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Abstract

In this paper, a distributed estimation algorithm using Bayesian-based forward backward (FB)

Kalman filter (KF) is proposed for stochastic singular linear systems. The method incorporates

generalized versions of KF for bounded cases with complete and incomplete prior information, fol-

lowed by estimation fusion of these cases. The incorporated filters remain optimal given the cross-

covariance of the local estimates. The proposed approach is validated on a coupled tank system.

Keywords: a-priori information, Bayesian, distributed estimation, Kalman filtering, coupled tank

system, stochastic singular linear system.

I. INTRODUCTION

E
STIMATION is one of the precise solution in providing a strict surveillance system for an

appropriate supervision. One of the methods to achieve such sort of estimation often re-

quires a group of distributed sensors which provide information of the local targets. The classic

work of Rao and Durrant-Whyte [1] presents an approach to decentralized Kalman filtering which

accomplishes globally optimal performance in the case where all sensors can communicate with all

other sensors. Other estimation methods can be a sensor-less approach [2,3], or a derivative-free fil-
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tering estimation [4], a least-squares-Kalman technique [5], a robot-based autonomous estimation

and detection [6],H∞ filtering-based estimation made for stochastic incomplete measurements [7],

sequential Bayesian learning based dual estimation method [8], process noise identification-based

particle filter estimation [9], a non-linear operator based estimation [10, 11], quantized measure-

ments-based state estimation [12], FB-KF based estimation in fault diagnosis scheme [13], state

estimation for static networks using weighted filters [14] etc.

One of the methods to achieve such sort of estimation often requires a group of distributed

sensors which provide information of the local targets. This kind of multi-target tracking architec-

ture can be applied to large flexible and smart structures such as condition and health monitoring

of aircrafts, industrial plants, and electrical infrastructures [15]. The problem of such an archi-

tecture utilizing information from multiple sensors employed has been in focus since last many

years [16, 17]. While achieving this approach, many fusion algorithms and filters were derived to

combine local estimates local estimates [18–20] to prove better efficiency and effectiveness. An

obvious drawback to the multiple sensor-based information approaches is that the errors generated

from observations of different sensors have to be uncorrelated. This is due to the reason that the

errors generated by the local sensors are dependent upon a common information to be estimated.

Also, the dynamical model of the local sensors have to be identical [21]. It has been realized for

many years following the original work of [16, 22] that the local estimates have correlated errors.

These errors become complicated when the prior information given to the local sensors have miss-

ing or incomplete information.

In this paper, an approximate distributed estimation is derived for different prior cases [23]

with the help of Bayesian-based FB KF. The estimation is formulated based on a stochastic singu-

lar linear system. To reduce the time complexity, upper bound (ub) and lower bound (lb) methods

are developed on the cases of prior knowledge for time complexity reduction. After estimation, a
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data fusion technique is used to encapsulate the system in a distributed structure. The proposed

scheme is then validated on a bench-marked laboratory scaled coupled tank system, where leakage

fault is introduced along with different profile data for the evaluation of the proposed scheme. An

overview of the scheme validated on the coupled tank system is illustrated in Fig. 1. The proposed

recursive scheme can adaptively estimate the parameters when the measurements are subjected to

leakage fault and loss in prior information in the system. This is achieved by feeding signal estima-

tions from each metering location. The error covariance matrix Pk|k and state estimate α̂k|k from

each state are used as a feedback to all metering locations with a package containing the updated

covariance matrix and state estimate values. This provides a novel and convenient way to enhance

the modal estimations at locations that are isolated by noise and system perturbations. The updated

covariance and state estimate are then computed using a distributed filtering architecture, followed

by controller gain K to control the performance profile of the system.

The rest of this paper is written as follows. Problem formulation is described in Section II.

The Bayesian-based FB KF with complete prior information is derived and discussed in Section

III, followed by derivation of Bayesian-based FB KF with incomplete prior information in Section

IV. Evaluation and testing are outlined in Section V. Finally conclusions are drawn in Section VI.

Notations: In this paper, a widehat over a variable indicates an estimate of the variable e.g. α̂ is an

estimate of α. The ∼ over a variable indicates an optimal value of the variable e.g. K̃ is an optimal

gain of K. The overline over a variable indicates the upper-bound value of the variable e.g. P k|k

is the upper-bound of Pk|k. The underline under a variable indicates the lower-bound value of the

variable e.g. αk|k is the lower-bound of αk|k. When any of these variables becomes a function of

time, the time index k appears as a subscript (e.g. we write αk, Ck, Υk).
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Fig. 1. Proposed distributed estimation scheme

II. PROBLEM FORMULATION

Consider a stochastic singular linear system with multiple sensors representing a coupled tank

system. The aim is to estimate fault αk using the measurement equation, given by the following

discrete-time model for an i-th sensor at time instant k:

Mαk+1 = Φαk +Γωk, k = 0,1 ..., K (1)

Υi
k = Ci

kαk + νik, i= 1,2, ..., l (2)

where the state αk ∈ IRn represent the state (leakage profile, a type of fault), Φ ∈ IRn×r is a modal

matrix of the response, such that it depends on covariates, ωi
k ∈ IRn is the local stochastic process

with zero-mean white Gaussian noise at i-th sensor, such that IE[wk] = 0, where i = 1, 2, ..., l,

l is the number of sensors. M and Γ are the constant matrices with compatible dimensions, Υi
k

∈ IRmi , represent the local measurement observation output of the i-th sensor e.g. the hydraulic
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height profile, νik ∈ IRmi , represent the local measurement noise, superscript mi is the number of

local simultaneous observations made by i-th sensor at time instant k, Ci
k ∈ IRmi×r represents the

local observation matrix perturbed by the fault which is to be estimated. It is assumed that ωk,

νk are zero mean mutually uncorrelated white noises with IE [ωi
k ω

iT

k ] = Qwδ
i
k and IE [νik ν

iT

k ] =

Qνδ
i
k, where IE denotes the mathematical expectation, Qω and Qν are constant symmetric positive

semi-definite matrices, δik is the Kronecker delta used for shifting integer variable for the presence

or absence of noise accordingly. The superscript T stands for the transpose. Observations from

all l number of sensors in the network are integrated synthetically to the master observation output

model Υmaster,k ∈ IRpmaster , subscript master, k represents the global observations gathered from the

local i-th sensors at time instant k, superscript pmaster is the master observation output collected

from number of local i-th sensors. Suppose the master observation matrix, Cmasterk ∈ IRpmaster×r and

the master observation noise vector, vmaster,k ∈ IRpmaster be:

Υmasterk=


Υ1

k

...

Υl
k

 ,Cmasterk=


C1

k

...

C l
k

 ,vmasterk=


v1k
...

vlk

 (3)

where l is the number of sensors. Then the master observation model at k instance is given by:

Υmaster,k = Cmaster,kαk + vmaster,k, (4)

where Υmaster,k is the master observation output vector, Cmaster,k is the master observation matrix,

αk is the state matrix, and vmaster,k is the master observation noise vector. From equation (1) and

(2), it is assumed that the pair (ϕ,Cmaster,k) is observable. In this paper, the following assumptions

are made.

Assumption II.1: M is a singular square matrix where, rankM = n1 < n, rankΦ ≥ n2 and

n1 + n2 = n. The system (1–2) is observable, i.e.,

rank

 zM −Φ

Ck

= n, ∀z ∈ C; rank

 M

Ck

= n (5)
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where C is the set of complex numbers.

Assumption II.2: System (1–2) is regular, i.e., det(zM − Φ) ̸= 0 where z is an arbitrary com-

plex. It should be noted that the estimation problem is considered under the assumption of regu-

larity [det(zM − Φ) ̸= 0] and causality where matrices M and Φ are square and singular.

By letting Θ = inv(M)Φ, and Gwk = inv(M)Γωk, a time-varying linear dynamic model can

be seen as:

αk+1 = Θαk +Gwk (6)

Considering a distributed networked control system, in which agents communicate with each other

over a wired communication channel. Let Zij
k ∈ {0,1} be a Bernoulli random variable, such that

Zij
k = 1 if a packet sent by the agent i is correctly received by the agent j at time k, otherwise Z ij

k

= 0. Since, there is no communication loss within an agent, Zii
k = 1 for all i and k. The dynamic

model can then be expressed as:

αk+1 =
N∑
i=1

Zij
k Θαk +Gωk (7)

By letting Θk = (
∑N

i=1Z
ij
k Θ̄)αk +Gωk, it can be seen that (7) is a time-varying linear dynamic

model:

αk+1 = Θkαk +Gωk (8)

Considering a more general case, where the matrix Θk is time-varying and its values are deter-

mined by Zk. Note Z is a random variable for the non-singular term Φ/M . Hence, Θ is a function

of Zk and this general case can be described as:

αk+1 = Θ(Zk)αk +Gwk (9)

In the following sections, the derivation of KF fusion algorithm with cases of prior information

is presented [24] for an i-th sensor. The Bayesian-based FB KF is expressed as (See Eq. (10–

19)), where the simple Bayesian-based optimal KF is expressed in [25]. It should be noted that
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the derivation of a− priori knowledge proof is inspired by [26], where the estimation fusion is

considered for the BLUE filters only.

ForwardRun:For (k = 0; k < K; +k)

Ri
e,k =Ri

k +Ci
kP

i
k|k−1C

iT

k (10)

K̂k = FkP̂
i
k|k−1C

iT

k (Ci
kP̂

i
k|k−1C

iT

k +Ri−1

e,k ) (11)

eik = (Υi
k −Ci

kα̂
i
k|k−1) (12)

α̂iMAP

k|k = α̂i
k|k−1 + K̂ke

i
k (13)

α̂i
k+1|k = Φkα̂

i
k|k (14)

P̂ i
k+1|k = ΦkP

i
k|k−1Φ

T
k +GkQkG

T
k − K̂kR

i
e,kK̂

T
k (15)

P̂ i
k|k = P̂ i

k|k−1−ΦkK̂kC
i
kP̂

i
k|k−1 (16)

BackwardRun:For (k =K − 1; t≥ 0;−k)

Ĵk−1|K = P̂ i
k−1|KΦ

T
k P̂

i−1

k−1|K (17)

α̂i
k−1|K = α̂i

k−1|k−1+ Ĵk−1(α̂
i
k−1|K − α̂i

k−1|k) (18)

P̂ i
k−1|K = P̂ i

k−1|k−1+ Ĵk−1(Ĵk−1|K − P̂ i
k−1|kJ

T
k−1 (19)

For an i-th sensor, Ri
e,k is the local covariance matrix of estimation error ek, P i

k+1|k is the local pre-

dicted a-priori estimate covariance matrix, α̂i
k|k is the local updated a− posteriori state estimate,

α̂i
k|k−1 is the local predicted a− priori state estimate, and P i

k|k is the local updated a− posteriori

estimate covariance, Kk is the system gain and Fk is the state-transition model for each time-step

k. Qk is the process noise correlation factor such that Qk = IE[wkw
T
k ] =

1
σ2
n
ΓkΓ

T
k . σ2

n is the noise

variance, Γk is the squared matrix for state response. Φk is the state transition model applied to

previous state αk−1. The desired estimate is α̂i
k|K which estimates the state at k instants of time,

such that time sequence K is known.

It should be noted that a smoother is employed here to reduce the noise effect. The smoother
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allowed more accurate estimation of various prior information versions. This is due to its nature of

choosing the most refined covariance error matrix P i
k|k−1 for an i-th sensor from the K-th iteration

in the forward run. Subsequently, that K-instant is considered as the first iteration in the backward

run. Note that it is up to the designers to use smoothing equations. For example, Kalman smoother

for online analysis will give estimates only after the end of the experiment. This may not be ac-

ceptable. In the contrary, getting the estimates after the experiment may not matter for off-line

applications.

III. BAYESIAN-BASED FB KF FUSION WITH COMPLETE PRIOR INFORMATION

In this section, a generalized version of KF is presented with complete prior information.

Complete prior information means both the prior mean and the prior covariance of the estimate are

known. Consider a generalized distributed networked control system (DNCS) dynamic model (9),

where wk is a Gaussian noise with zero mean, and the measurement model (20) where Υk ∈ IRny .

Ck ∈ IRny×Nnx and νk is a Gaussian noise with zero mean and covariance Qk.

Υk = Ckαk + νk (20)

The following theorem III.1 presents the Bayesian-based FB KF with complete prior informa-

tion:

Theorem III.1:

ForwardRun:For (k = 0; k < K; +k)

α̂i
k|k = Φkᾱ

i
k +Kp,k[Υ

i
k −Ci

kα
i
k+1|k − νk] (21)

α̂i
k+1|k = Φkα̂

i
k+1|k +Kkνk (22)

R̂i
e,k =Ri

k +Ci
kP

i
k+1|kC

iT

k +Ci
kC

i
xv +(Ci

kC
i
xv)

T (23)

Kk = (ΦkP
i
k+1|kC

iT

k +GkSk)(C
i
kP

i
k|kC

iT

k +Ri
e,k)

−1 (24)
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P̂ i
k+1|k = ΦkP

i
k+1|kΦ

T
k +GkQkG

T
k −Φk+1|kKkR

i
e,kK

T
k (25)

P̂ i
k|k = ΦkP

i
k+1|kΦ

T
k −KkC

i
kP

i
k+1|k (26)

BackwardRun:For (k = 0; k < K; +k)

Ĵk−1|K = P̂ i
k−1|KΦ

T
k P̂

i−1

k−1|K (27)

α̂i
k−1|K = α̂i

k−1|k−1 + Ĵk−1(α̂
i
k−1|K − α̂i

k−1|k) (28)

P̂ i
k−1|K = P̂ i

k−1|k−1 + Ĵk−1(Ĵk−1|K − P̂ i
k−1|k)J

T
k−1 (29)

where Eq. (21–29) represents the Bayesian-based FB KF with complete prior information. Also

Si
k is the covariance of Υ̃i

k for an i-th sensor. The error covariance and the gain matrices have the

following alternative forms (See Eq. (30–31)):

Pk = (I −KkC
i
k)P

i
k+1|k+1(I −KkC

i
k)

T
+KkR

i
e,kK

T
k − (I −KkC

i
k)GkSkK

T
k

− ((I −KkC
i
k)GkSkK

T
k )

T (30)

Kk = (ΦkP
i
k+1|kC

iT

k +GkSk)(R
i
e,k +Ci

kP
i
k|kGkSk)

−1 (31)

where Bk is the control-input model.

Proof: This is proved in the Appendix.

A. Modified Filter with Complete Prior Information

Based on general DNCS dynamic model (9), where Zk is independent from Zt for t ̸= k, an

optimal linear filter is derived. The following terms are defined to describe the modified Bayesian-

based FB KF.

α̂i
k|k = IE[αi

k|Υi
k]

P i
k|k = IE[ekeTk |Υi

k]

α̂i
k+1|k = IE[αi

k+1|Υi
k]

9



P i
k+1|k = IE[eik+1|ke

iT

k+1|k|Υi
k]

Jk−1|T = IE[Jk−1|T |P i
k|k]

α̂i
k−1|T = IE[ek−1|T |Υi

k]

P i
k−1|T = IE[ek−1|T e

T
k−1|T |Υi

k] (32)

where Υi
k = {Υi

t : 0≤ t≤ k}, ek|k = αi
k − α̂i

k|k, and eik+1|k = αi
k+1 − α̂i

k+1|k.

Suppose there are estimates α̂i
k|k and P i

k|k from time k. At time k + 1, a new measurement

Υi
k+1 is received and the goal is to estimate α̂i

k+1|k+1 and P i
k+1|k+1 from α̂i

k|k, P i
k|k and Υi

k+1. First,

α̂i
k+1|k and P i

k+1|k are computed as:

α̂i
k+1|k = IE[αi

k+1|Υi
k]

= IE[AZα
i
k +Gkω

i
k|Υi

k]

= Âzα̂
i
k|k (33)

where Âz =
∑

z ∈Z pzA
i
z is the expected value of AZ . Here pz = P (Z = z), and Z is a set of all

possible communication link configurations.

The prediction covariance can be computed for an i-th sensor as:

P i
k+1|k = IE[eik+1|ke

iT

k+1|k|Υi
k]

= GkQkG
T
k +

∑
z ∈Z

pzAzP
i
k|kA

T
z

− KkR
i
e,kK

T
k +

∑
z ∈Z

pzAzα̂
i
k|kα̂

iT

k|k(Az − ÂZ)
T (34)

Given α̂i
k+1|k and P i

k+1|k, α̂i
k+1|k+1 and P i

k+1|k+1 are computed as in the standard KF:

α̂i
k+1|k+1 = Φkα̂

i
k+1|k +Kk+1(Υk+1 −Ci

kα̂
i
k+1|k)− νik (35)

P i
k+1|k+1 = ΦkP

i
k+1|kΦ

T
k −Φk|k−1Kk+1C

i
kP

i
k+1|k (36)

where Kk+1 = (ΦP i
k+1|kC

iT

k +GkSk)(C
i
kP

i
k|kC

iT

k +Ri
e,k)

−1.
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B. Approximating the Filter for Complete Prior Information

The modified KF proposed in Section III.A for the general DNCS is an optimal linear filter, but

the time complexity of the algorithm can be exponential in N since the size of Z is O(2N(N−1)) in

the worst case, i.e., when all agents communicate with each other. In this section, two approximate

KF methods are described for the general DNCS dynamic model (6), which are more computation-

ally efficient than the modified KF by avoiding the enumeration over Z. For an i-th sensor, since

the computation of P i
k+1|k is the only time-consuming process, two filtering methods are proposed

which can bound P i
k+1|k. The notation Az ≥ 0 is used if Az is a positive semi-definite matrix and

Az > 0 if Az is a positive definite matrix.

1) lb-KF: Complete Prior Information Case : The lower-bound KF (lb-KF) for an i-th sensor

is the same as the modified KF described in Section III.A, except P i
k+1|k is approximated by P i

k+1|k

and P i
k|k by P i

k|k. The covariances are updated as (See Eq. (37–38)):

P i
k+1|k = ÂzP

i
k|kÂ

T
z +GkQkG

T
k −Kp,kR

i
e,kKp,k (37)

P i
k+1|k+1 = ΦkP

i
k+1|k −Φk|k−1Kk+1C

i
kP

i
k+1|k (38)

where Âz is the expected value of Az and Kk+1 = Φk+1|kP
i
k+1|kC

iT

k (Ci
kP

i
k+1|kC

iT

k +Ri
e,k)

−1.

Notice that Âz can be computed in advance and the lb-KF avoids the enumeration over Z.

Lemma III.1: If P i
k|k ≤ P i

k|k, then P i
k+1|k ≤ P i

k+1|k.

Proof: This is proved in the Appendix.

Lemma III.2: If P i
k+1|k ≤ P i

k+1|k, then P i
k+1|k+1 ≤ P i

k+1|k+1.

Proof: This is proved in the Appendix

Remark III.1: Finally, using Lemma III.1, Lemma III.2, and the induction hypothesis, the

following theorem showing that the lb-KF maintains the state error covariance, which is upper-

bounded by the state error covariance of the modified KF can be obtained.
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Theorem III.2: If the lb-KF starts with an initial covariance P i
0|0, such that P i

0|0 ≤ P i
0|0, then

P i
k|k ≤ P i

k|k for all k ≥ 0.

2) ub-KF: Complete Prior Information Case : Similar to the lb-KF, the upper-bound KF (ub-KF)

approximates P i
k+1|k by P

i

k+1|k and P i
k|k by P

i

k|k. Let λmax = λmax(P
i

k|k) + λmax(α̂
i
k|kα̂

iT

k|k), where

λmax(S) denotes the maximum eigenvalue of S. The covariances are updated as following (See

Eqn. (39–40)):

P
i

k+1|k = λmaxIE[AzA
T
z ]−KpR

i

e,kK
T

p − Âzα
i
k|kα

iT

k|kÂ
T
z +GkQkG

T
k (39)

P
i

k+1|k+1 = ΦP
i

k+1|k −ΦKk+1C
i
kP

i

k+1|k (40)

where Âz is the expected value of Θz and Kk+1 = (ΦP k+1|kC
iT

k +GkSk)(C
i
kP

i

k+1|kC
iT

k +Ri
e,k)

−1.

In the ub-KF, IE[AzA
T
z ] can be computed in advance but computation of λmax is required at each

step of the algorithm. However, if the size of Z is large, it is more efficient than the modified KF1.

Lemma III.3: If for an i-th sensor, P
i

k|k ≥ P i
k|k, then P

i

k+1|k ≥ P i
k+1|k.

Proof: This is proved in the Appendix.

Remark III.2: Using Lemma III.3, Lemma III.2, and the induction hypothesis, the following

theorem is obtained. The ub-KF maintains the state error covariance which is lower-bounded by

the state error covariance of the modified KF.

Theorem III.3: If for an i-th sensor, the ub-KF starts with an initial covariance P
i

0|0, such that

P
i

0|0 ≥ P i
0|0, then P

i

k|k ≥ P i
k|k for all k ≥ 0.

3) Convergence : Theorem III.4 shows a simple condition when the state error covariance is un-

bounded.

Theorem III.4: If (IE[Az]
T , IE[Az]

TCiT

k ) is not stabilizable, or equivalently, (IE[Az],C
i
kIE[Az])

is not detectable, then there exists an initial covariance P i
0|0 such that P i

k|k diverges as k→∞.

Proof: This is proved in the Appendix.
1 It should be noted that the computation of λmax requires a polynomial number of operations in N while the size of Z can be

exponential in N .
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IV. BAYESIAN-BASED FB KF FUSION WITH INCOMPLETE PRIOR INFORMATION

In practice, prior information of some but not all the components of ᾱ are available. For

example, when tracking the positioning of a vehicle it is easy to determine the prior position vector

of the vehicle (it must be within a certain position range) with certain covariance, but not the

velocity of the vehicle, i.e. at what speed it is traveling. Such an incomplete prior problem is

addressed in this section using Bayesian-based FB KF. Theorem IV.1 presents the Bayesian-based

FB KF with incomplete prior information for an i-th sensor:

Theorem IV.1:

ForwardRun:For (k = 0; k < K; +k)

α̂i
k|k = V KkV

T ᾱi
k|k +V Kk[Υ

i
k − ν̄] (41)

α̂i
k+1|k = V KkV

T α̂i
k+1|k +V KkΥ

i
k −V KkV

T (42)

P̂ i
k|k =KkC

i
kP

i
k|k−1 (43)

Kk = Ci+

k [I −P i
k|k−1((I −Ci

kC
iT

k )(P i
k|k−1)(I −Ci

kC
iT

k ))+] (44)

K̃ =K +BT (I −Ci
kC

iT

k ) (45)

P i
k+1|k =Gi

kQ
i
kG

iT

k −KkR
i
e,kK

T
k (46)

BackwardRun:For (k = 0; k < K; +k)

Ĵk−1|K = P̂ i
k−1|KΦ

T
k (P̂

i
k−1|K)

−1 (47)

α̂i
k−1|K = α̂i

k−1|k−1+ Ĵk−1(α̂
i
k−1|K − α̂i

k−1|k) (48)

P̂ i
k−1|K = P̂ i

k−1|k−1+ Ĵk−1(Ĵk−1|K − P̂ i
k−1|k)J

T
k−1 (49)

where Bk is any matric of compatible dimensions satisfying [(P i
k|k−1)

1
2 ]T (I − Ci

kC
i+

k )Bk = 0,

(P i
k|k−1)

1
2 is any square root matrix of P i

k|k−1. The optimal gain matrix K̃ is given uniquely by:

K̃ = K = Ci+

k [I −P i
k|k−1(I −Ci

kC
i+

k )
1
2 ((I −Ci

kC
i+

k )
1
2

T

13



P i
k|k−1(I −Ci

kC
i+

k )
1
2 )−1(I −Ci

kC
i+

k )
1
2

T

] (50)

if and only if [Ci
k, (P

i
k|k−1)

1
2 ] has full row rank, where (I −Ci

kC
i+

k )
1
2 is a full-rank square root of

T . Note that variables are derived according with condition of Ck as full row rank.

Proof: This is proved in the Appendix.

A. Modified KF With Incomplete Prior Information

In this section, the case with incomplete prior information is outlined. The modification of the

KF is focused towards the prediction covariance computing of that case. The prediction covariance

when dealing with incomplete prior information is (See Eq. (51)):

P i
k+1|k = IE[eik+1|ke

iT

k+1|k|Υi
k]

= GkQkG
T
k −KpR

i
e,kK

T
p +

∑
z ∈Z

pzΘzα̂
i
k|kα̂

iT

k|k(Θz − Θ̂)T (51)

And here also, given α̂i
k+1|k and P i

k+1|k, α̂i
k+1|k+1 and P i

k+1|k+1 are computed as in the standard

KF (See Eq. (52–53)).

α̂i
k+1|k+1 = Kk+1[Υ

i
k+1 − ν̄k] (52)

P i
k+1|k+1 = Kk+1C

i
kP

i
k+1 (53)

where Kk+1 = C̃i+

k [I − P̃ i
k+1|k(I − C̃i

kC̃
iT

k )(P i
k+1|k)].

B. Approximating the KF for Incomplete Prior Information

Likewise in Section B, since the computation of P i
k+1|k is the only time-consuming process,

two filtering method is proposed to bound P i
k+1|k. The same notations have been followed as in

Section B.

1) lb-KF: Incomplete Prior Information Case : The lower-bound KF (lb-KF) is the same as

the modified KF described in Section IV.A, except P i
k+1|k is approximated by P i

k+1|k, and P i
k|k by

14



P i
k|k. The covariances are updated as:

P i
k+1|k = GkQkG

T
k −KkR

i
e,kK

T
k (54)

P i
k+1|k+1 = V Kk+1C

i
kP

iT

k+1|kV
T (55)

where Kk+1 = C̃i+

k [I − P̃
i

k+1|k(I − C̃i
kC̃

iT

k )(P̃
i

k+1|k).

Lemma IV.1: If P i
k|k ≼ P i

k|k, then P i
k+1|k ≼ P i

k+1|k.

Proof: This is proved in the Appendix.

2) ub-KF: Incomplete Prior Information Case : Similar to the lb-KF, for an i-th sensor,

the upper-bound KF (ub-KF) approximates P i
k+1|k by P

i

k+1|k and P i
k|k by P

i

k|k. Let λmax =

λmax(P
i

k|k) + λmax(α̂
i
k|kα̂

iT

k|k), where λmax(S) denotes the maximum eigenvalue of S. The co-

variances are updated as following:

P
i

k+1|k = λmaxIE[AzA
T
z ] +KkR

i

e,kK
T

k (56)

P
i

k+1|k+1 = Kk+1C
i
kP

i

k+1|k (57)

where K
i

k+1 = C̃i+

k [I − P̃
i

k+1|k(I − C̃i
kC̃

iT

k )(P̃
i

k+1|k). In the ub-KF, IE[AzA
T
z ] can be computed in

advance but computation of λmax is needed at each step of the algorithm.

Lemma IV.2: If P
i

k|k ≥ P i
k|k, then P

i

k+1|k ≥ P i
k+1|k.

Proof: This is proved in the Appendix.

Using Lemma IV.2, Lemma III.2, and the induction hypothesis, the following theorem is ob-

tained. The ub-KF maintains the state error covariance which is lower-bounded by the state error

covariance of the modified KF.

Theorem IV.2: If the ub-KF starts with an initial covariance P
i

0|0, such that P
i

0|0 ≥ P i
0|0, then

P
i

k|k ≥ P i
k|k for all k ≥ 0.

3) Convergence : The convergence will same as followed in Theorem III.4.
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V. DISTRIBUTED FILTERING FUSION

Define n-dimensional master observation variables as:

Imaster,k =C
T
master,kR

−1
master,kΥmaster,k,

Imaster =C
T
master,kR

−1
master,kCmaster,k (58)

and n-dimensional local observation variables at sensor i as:

Ii,k = CiT

k R
i−1

k Υi
k, Ii = CiT

k R
i−1

k Ci
k (59)

where I stands for information matrix. When the observations are distributed among the sensors,

see Eq. (2), the master information filter can be implemented by collecting all sensor observa-

tions at a central location, or with observation fusion. This is achieved by realizing that master

observation variables in (58) as [27]:

Imaster,k =
l∑

i=1

Ii,k, k ≥ 0, Imaster =
l∑

i=1

Ii (60)

Considering the same domain and ignoring the risk of introducing additional process errors

during the domain transformation, let Pmaster,k|k be the updated a− posteriori estimate covariance

matrix and Pmaster,k|k−1 be the predicted a− priori estimate covariance matrix collected from the

master filter at k-th time instant. Also, Pmaster,0|0 is the initial error covariance for the master filter.

Then the master filtering measurement updates can be given by this alternate information form

(See proof [28]):

P−1
master,k|kα̂master,k|k = P−1

master,k|k−1α̂master,k|k−1 +CT
masterR

−1
masterΥmaster,k

P−1
master,k|k = P−1

master,k|k−1 +CT
masterR

−1
masterCmaster (61)

1) Convergence of the Distributed fusion : The master error covariance matrix and the estimate

are given in terms of the local covariances and estimates by

P−1
master,k|k = P−1

master,k|k−1 +
l∑

i=1

(P i−1

k|k−1 −P i−1

k|k )
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P−1
master,k|kα̂master,k|k = P−1

master,k|k−1α̂master,k|k−1 +
N∑
i=1

(P i−1

k|k α̂
i
k|k

−P i−1

k|k−1α̂
i
k|k−1) (62)

Proof: Proof follows by noting that the master estimate is given by:

P−1
master,k|kα̂master,k|k = P−1

master,k|k−1α̂master,k|k−1 +CT
masterR

−1
masterΥmaster,k

P−1
master,k|k = P−1

master,k|k−1 +CT
masterR

−1
masterCmaster (63)

Since Rmaster is block diagonal, the terms CT
masterR

−1
masterΥmaster,k and CT

masterR
−1
masterCmaster are decom-

posed into the sums

CT
masterR

−1
masterΥmaster,k =

N∑
i=1

CiTRi−1

Υi
k

CT
masterR

−1
masterCmaster =

N∑
i=1

CiTRi−1

Ci (64)

Noting for the i-th sensor, the estimate and the error covariance are given by

P i−1

k|k α̂
i
k|k = P i−1

k|k−1α̂
i
k|k−1+CiTRi−1

Υi
k

P−1
master,k|k = P−1

master,k|k−1+CiTRi−1

Ci (65)

VI. EVALUATION AND TESTING

The evaluation and testing are conducted using a coupled tank system at Control Systems

Laboratory, Systems Engineering Department, King Fahd University of Petroleum and Minerals

(KFUPM).

A. Experimental Setup and Process Data Collection

The data for the bench-marked laboratory-scale two-tank process control system was collected

at a sampling rate of 50 milliseconds. Process data was generated through an experimental setup as
17



shown in Fig. 2. The prime objective of the bench-marked dual-tank system is to reach a reference

height of 200 ml of the second tank. During this process, several faults were generated such as

the leakage faults, sensor faults and actuator faults. Leakage faults were introduced through the

pipe clogs of the system, knobs between the first and the second tank, drainage knobs etc. Sensor

faults were applied by introducing a gain in the circuit to imitate a fault in the level sensor of the

tank. Actuator faults were also evaluated using the motor and pump. A Proportional and Integral

(PI) controller was applied in a closed loop configuration to reach the desired height of the second

tank. Due to the inclusion of faults, the controller was finding it difficult to reach the desired level.

For this reason, the power of the motor was increased from a scale of 0 to 5 volts to a scale of 5

to 18 volts in order to provide it with the maximum throttle to reach the desired level. In doing so,

the actuator performed well in achieving its desired level, but it also suppressed the faults of the

system. This made the task of detecting the faults even more difficult. After the collection of data,

techniques such as settling time, steady state value, and coherence spectra can be used to give an

insight of the fault.

In this paper, leakage fault was considered. Hydraulic height and liquid output flow-rate of the

second tank are the inputs while leakage fault level on a discrete scale of 1 to 4 was the considered

output. Data was collected by introducing leakage fault in the closed loop system.

B. Model of the Coupled Tank System

The two tanks of the coupled tank system are joined together by a network of pipe. The

leakage was simulated in the tank by opening the drain valve. A DC motor-driven pump supplied

the fluid to the first tank and a PI controller was used to control the fluid level in the second tank

by maintaining the level to a specific threshold as shown in Fig. 3.

For the model of the coupled tank system [29], a step input was applied to the DC motor-

pump system to fill the first tank. The opening of the drainage valve generated a leakage in the
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Fig. 2. A – The two tank system interfaced with the LABVIEW through a DAQ and the amplifier for the magnified
voltage , B – The LABVIEW setup of the apparatus including the circuit window and the block diagram of the
experiment.

tank. Liquid height in the second tank H2, and the inflow rate Qi of various type of leakage faults

were measured. The National Instruments Labview package was employed to collect these data.

The cascade connection of a DC motor and a pump relating the input to the motor u and the

flow Qi can be expressed as a first-order system:

Q̇i =−amQi + bmϕu (66)

where am and bm are the parameters of the motor-pump system, ϕu is a dead-band and saturation

type of nonlinearity and Q̇i is the rate of change of input flow. It is assumed that the leakage Qℓ
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occurs in tank 1 and is given by:

Qℓ = Cda

√
2gH1 (67)

where Cda is the discharge coefficient of the leakage valve in tank 1, H1 is the liquid height in the

first tank and g = 980 cm/sec2 is the gravitational constant. With the inclusion of the leakage, the

liquid level system is modeled by:

A1Ḣ1 =Qi −Cdbφ(H1−H2)−Cdaφ(H1) (68)

A2Ḣ2 = Cdbφ(H1 −H2)−Cdcφ(H2) (69)

where φ(.) = sign(.)
√
2g(.), Qℓ = Cdaφ (H1) is the leakage flow rate, Q0 = Cdcφ (H2) is the

output flow rate, A1 and A2 are the cross-sectional areas of the two tanks, Cdb and Cdc are the

discharge coefficient of the leakage valve in tank 2 and output valves respectively.

The model of the two-tank fluid control system, shown in Fig. 3, is of a second order and is

nonlinear with a smooth square-root type of nonlinearity. For design purposes, a linearized model

of the fluid system is required and is given below in (70–71):

ḣ1 = b1qi − (a1+ γ)h1+ a1h2 (70)

ḣ2 = a2h1− (a2 − β)h2 (71)

where h1 and h2 are the increments in the nominal (leakage-free) values to heights H0
1 and H0

2 .

Parameters γ and β indicate the amount of leakage and output flow rate respectively, where γ =

Cda

2
√

2gH0
1

and β = Cdc

2
√

2gH0
2

. Also b1 = 1
A1

, a1 = Cdb

2
√

2g(H0
1−H0

2 )
and a2 = a1 +

Cdc

2
√

2gH0
2

.

A PI controller, with gains kp and kI , was used to maintain the level of the tank 2 at the desired

reference input r as:

ẋ3 = e= r−h2

u= kpe+ kIx3
(72)
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where ẋ3 is the rate of change of error, r is the reference height of tank 2 .i.e. 200 ml and h2 is the

height of the tank 2 achieved and u is the control input. The linearized model of the entire system

formed by the motor, pump, and the tanks is given by:

α̇= Φα+Γr Υ= Cα (73)

where

α=


h1

h2

x3

qi

 , Φ =


−a1 − γ a1 0 b1

a2 −a2 − β 0 0

−1 0 0 0

−bmkp 0 bmkI −am

 ,

Γ =
[
0 0 1 bmkp

]T
, C = [1 0 0 0]

(74)

Here qi, qℓ, q0, h1 and h2 are the increments inQi,Qℓ,Q0,H0
1 andH0

2 respectively. The parameters

a1 and a2 are associated with linearization of the liquid level model. Variables γ and β are the

leakage and output flow rate, respectively. Thus, qℓ = γh1 and q0 = βh2.

Remark VI.1: During the implementation process, sign(.) can be approximated with arc tangent.

A relationship for approximation can be expressed as follows:

sign(x) = arctan(
α√

1−α2
), where α < 1 (75)

C. Evaluation Results

Experimental results of the proposed distributed approximate estimation with two cases of

prior knowledge are presented in this section. The experiment were performed on the coupled

tank system [29]. Firstly, the data collected from the plant was initialized and the parameters were

later optimized. This comprised of the pre-processing and normalization of the data. Secondly, a

networked control system with wired communication was developed in a Matlab environment as

shown in the Fig. 1. In the simulation, the performance of the modified KF algorithms developed
21



Fig. 3. Process control system: A lab-scale two-tank system

was studied for types of prior information against the standard Bayesian-based Kalman smoother,

which assumed no communication errors. Subsequently, results demonstrating the effectiveness

of the lb-KF and ub-KF are presented. For each test case, the modified Bayesian-based KF was

compared with the standard Bayesian-KF. The comparisons were shown for various cases. More-

over, the time computation of state estimates was made and the results were shown in Table I and

II respectively.

Remark VI.2: It should be noted here that height sensor in coupled tank setup has been inter-

facted with Labview for the purpose of data fusion as shown in Fig. 2 Moreover, the potency of the

leakage fault i.e small, medium or large is being defined with the help of the leakage knobs facility

between the two tank tanks and drainage as shown in the main diagram of Fig. 2.

1) Leakage Fault: Estimates and Covariance Comparison with Complete and Incomplete prior

Information Cases

The Bayesian-based FB KF was evaluated to address the leakage fault of the plant. Simulations

were made for the α-estimate and the covariance of each case. Comparisons of various levels of

leakage i.e. no, small, and medium intensity of leakage faults, and distributed estimation results

are shown in Fig. (5–12).

For complete prior information situation, it is observed that the covariance (see Fig. 4) and
22



the estimate (see Fig.5) of the distributed structure is clearly performing well as compared to

the other profiles. Similar performance is seen for the covariance and estimate of modified filter

implementation with ub (see Fig. 6 for covariance of ub scheme and see Fig.7 for estimate of ub

scheme) and lb (see Fig.8 for covariance of lb scheme and see Fig.9 for estimate of lb scheme). The

advantage of using the modified upper and lb filters is distinctly illustrated in the time computation

comparison and mean square error (MSE) as discussed in the next Section.

For incomplete prior information scenario, it can be seen for the estimate profile (see Fig.

10) that the distributed structure is clearly performing well as compared to the other profiles. In

addition, the covariance and estimate of the modified filter implementation with ub (see Fig. 11) are

performing equally well for distributed structure. Other estimates shown in Fig. 12 also elaborate

the performance of distributed estimation and estimation of the modified filters. 2

D. Time Computation and MSE

In this section, the time computation and MSE of different methods is discussed. They were

employed for calculating the estimates and covariances of the state with complete prior and incom-

plete prior information. An equal number of 5 iterations were performed for achieving each and

every of the estimate.

For the case of complete prior information (See Table I), the iteration time of the basic

Bayesian-based FB KF is taking the maximum number of time for the computation despite of

its optimal structure as compared to the regular KF. On the other hand, the modified versions of

ub and lb filters are performing well in time computation for the leakage fault. More precisely, the

performance of distributed version and lb and ub are shown in Fig. 13-15, where the performance

of distributed version and modified filters is quiet visible.
2 Fig. 4–12 shows the comparison of estimates and covariance for types of a− priori information cases. In all these figures

x-axis shows the number of observations taken at a sampling rate of 50 milliseconds of time, and y-axis shows the α-estimate
which presents the estimate of a particular state.
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Fig. 4. Comparison of covariance for complete prior information for leakage fault
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Distributed BKF Estimate: Complete Prior
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Fig. 5. Comparison of estimates for complete prior information for leakage fault
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Distributed BKF Covariance: Complete Prior ub
Simple BKF Covariance medium fault: Complete Prior ub
Simple BKF Covariance small fault: Complete Prior ub
Simple BKF Covariance no fault: Complete Prior ub

Fig. 6. Comparison of covariance for complete prior information for leakage fault with ub modified filter
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Distributed BKF Estimate: Complete Prior ub
Simple BKF Estimate medium fault: Complete Prior ub
Simple BKF Estimate small fault: Complete Prior ub
Simple BKF Estimate no fault: Complete Prior ub

Fig. 7. Comparison of estimates for complete prior information for leakage fault with ub modified filter
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Distributed BKF Covariance: Complete Prior lb
Simple BKF Covariance medium fault: Complete Prior lb
Simple BKF Covariance small fault: Complete Prior lb
Simple BKF Covariance no fault: Complete Prior lb

Fig. 8. Comparison of covariance for complete prior information for leakage fault with lb modified filter
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Distributed BKF Estimate: Complete Prior lb
Simple BKF Estimate medium fault: Complete Prior lb
Simple BKF Estimate small fault: Complete Prior lb
Simple BKF Estimate no fault: Complete Prior lb

Fig. 9. Comparison of estimates for complete prior information for leakage fault with lb modified filter
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Distributed BKF Estimate: Incomplete Prior
Simple BKF Estimate medium fault: Incomplete Prior
Simple BKF Estimate small fault: Incomplete Prior
Simple BKF Estimate no fault: Incomplete Prior

Fig. 10. Comparison of estimates for incomplete prior information for leakage fault
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Distributed BKF Estimate: Incomplete Prior
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Fig. 11. Comparison of estimates for incomplete prior information for leakage fault

0 500 1000 1500 2000 2500
−1500

−1000

−500

0

500

1000

Number of Observations

x−
es

tim
at

e

Estimate 2: Estimates of Incomplete Prior Information

 

 
Distributed BKF Estimate: Incomplete Prior
Simple BKF Estimate: Incomplete Prior
Sensor 2: Small Leak Height Profile

Fig. 12. Estimate 2: Comparison of estimates for complete prior information
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TABLE I
CASE I: TIME COMPUTATION COMPARISON FOR COMPLETE PRIOR INFORMATION

Types of Filters Bayesian FB KF Bayesian FB KF with ub Bayesian FB KF with lb

Time computation (sec) 15.707692 12.656498 12.993867

TABLE II
CASE II: TIME COMPUTATION COMPARISON FOR INCOMPLETE PRIOR INFORMATION

Types of Filters Bayesian FB KF Bayesian FB KF with ub Bayesian FB KF with lb

Time computation (sec) 13.451193 12.996375 11.915037

For the case of incomplete prior information (See Table II) the basic Bayesian-based FB KF

is taking comparatively more time as compared to the modified versions of lb and ub filters. The

performance of the modified filters was consistent even with a leakage fault.

VII. CONCLUSIONS

In this paper, a distributed approximate estimation scheme was proposed. It was being devised

using Bayesian-based FB KF for a singular stochastic linear system. Two test cases were consid-

ered for approximate estimation, with 1) complete a−priori information 2) incomplete a−priori

information. The proposed scheme was able to minimize the time complexity with conditions of

showing dependency on a−priori knowledge. Moreover, the performance was enhanced by using

a distributed filtering architecture. The proposed scheme was evaluated on a coupled tank system

using various fault scenarios. It ensured the effectiveness of the approach under different a−priori

knowledge cases.

APPENDIX

A. Proof of Theorem III.1

For an i-th sensor linear estimation of αi
k using data Υi

k with linear model Υi
k = Ci

kα
i
k + νk,

the prior information consists of ᾱi
k and ν̄k, and Ci

αk
= cov(αi

k), Cνk = cov(νk), and Cαi
kνk

=

cov(αi
k, νk). It should be noted that the prior information mean the a− priori information about
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αi
k, that is ᾱi

k, Ci
αk

, and Ci
αk,νk

.

For the dynamic case, as in KF,

α̂i
k|k = IE[αi

k|Υi
k]

T = [ᾱi
k|Υi

k]

= ᾱi
k +Ci

αkΥk
Ci+

Υi
k
(Υi

k − Ῡi
k), ᾱ

i
k = IE[αi

k]

P i
k|k = MSE(α̂i

k/k) = IE[(αi
k − α̂i

k|k)(α
i
k − α̂i

k|k)
T ]

= Cαi
k
−Cαi

kΥ
i
k
C+

Υi
k
CT

αi
kΥ

i
k

where Ci+

Υk
is the Moore-Penrose pseudo-inverse of Ci

Υk
, which equals C−1

Υk
whenever C−1

Υk
exists.

With few exceptions, however, it is unrealistic since its computational burden increases rapidly

with time (method for decreasing time computation complexity is applied in the next section using

modified KF functions of ub and lb.

α̂i
k|k = IE[αi

k|Υi
k]

T = IE[αi
k|Υi

k,Υ
i
k−1]

T = α̂i
k|k−1+KkῩ

i
k|k−1

P i
k|k = MSE(α̂i

k|k) = MSE(α̂i
k|k−1)−KkC

i
kῩ

i
k|k−1K

T
k

where α̃i
k|k−1 = αi

k - α̂i
k|k−1, Kk = Cα̃i

k|k−1
Υ̃i

k|k−1
Ci+

α̃i
k|k−1

, Υ̃i
k|k−1 = Υi

k- IE[Υi
k|Υi

k−1]
T .

Let A = P i
k|k and Φi

k = ζ. Equation (31) follows from the following:

(ζP i
k|kC

iT

k +A)(Ci
k +Ci

kA)
−1

= {ζ[Ci
αk

− (Ci
αk
CiT

k +A)(Ci
kC

i
αk
CiT

k +Ci
k +Ci

kA+(Ci
kA)

T )−1

. (CxC
iT

k +A)T ]CiT

k +A}(Ci
k +CkiA)

−1

= (ζCα +CiT

k +A)[I − (Ci
kCxC

iT

k +Ci
k +Ci

kA+(Ci
kA)

T )−1

. (Ci
kCαC

iT

k +(Ci
kA)

T )](Ci
k +Ci

kA)
−1

= (ζCαC
iT

k +A)(Ci
kCαC

iT

k +Ci
k +Ci

kA+(Ci
kA)

T )−1

. (Ci
k +CkA)(C +CkA)

−1

= (ζCαC
iT

k +A)(CΥ +Ci
kA)

−1
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B. Proof of lemma III.1

Using (34), the following can be achieved

P i
k+1|k −P i

k+1|k = IE[AzP
i
k|kA

T
z ] + IE[Azα̂

i
k|kα̂

T
k|kA

T
z ]

− Θ̂α̂i
k|kα̂

T
k|kÂ

T
z − ÂzP

i
k|kÂ

T
z −KkR

i
e,kKk +KkR

i
e,kKk

= P1 +P2 (76)

where P1 = IE[AzP
i
k|kA

T
z ]−ÂzP

i
k|kÂ

T
z −KkR

i
e,kKk and P2 = IE[Azα̂k|kα̂

T
k|kA

T
z ]−Âzα̂k|kα̂

T
k|kÂ

T
z +

KkR
i
e,kKk.

If P1 ≥ 0 and P2 ≥ 0, then P i
k+1|k −P i

k+1|k ≥ 0

P1 = IE[AzP
i
k|kA

T
z ]− ÂzP

i
k|kÂ

T
z −KkR

i
e,kK

T
k − ÂzP

i
k|kÂ

T
z + ÂzP

i
k|kÂ

T
z

= IE[AzP
i
k|kA

T
z ]− ÂzP

i
k|kÂ

T
z + Âz(P

i
k|k −P i

k|k)Â
T
z −KkR

i
e,kK

T
k (77)

Since P i
k|k is a symmetric matrix, P i

k|k can be decomposed into P i
k|k = U1D1U

T
1 , where U1 is a

unitary matrix and D1 is a diagonal matrix. Hence,

P1 = IE[(AzU1D
1/2
1 )(AzU1D

1/2
1 )T ]− IE[(AzU1D

1/2
1 )]IE[(AzU1D

1/2
1 )]T

+ Âz(P
i
k|k −P i

k|k)Â
T
z −KkR

i
e,kK

T
k

= Cov[(AzU1D
1/2
1 ] + Âz(P

i
k|k −P i

k|k)Â
T
z −KkR

i
e,kKk (78)

where Cov[Ci
k] denotes the covariance matrix of Ci

k. Since a covariance matrix is positive definite

and P i
k|k−P i

k|k ≥ 0 by assumption, P1 ≥ 0. P2 is a covariance matrix since α̂k|kα̂
T
k|k is symmetric,

hence P2 ≥ 0.

C. Proof of lemma III.2

Here, matrix inversion lemma will be used which says that (A+UCV )−1 =A−1−A−1U(C−1+

V A−1U)−1V A−1 where A, U , C and V all denote matrices of the correct size. Applying the ma-

trix inversion lemma to (36), P i
k+1|k+1 = (P i−1

k+1|k+C
iT

k R
i−1

e,k C
i
k)

−1 is obtained. Let P = P i
k+1|k and
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P = P i
k+1|k. Then P ≥ P ⇒ P−1 ≤ P−1. Also, P−1 + CiT

k R
i−1

e,k C
i
k ≤ P−1 + CiT

k R
i−1

e,k C
i
k ⇒ (P−1

+ CiT

k R
i−1

e,k C
i
k)

−1 ≥ (P−1 +CiT

k R
i−1

e,k C
i
k)

−1. Thus,

P i
k+1|k+1 ≥ P i

k+1|k+1 (79)

D. Proof of lemma III.3

Let M = α̂i
k|kα̂

iT

k|k and I be an identity matrix. Then using (34), the following is obtained

P
i

k|k −P i
k|k = λmaxIE[AzA

T
z ]

− IE[AzP
i
k|kA

T
z ]− IE[AzMAT

z ]

− KpR
i
e,kK

T
p +KpR

i

e,kK
T

p

= IE[Az(λmax(P
i

k|k)I −P i
k|k)A

T
z ]

+ IE[Az(λmax(M)I −M)AT
z ]

− KpR
i
e,kK

T
p +KpR

i

e,kK
T

p (80)

Since, P
i

k|k ≥ P i
k|k and λmax(S)I −S ≥ 0 for any symmetric matrix S, P

i

k|k −P i
k|k ≥ 0.

E. Proof of theorem III.4

Let us consider the lb-KF. Let P i
k =P i

k|k. ψ=GkQkG
T
k , Âz = IE[Az], and Φ=−(Ci

kÂzP
i
kÂ

T
z C

iT

k +

Ci
kψC

iT

k +Ri
e,k)

−1(Ckiψ+Ci
kÂzP

i
kΘ̂

T ).

Then based on Riccati difference equation [30], P k+1 can be expressed as:

P i
k+1 = ÂzP

i
kÂ

T
z +ψ−ΦT (Ci

kÂzP
i
kÂ

T
z C

iT

k +Ci
kψC

iT

k +Ri
e,k)F

=(ÂT
z + ÂT

z C
T
k F )

TP i
k(Â

T
z +Â

T
z C

iT

k Φ)+ΦT (Ci
kψC

iT

k +Ri
e,k)Φ+ψC

iT

k Φ

+ ΦTCi
kψ+ψ (81)

Hence, if (ÂT
z + ÂT

z C
iT

k Φ) is not a stability matrix, for some P i
0 ≤ P i

0|0. P
i
k|k diverges as k →

∞. Since the state error covariance of the lb-KF diverges and P i
k|k ≤ P i

k|k for all k ≥ 0 (Theorem
31



III.2), P i
k|k diverges as k → ∞. Here P i

k|k can be ΦkP
i
k+1|kΦ

T
k −KkC

i
kP

i
k+1|k for ‘complete’ prior

case and KkC
i
kP

i
k|k−1 for ‘incomplete’ prior case respectively.

F. Proof of theorem IV.1

By explanation ofBk, the problem can be considered for incomplete prior information withCi
k

andCi
k replaced by the C̃i

k and C̃i
k respectively, where, from the proof of Theorem IV.1, the estimate

is u = V Tαk, where V is an orthogonal matrix. This means that Theorem IV.1 is applicable now

to u. Therefore:

α̂ = V û, P = V MSE(û)V T

The uniqueness result thus follows from Theorem IV.1.

G. Proof of lemma IV.1

Using (51) gets

P i
k+1|k −P i

k+1|k = IE[Azα̂k|kα̂
T
k|kA

T
z ]−Kp,kR

i
e,kK

T
p,k

− Âzα̂k|kα̂
T
k|kÂ

T
z +Kp,kR

i
e,kK

T
p,k

= P1 +P2 (82)

where P1 =−Kp,kR
i
e,kK

T
p,k and P2 = IE[Azα̂k|kα̂

T
k|kA

T
z ]− Âzα̂k|kα̂

T
k|kÂ

T
z −Kp,kR

i
e,kK

T
p,k.

Since P i
k|k is a symmetric matrix, P i

k|k can be decomposed into P i
k|k = U1D1U

T
1 , where U1 is a

unitary matrix and D1 is a diagonal matrix, but here there is no P i
k|k for P1.

H. Proof of lemma IV.2

Let M = α̂i
k|kα̂

T
k|k and I be an identity matrix. Then using (51) gets

P
i

k|k −P i
k|k = IE[Az(λmax(M)I −M)AT

z ] + ÂzMÂT
z +Kp,kR

i

e,kK
T

p,k
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− Kp,kR
i
e,kK

T
p,k +GkQkG

T
k (83)

Since, P
i

k|k ≥ P i
k|k and λmax(S)I −S ≥ 0 for any symmetric matrix S, P

i

k|k −P i
k|k ≥ 0.
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