2 =A%+(1-1)3 (12)
Where A is the weighting parameter
X is the sample value wiitv1,2,3,....... n
z,= is the sample mean, and
A,0s1<1

Also, T* =z 'Z'lz‘ z where T, determines the auto-correlation.

Step Il: Compute UCL and LCL for each period | of multi-izde.

A
(2-4)

Step lll: UCL=y, - Lo [1-@-A)] (12)

R I R
LCL= - Lo (2_/])[1 @=AY ] (13)

WherelL is the width of control limit,o is the standard deviation.

Centerline =4,

Step 1V:Now while everything is usual, the usual samplimgetis applied!f flow/height>UCL, then sampling time=sampling
time_upper control limit,Else sampling time=sampling time_usudlf flow/height<LCL then sampling time=sampling
time_lower control limit Elsesampling time=sampling time_usual.

Note: It should be noted that the parameters wiiate been made adaptive here are the sample sizglisg frequency and
the UCL/LCL control limits to capture the faulteffively.

It has been found that both fixed and adaptiveioessperformed well for all levels of leakage, sanand actuator faults as
shown in Table Il (Same remark as above and Figew®s. For both input variables to be measuredrékelts are found to be
very reliable. This scheme has the ability to cepthe input-output dynamic behavior, and not theathics resulting from the
effect of noise and other artifacts.

Muttivariate EWMA Control Chart: 0.25 Leakage Case Adaptive EWMA Control Chart : 0.25 Leakage Case
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Figure 9 (a) Multivariate EWMA Control Chart: 0.28akage Fault Case (b) Adaptive EWMA Control Chau25 Leakage Fault Case

Mutivariate EWMA Chart : 0.25 Sensor Faulk Adaptive EWMA Control Chart : 0.25 Sensor Fault
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Figure 10 (a) Multivariate EWMA Control Chart: 0.8gnsor Fault Case (b) Adaptive EWMA Control Ch@u25 Sensor Fault Case
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Mutivariate EWMA Control Chart : 0.25 Actuator Fautt Adaptive EWMA Control Chart : 0.25 Actuator Fault
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Figure 11 (a) Multivariate EWMA Control Chart: 0.2&tuator Fault Case (b) Adaptive EWMA Control @h8.25 Actuator Fault Case

4.4 Analysis of fixed and adaptive Thart

Here the analysis of fixed and adaptiecontrol chart is carried out and thoroughly testedugh extensive simulation runs and
an also through an evaluation on the physical sysfes mentioned earlier, various types of leakagdt$ were introduced by
opening the drainage valve and the liquid heigbfiles in the second tank were subsequently andlyatso, the actuator and
sensor faults are being introduced.

4.4.1 Multivariate T Hotelling algorithm:

Adaptive T Hotelling Control Chart

Select sample sizes n1,n2 control limits k1,k2

A 4

Process Check the process aftbil

Initialization.
S R *

Check the process afthil

Check the process aftlil

v
Continue the Continue the R
. ) process.Stal
process with process with with Scheme 1

Considering the sample size, sampling

Figure 12. Flow Chart for adaptivé Algorithm

Step 1 Select a number of samplasGreat mean of input variabheightz, Great mean of input variablb)wx_z, Square of
Standard Deviation of heigtﬁzheight, Standard Deviation olow S%,,. And Standard Deviation of botheight and flow as
Siowheight The test statistics is given by:

T2 =n(X - X)' S’ (X~ X (14)
And is plotted on the chart (Fig 10-12)
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p(m-1)(n-1)
————F 15
mn—- m- pt+l apm Pt (15)

wherep is the quality characteristics for tHew andheight,

m are the number of samples takenffow andheight,

nis the sample size i.e. 2 as we have two inputistes i.eflow adheight
F is the degree of freedom.

a,p,mn-m- prl
Step IlI: Select LCL=0
Step IV:
Considering the following sampling time for all tbases:
Sampling time_usual=10;
Sampling time_upper control limit=5;
Sampling time_lower control limit=5;

Step It SelectUCL =

Step V:Now while everything is usual, the usual samplimgetis appliedIf flow/height>UCL, then sampling time=sampling
time_upper control limit,Else sampling time=sampling time_usudl flow/height<LCL then sampling time=sampling
time_lower control limit Elsesampling time=sampling time_usual.

Note: It should be noted that the things which hbgen made adaptive here are the sample size, sanfpdquency and the
UCL/LCL=0 control limits to capture the fault eftaely.

A general flow chart for the implementation of theéaptive T algorithm is shown in Fig. 12.

It has been found that both fixed and adaptiveioessperformed well for all levels of leakage, senand actuator faults as
shown in Table Ill and Figures 13-15. For both inpariables to be measured, the results are foartktvery reliable. This

scheme has the ability to capture the input-outiyaaimic behavior, and the dynamics resulting froendffect of noise and other
artifacts.

Mutivariate Hoteling's T- square Chart: 0.25 Leakage Case Adaptive T - Squared Control Chart: 0.25 Leakage Case

504

404

30 504

Tsquared
2
3

20

T- squared

UCL=19.51

A :
)]
20
104
104 UCL=12.67
o Median=1.44 o Median=1.30
1 3 5 7 5§ 1 B 15 17 1 1 23 456 7 86 1010 12131415

Sample Sample

Figure 13 (a) Multivariatd> Control Chart: 0.25 Leakage Fault Case (b) AM Control Chart: 0.25 Leakage Fault Case

Multivariate Hoteling's T - Square Chart : 0.25 Actuator Fault Adaptive T - Squared Control Chart : 0.25 Actuator Fault

80

o 40

60

30
- 50
g B
S 404 5
g & 204
~ 304 o A
Lr 4 15} UCL=14.13
20 /\ V
v 7\ UCL=14.47 & U
* \f\.—o\/J ¢
0 Median=1.38 ol Median=1.38
1 &4 7 0 13 16 19 22 25 28 31 1 5 5 5 0 21 25 2 3 37 4
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Figure 14 (a) Multivariatd> Control Chart: 0.25 Actuator Fault Case (b) AdapT> Control Chart: 0.25 Actuator Fault Case

Multivariate Hoteling's T - Square Chart : 0.25 Sensor Fault Adaptive T - Square Control Chart : 0.25 Sensor Fault
80
704 40
60
304
50 =
B o
§ 404 ]
g 5@, UCL=18.11
= 304 - -18.
20 101
UCL=14.52
104
o Median=1.35 o Median=1.43
1 3 s 7 s 1 1B 15 1 1 35 5 7 5 1 13 15 17 19 21 2
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Figure 15 (a) Multivariatd? Control Chart; 0.25 Actuator Fault Case (b) AdapT? Control Chart: 0.25 Actuator Fault Case
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4.5 Analysis of Bayesian inference system for fdeliection

A statistical decision-theoretic approach was usedecide between two hypotheses. If the absolateevof the mean of the
residual is less than a specified threshold vathe, then a fault is asserted. The threshold valuealsulated from the pre-
specified false alarm rate, and the variance ofak&lual.

The approach, employed here is based on a isolatael, which relates directly the detection parnangeto the input and
output, and which is identified offline by perfomgi a number of experiments. The detection modating the reference input,

r, the detection parametey,and the residu&(k) , is given by:

q 16
e(k) = Wk- )7(|§:Z¢T(k‘1ﬂ(l)AVi+V(Bi 4o

where, Ay, = y— ) is the perturbation iny; y°(k)and ) are the fault-free (nominal) output and paramegmpectively,

aﬂ):ﬁ, and ¢ is the data vector formed of the past outputs past reference inputs. The gradiéft, is estimated by

o

performing a number of offline experiments whiclmsigt of perturbing the detection parameters, @retime. The input-output
data from all the perturbed parameter experimertisein used to identify the gradier]S . The hypothesisH, corresponding to
the perturbation of th&idetection parameter is given by:

Hi: ek =¢" (k-Dg%y + UK 7
If v (K) is a zero-mean Gaussian random variable, theBdlyes strategy suggests that mhest likelyhypothesisti, is the one
that satisfies,

j=arg rrlnn{” e k)¢ k- 19%0y "2} (18)

Since the size of the fault, denoted by the pedatimhay, (k), is unknown, a composite hypothesis testing schisnused in
which we substitute the unknowhy, (k) by its least-squares estimate. Substituting thienate of Ay, (k) and simplifying the
fault isolation strategy yields:

. (eyw'g®y (19
j =arg r’ri1a>{ coé¢i} where cog :||e|||ii/l/—T9(”||
That is, y, is asserted to be faulty if the measured resjdaf), and its hypothesized residual estimaté,(k-1)8" are
maximally aligned. A measure of isolability of feaiin ), and y, , is defined by the cosine of the angle betwé&Ehand 6,
denoted bycosg™ . The smallecosg” is, the larger the isolability gets.
The detection model of the fluid system becomes:

3 20
(k) =247 (k=06"Ay + (K €0

wherey™ () =[-y(k-1) - y(k-2) uk-1) uk 2],

W=V Vo= andy, =y,

A number of experiments are performed offline byyirag the detection parameters, one at a time. B&c¢he y parameters
was varied one at a time, spanning three diffevahtes of 0.25, 0.5 and 0.75 of their maximum, frath these experiments, the
gradientsg™ were estimated:

11
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-0.2491 0.0042
| 0.2456 -0.0024
I= 1.0678 2.6411

-1.6474 -2.1772

S

oo = [6’,“’ am g

The measure of isolabilitgosg” is given below:
cost¥ = 0.856(cosg) = 0.837¢, cosd? = 0.7757 (22)

Using the composite hypothesis testing scheme,ull f& isolated by determining which hypothesis egivthe maximal
alignment of the estimated and the measured rdsidliae results of the isolation scheme were eragpng.

5 Discussion on criteriato assess early war ning detection

Online monitoring of alerting-system performanceg(etrue alarm and false alarm rates) based amadgstem (e.g. through
estimating true alarm rates) depends on a numbparaimeters including, sensor accuracy, monitajperation of instruments,
thresholds, and human responses to an alert, KU&4dr An early warning detection system algorithsndesirable. The
following three criteria could be used to assessdfficacy of an early warning detection systenoetgm: (1) the probability of
detection, (2) the probability of false alarm, gBYithe alarm time (i.e., time to detect a change).

Measurements involving errors can occasionally pcue to faults arising in the process. In particuh system may fail to
alert when necessary (which is termed a missedtilet¢ or may issue an alert when one is not neédbdth is termed a false
alarm). Although both types of errors are undesirathey cannot be eliminated simultaneously. Ratekeme compromise
between false alarms and missed detections is rtiadegh a judicious choice of the alerting thredhdfor example, a
conservative threshold results in an increase ity ederts, reducing the probability of missed a#itens, but increasing the
probability of false alarms. If the threshold isjumied to compensate, through a delay in issuiegatlert signal until more
information about the hazard becomes availablefalse alarm rate will decrease, but the misseddtiein rate will increase. A
standard is fixed that provides the probabilitydetection at a determined minimum alarm level drelfalse alarm rate at a
minimum alarm level. Performance standards fortfdetectors often include requirements for the phility of a false alarm at
a specified level of statistical confidence. Ona choose a higher probability of detection, buhwéthigher false alarm rate, or
choose a lower probability of detection and lovadsé alarm rate. Thus, the user is able to traflpesformance with detection
probability, false alarm rate and cost.

In industrial management, a false alarm could reférer to an alarm with little informative contehat can usually be safely
detected or eliminated, or is triggered by a fairistrument. In signal detection theory, a falsaral occurs where a non-target
event exceeds the detection threshold. Signal-iserratio is a measure used to quantify how muetlsitinal has been disturbed
or corrupted by noise. In quality control systemsy types of inspection errors are associated wiing the control charts.
These are Type | and Type |l errors. Type | ersahi result of concluding that the process isofwgentrol, based on the actual
data plotted on the chart, when it is actually amicol, thus signaling a false alarm. While the &yip error is the result of
concluding that the process is in-control, basedhenactual data plotted on the chart, when theqe® is out-of-control thus
signaling a missed detection. The probability op&y error is denoted hyand the probability of Type Il error is denotedfy

The average run length (ARL) is another measurin@fperformance used to determine the time to tlatebange. It is the
number of samples required to detect an out-ofrobstate. It is measured as the reciprocal ofpttedability of a Type | error
a, ARL = 1/ For a & control chart, ARL = 1/.0026 = 385. This showsttba the average one sample point, out of 385, is
expected to fall outside of the control limits, wihiis indicative of a high reliability of the sysi&s operation.

6 Conclusion

In this paper, the complete process monitoring mehevas studied and it was shown that it can be nefietive by
implementing a variety of techniques, such as ikedfparameter Shewhart, MEWMA Hotellingl$, and the adaptive versions
of Shewhart Chart, MEWMA ant Chart for providing quality reports and ensurinliatee fault detection. Moreover, the fault
isolation report is provided through the use of Bagesian Statistical Inference, thus completirggdhierall diagnostic picture of
quality monitoring.

Two general approaches for the application of adrtharts were tested: fixed-, and variable-sangpiimierval approaches.
When an adaptive sampling interval was used, ffe@ontrol Chart became more sensitive to the famoduced into the
system and outperformed EWMA, Hotelling's and thevghart techniques by reacting quicker to shiftthaprocess mean. As
such, they can be used for a reliable detectidnadpient faults, which in turn leads to an efficieand cost-effective preventive
maintenance scheme.
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The major contributions of the paper is the intdgreof various fixed and adaptive techniques foaldy monitoring and the
Bayesian inference system for fault isolation tbi@ee both accuracy and reliability of quality mmning schemes. In future
studies, comparisons with other techniques (asqsegbin Ref. [18-22] would be worth investigatidgcomparative study on

various early warning fault detection criteria wbalso be an interesting area for further research.
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TABLE I.
TABLE Il ANALYSIS OF VARIOUS LEVELS OFLEAKAGE FAULTS, SENSORFAULTS AND ACTUATOR FAULTS WITHFIXED AND ADAPTIVE SHEWHART CONTROL CHART
Univariate Shewhart Control Chart
Process Parameters
Fixed Parameters Variable Parameters
Flow Variable Height Variable Flow Variable Height Variable Impr?;;fjmem
Cases Subcase | Sample | Sampling | Coentrol | Sample | Sampling | Ceatrol | @y | 8y | by | by k Iy wp [wy |m (| By hy [k ks w | Wy Error
size n Freg. h limitsk | sizen Freq. b limits k detection
Case I Subcase); 4 1.2 3.45 4 12 345 419 [ 12|10 | 345|341 |27 [27 |4 [ 8 [12 )11 (3453402726 0%
Subcazern 4 1.1 3.45 4 1.1 345 4 16 (1110|345 28 |28 |24 |4 [ 6 [1.1 )10 [345 291 |29 |28 3%
FAULTS e, | SUDCASEL 3 12 347 1 12 347 | 4|7 | 12|07 | 347 20 |28 |10 4 |7 |12] 06| 347 27 311 0%
Case II: | Subcasex 4 13 345 4 13 345 | 4 [ 8 |13 |11 |345] 32 (2726 4 |8 [13]10 345 32 [27]27 35%
Subcasen 3 12 344 1 [ 34 [ 46 12|10 344 33 (2023 [ 4 |6 [12]10[344] 31 |28 24 1%
FAULTSe,,,, | Subcases 4 1.1 3.46 4 1.1 346 [ 4 [ 71106346 28 (31204 |6 [11][07[346] 27 [28] 19 6%
Case III: Subcaszes 4 1.1 345 4 11 345 418 | 11|08 |345) 32 28|26 | 4 [ 8 [11 )08 [345] 32 18 | 26 25%
Subcases 4 12 344 4 1.2 344 |46 12|04 344 31 [31[28 [ 4 |6 [12]04|344] 33 |31]23 55%
FAULTS oo | SUDCASES 4 14 346 1 14 346 | 4| 6 | 14|06 | 346 27 |27 | 18] 4 |7 | 14| 06| 346 28 |27 20 7%
TABLE IlI. ANALYSIS OF VARIOUS LEVELS OFLEAKAGE FAULTS, SENSORFAULTS AND ACTUATOR FAULTS WITHFIXED AND ADAPTIVE MEWMA CONTROL CHART
EWMA Control Char
Fixed Paramete Variable Paramete Improvement(%o)
Cases Subcase SampgleSamplin UCL n|nmn|h |h | UCL | UCL | w1 | Wy Error
size r g Freq. | 1 2 detectiol
Case I: Subcasg (smaly 3 1.1 10.44 3 7 1., 0. | 1044 | 10.44| 2.| 2. 3%
1 4 7 3
FAULTS  eakag Subcase (medium) 3 1.2 10.44 3 9 1., 0. | 1044 | 10.44| 2.| 2. 3%
2 6 9 5
e
Subcass; (arge) 3 1.4 8.63 3 6 1.| 0. 8.63 8.63 3.| 2 2%
4 8 1 9
Case Il Subcasg (smaly 3 1.2 10.44 3 8 1., 1. | 1044 | 10.44| 2.| 1. 8 %
2 0 7 7
FAULTSsensor | SUbCas (medium) 3 1.1 10.44 3 6 1.| 0. | 10.44 | 10.44| 2.| 2. 9%
1 7 8 0
Subcass; (arge) 3 1.2 10.44 3 6 1.0 1. | 1044 | 10.44| 2.| 2. 11 %
2 0 8 3
Case lllI: Subcasg (smaly 3 1.3 10.44 3 9 1., 0. | 10.44 | 10.44| 2.| 2. 11 %
3 8 8 1
FAULT Sactuato | SUbCas€ (medium) 3 1.2 10.44 3 6 1., 0. | 1044 | 10.44| 3.| 1. 12 %
2 4 1 9
‘
Subcasg (arge) 3 1.1 10.44 3 7 1., 0. | 1044 | 10.44| 2.| 2. 11 %
1 6 7 0
TABLE IV. ANALYSIS OF VARIOUS LEVELS OFLEAKAGE FAULTS, SENSORFAULTS AND ACTUATOR FAULTS WITHFIXED AND ADAPTIVE T2 CONTROL CHART
T Control Chat
Process Paramet
Subcase Fixed Paramete Variable Paramete Improvement(%)
Cases Subcage Sample| Samplin UCL n|nmn|[h [h |UCL | UCL | wi | wp Error
size r g Freq. | detectiol
Case I Subcase (smaly 3 11 19.51 31 7 1| 0. | 195 | 12.6 2. | 2. 4%
1 4 |1 7 7 |3
FAULTS eakag Subcase; (medium) 3 1.2 13.66 3 9 1| 0. | 136 | 14.6 2. | 2. 2%
e 2 6 | 6 1 9 |7
Subcasg (arge) 3 14 17.6 3| 6| 1| 0. | 176 | 14.8 3. 2 6 %
4 8 116
Case I Subcasg (smaly 3 1.2 14.52 3| 8 1| 1. | 145 | 181 2. | 2. 35%
2 0 |2 1 7 |5
FAULTSsensor | SUbCasgs (medium) 3 1.1 15.5 3 6 1./ 0. | 155 14.1 2. 2. 5%
1 7 8 |5
Subcasg (arge) 3 1.2 13.7 3 6 1.0 1. | 13.7 138 | 2. | 2. 6 %
2 0 1 8 | 4
Case lll: Subcasg smaly 3 1.3 14.47 3] 9 1) 0. |144 141 | 2. |2 1.5 %
3 8 |7 3 8 | 6
FAULT Sactuato | SUbCasg (medium) 3 1.2 15.1 3 6 1.| 0. | 15.1 13.8 3.| 2. 11 %
2 4 112
‘
Subcasg (arge) 3 11 13.8 3| 7| 1] 0. | 138 | 146 2. 1. 11 %
1 6 7 |6
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