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Abstract—n recent years, a compelling need has arisen to understand (DN) in section VI, mathematical design in track-to-track f
the effects of distributed information structures on estimation and filter-  gjon in Section VII, Distributed Consensus-Based estiomiti

ing. In this paper, a bibliographical review on Distributed Kalman Filter- - _— . . . . .
ing (DKF) is provided. The paper contains a classification of dferent ap- Section VI, Distributed pamde f'ltermg (DKF) in Seain IX,

proaches and methods involved to DKF. The applications of DKF e also ~ Self-tuning-Based distributed fusion kalman filter in $aetX.
discussed and explained separately. A comparison of diffent approaches Finally some concluding remarks are given in Section XI.
is briefly carried out. Focuses on the contemporary researchre also ad-

dressed with emphasis on the practical application of the ®hniques. An

exhaustive list of publications, linked directly or indirectly to DKF in the Il. DISTRIBUTED KALMAN FILTER METHODS AND THEIR

open literature, is compiled to provide an overall picture d different devel- APPLICATIONS

oping aspects of this area.
Index Terms—Distributed Kalman filtering, Self-tuning distributed fu- A. DKF methods

sion Kalman filter, Distributed particle filtering, Distribu ted consensus- . . .
based estimation, Track-to-track fusion, Distributed netvorks, Multi- DKF can be introduced through different methods promoting

sensor data fusion systems, Distributed out-of-sequence easurements, O an better filtering approach, also considering varioesac

Diffusion-based distributed Kalman filtering. ios. A list of publications in DKF is summarized in Table | and
Table Il. For example, under uncertain observations, ntetho
I. INTRODUCTION which include measurement with a false alarm probabilita as

special case is considered in [1], and randomly variant ehyoa
In hi-tech environment, a strict surveillance unit is reqdi systems with multiple models are considered in [2]. Optimal
for an appropriate supervision. It often utilizes a grouplist  centralized and distributed fusers are algebraicallyvadent in
tributed sensors which provide information of the locadi&ds. this case [3]. Looking at mode estimation in power systems,
Comparing with the centralized Kalman filtering (CKF), wiic 5 tryst-based distributed Kalman filtering approach toeste
can be used in mission critical scenarios, where every BE&l the modes of power systems is presented in [4]. Using stan-
sor is important with its local information, the distribdtision 45rd Kalman filter locally together with a consensus stefrin o
architecture has many advantages. There is no second thoygh o ensure that the local estimates agree are shown in [5].
that in certain scenarios, centralized kalman filter playsea Frequency-domain characterization of the distributedest
jor role, and it involves minimum information loss. A genlerggy's steady-state performance are presented in [96]iofecs
structure for the Distributed Kalman Filter (DKF) can seBn igxtend Kalman filtering to globally optimal Kalman filterifoy
figure (see Fig. 1).  The distributed system architecture, i dynamic systems with finite-time correlated noisesssh
the whole, is very powerful since it allows the design of thg [146]. Distributed Kalman-type processing schemesresse
individual units or components to be much simpler, while ngg|ly make use of the fact that the sensor measurementstdo no
compromising too much on the performance. Additional begnter into the update equation for the estimation error ova
efits include increased robustness to component lossaisete ance matrices, that is, covariance matrices of all sensesic
flexibility in that the components can be reconfigured for manated at each individual sensor site without any furtherdnafe
different tasks and so on. However, the design of such systefdmmunication is presented in [147]. Also, in distributesién
challenges various problems of assumptions, handlingnduskaiman filtering, weighted covariance approach is repoited
the architecture of such systems. Our purpose is to providg183). Distributed Kalman filtering fusion with passive jpat
bibliographic survey on DKF and its architectures, compgs |oss or initiative intermittent communications from locesti-
of distribution, fusion, filtering and estimation. A cla#sa- mators to a fusion center while the process noise does éist,
tion of such an architecture can be seen in the figure (see 'ﬁﬂesented in [157]. For each Kalman update, an infinite num-
2), which shows the vision of filtering and estimation under t her of consensus steps, how restricted to one is presented in
umbrella of DKF.  Therefore, in this paper, we present a bibli197] [198]. For each Kalman update, state estimates aditi
ographic literature survey and technical review of DKF. T&e ally exchanged, are presented in [199]. When only the estisnat
maining part of the paper is organized as follows: Bibliq@ia at each Kalman update over-head are exchanged, the results
review and technical survey of Distributed Kalman filtering,e reported in [200]. Analysis of the number of messages to
and its applications are presented in Section I, diffudiesed exchange between successive updates in a distributed Kalma
DKF in Section llI, followed by Distributed Out-of-Sequenc fijter js documented in [201]. Global optimality of distriteal
Measurements (OOSM) in Section IV, multi-sensor data fusiaiman filtering fusion exactly equal to the correspondiag-c
(MSDF) systems in section V, followed by distributed netsor trajized optimal Kalman filtering fusion, is shown in [2714
_ S _ parallel and distributed state estimation structure issigped
magumﬁr"n\"osu’\g'::éﬁg"ﬁ‘g"’\"A”S};E;ité'2‘:;93;5]'?;:’; ctoms Engineti. in the form of hierarchical estimation structure is spedifie
partr.ne.nt, King Fahd Universityl of Petroleum and Mi)r/1eraIsOPB%x 5067, [292]. A computational procedure to transform a hierarahic
Dhahran 31261Saudi Arabia, e-mail: msmahmoud,mhariskh@kfupm.edu.sdalman filter into a partially decentralized estimatiorusture
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Fig. 1. A general structure of Distributed Kalman Filter

is presented in [293]. Optimal distributed Kalman filter &gs tem is described by:
on apriori determination of measurements is given in [295].
_ _ . Tpt1 = Opxr + vk, k=0,1,.... (1)

Est|mat|on of sparsely connec.ted, Iarge scale systems is re yi=Hizp+whi=1,..,0 )
ported in [20] and am-th order with multiple sensors presen-
tation is shown in [21]. Data-fusion over arbitrary communiwheregy, is a matrix of order x r, zj, vy, € R", HF € RNi*T,
cation networks is shown in [22]. Iterative consensus mai® i , w® € R™:. The process noise, and measurement noise
are provided in [23]. Using bipartite fusion graphs, theuéss w’ are both zero-mean random variables independent of each
of how DKF is performed is the subject of [24]. Local averether temporally butv® and wf may be cross-correlated for
age consensus algorithms for DKF are shown in[25]. Consen# j at the same time instaiit
sus strategies for DKF are reported in [26]. Semi-definite pr To compare performances between the centralized and dis-
gramming based consensus iterations, developed for DI€F, iibuted filtering fusion, the stacked measurement equoao
shown in [27]. Converge speed of consensus strategiesidn giwritten as:
in [28]. Distributed Kalman filtering, with focus on limitgq
the required communication bandwidth, is shown in [1185-Di Yr = Hyop + wk ©)
tributed Kalman-type processing schemes, which provide ORyhere
mal track-to-track fusion results at arbitrarily chosestamts of

time, are developed in [148]. Distributed architectureratk- U = (b eyt Hy = (HY o HEE
to-track fusion for computing the fused estimate from nplsti 1t e
wi = (Wg 4eeeee. , Wy, ) 4)

filters tracking a maneuvering target with the simplified max
imum likelihood estimator, are presented in [213]. Origingyng the covariance of the noise, is given by:

batch form of the Maximum Likelihood (ML) estimator, is de- ‘ ‘

veloped in [214] and modified probabilistic neural netwask i Cov(wy) = R, R, = Cov(wy,), i=1,.....0 (5)

shown in [215]. .
[215] whereR), and R;, are both invertible for all. According to the

Remark II.1: In [157], an/-sensor distributed dynamic sys-standard results of Kalman filtering, the local Kalman fiitey
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Fig. 2. Classification of Distributed Kalman Filter
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at thei-th sensor is expressed as: B. DKF with applications
f(i — ﬁ]i/kggﬁg;‘c’l (6) A list of publications in some application-oriented resdar
. e P iy is summarized in Table 11l and Table IV. As it can be seen,
Thsk = Thyp1 + K (W — HiThpp 1) (7)  a large amount of research has been carried out in the frame-
p}i/k - P]i/kil _ KzinPIi/kq (8) Work of modified filters. Multi-sensor networks are develdpe

) that are amenable to parallel processing in [33]. Then, a two
sensors fusion filter system has been applied in [34], fakbw
where, the covariance of filtering error can be stated as: by federated square root filter in [35]. Fusion filters are de-
Sl s it7icl o veloped for linear time-invariant (LTI) systems with cdated
Prpre =Py + Hy Ry, Hy (10) noises and multi-channel ARMA signals, respectively in][36
with and [37]. Fusion de-convolution estimators for the inputte/h
noise are worked out in [38]-[39]. Distributed Kalman filter
- ‘ ‘ ing for cooperative localization is re-formulated as a pzeter
P = El(@) ) — 2r) (T 1 —7%)"] estimation problem in [100]. DKF techniques for multi-agen
pi — Bl —E)@E —E) localization is dealt with in [101], [104]. Collaborativeqress-
k/k—1 k/k—=1 " k) k=1 T Tk ing of information, and gathering scientific data from sakfi
Similarly, the centralized Kalman filtering with all sensdsta distributed sources is described in [109]. Particle filtaple-

~i )
Th/h—1 = PrTr_1/k-1>

is given by: mentations using Gaussian approximations are documemted i
K, = Isk/kHiltfl (11) [114]. Channel estimation method based on the recent method
ko ology of distributed compressed sensing (DCS) and frequenc
Tk = Thyr—1 + Ki(ye — HiTp p—1) (12) domain Kalman filter is worked out in [151]. Algorithms for
131@/1@ _ ﬁkﬂ%l _I?kaﬁk/k—l (13) distributed Kalman filtt_aring, \(vherg global information qlbo
(14) the state covariances is required in order to compute the est

mates are shown in [174]. The synthesis of a distributed al-
where, the covariance of filtering error can be described as: gorithm to compute weighted least squares estimates with se

5-1 _ p-1 tH—1 sor measurements correlated is presented in [181]. Disiréh
Pjp = Beppa + Hi By Hi (15 2nd efficient computation of linear minimum mean square er-
with ror (MMSE) for the multiuser detection problem is presenied

[186]. A statistical approach for calculating the exact Pap~
5 proximated by well-placed Extended Kalman Filter is présén
Pk = El(Zk/k — Ti) (Tryp—1 — Te)'] in [192]. Distributed object tracking system which emplays
ﬁk/k_l = E[@r/ho1 — %) @a/ot — 7)Y _cluster—based_ Kalman fi!ter_ in a network_ of wireless cameras
is presented in [194]. Distributed recursive mean-squeie e
Itis quite clear when the sensor noises are cross-depertidant (MSE) optimal quantizer-estimator based on the quantized o
1 servations is presented in [206] [207]. Design a commuitinat
H,ﬁﬁ;lHk = ZH}JE?H}; access protocol for wireless sensor networks tailored te co
i=1 verge rapidly to the desired estimate and provides scatalde

Likewise, the centralized filtering and error matrix coulel éx- Performance is presented in [208], [209]. Decentralized ve

plicitly expressed in terms of the local filtering and erroatmi- ~ Sions of the Kalman filter is presented in [210]. Distributed
ces as follows: Kalman filter based on quantized measurement innovations is

presented in [211]. Novel distributed filtering/smoothiag-
proach, flexible to trade-off estimation delay for MSE retiturg,
while enhancing robustness is presented in [216]. In bisted
estimation agents, where a bank of local Kalman filters is em-
bedded into each sensor and diagnosis decision is perfdiyned
Pyi@rm =Py a distributed hypothesis testing consensus method isnieese
. in [228]. State estimation of dynamical stochastic proesss
1 ~1
i Z(Pzi/k@"\};/k _ Plz/kfli“\;c/lcfl) (17) based on severely quantized observations is reported £i,[23
i=1

Tp/k—1 = PrTr_1/k—1,

!
Pk,_/}c:Pk_/i—l_FZ(PI:/k_PIz/k—l) (16)
=1
and

[233]. Scheme for approximate DKF and is based on reaching
an average-consensus is presented in [237]

I . In the multi-sensor random parameter matrices case [1],
Hy Ry, v, = Py uTh e — Prji—12h -1 (18) sometimes, even if the original sensor noises are mutuaily i
In what follows, we are going to deal with the practical sitolm dependent, the sensor noises of the converted system lare sti
in which the local sensors may fail to send their estimatéis¢o cross-correlated. Hence, such multi-sensor system seetns n
fusion center. In this case, the measurement equation abthe satisfying the conditions for the distributed Kalman filibgr fu-
responding centralized multi-sensor system has to be reddifision given in [8]-[9]. It was proved that when the sensor esis
that is, the original multiple individual observations slibbe or the random measurement matrices of the original system ar
stacked as a modified single observation. correlated across sensors, the sensor noises of the hsgs-

Also,
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TABLE |
DISTRIBUTED KALMAN FILTERING (DKF) METHODSI

Distributed Kalman Filtering(DKF) Design Approaches Used References
e Under uncertain observations, including measurementavith

false alarm probability as a special case [1]
e Under uncertain observations, randomly variant dynanmstesys

with multiple models [2]
e Optimal centralized and distributed fusers are algebiigica

equivalent in this case [3]
e Power systems: mode estimation. A trust-based distribkigdahan

filtering approach to estimate the modes of power systems [4]
e Using Standard Kalman filter locally, together with a

consensus step in order to ensure that the local estimates ag [5]
e Frequency-domain characterization of the distributed

estimator’s steady-state performance [96]
e Extend Kalman filtering to globally optimal Kalman filtering

for the dynamic systems with finite-time correlated noises [146]

e Distributed Kalman-type processing scheme essentially
makes use of the fact that the sensor measurements do noirgote
the update equation for the estimation error covarianceicest

i.e. covariance matrices of all sensors calculated at ewtitidual
sensor site without any further need of communication [147]
e In Distributed fusion Kalman filtering, weighted covari@mpproach [153]
e Distributed Kalman filtering fusion with passive packetdos

or initiative intermittent communications from local esttors to a fusion

center while the process noise does exist [157]
e For each Kalman update, an infinite number of consensus steps

to restricted to one [197][198]
e For each Kalman update, state estimates are additionalhaeged [199]
e Only the estimates at each Kalman update over-head areregetha [200]
e Analyzes the number of messages to exchange between dueagzsates

in a distributed Kalman filter [201]
e Global Optimality of distributed Kalman filtering fusion aatly

equal to the corresponding centralized optimal Kalmarrfifgefusion [271]
e A parallel and distributed state estimation structure e

from an hierarchical estimation structure [292]

e A computational procedure to transform an hierarchicahkal filter
into a partially decentralized estimation structure [293]

e Optimal Distributed Kalman filter based orpasori determination
of measurements [295]

tem are cross-correlated. Even if so, similarly with [6]n€e by sensor networks is treated in [264]. DKF to estimate actu-
tralized random parameter matrices Kalman filtering, witieee ator faults for deep space formation flying satellites anetle
fusion center can receive all sensor measurements, chhestiloped in [265]. Internal model average consensus estimator f
expressed by a linear combination of the local estimatesrérh distributed Kalman filtering is worked out in [266]. Distuted
fore, the performance of the distributed filtering fusiorthe ’'Kriged’” Kalman filtering is addressed in [267]. The behav-
same as that of the centralized fusion under the assumpigbn for of the distributed Kalman filter that varies smoothlyrfro
the expectations of all sensor measurement matrices atgl of & centralized Kalman filter to a local Kalman filter with aver-
row rank. When there is no feedback from the fusion centage consensus update is presented in [268]. Both tracknfusio
to local sensors, a distributed Kalman filtering fusion fatan formulas with feedback and without feedback are analysed in
under a mild condition is presented as [242]. A rigorous pg270]. Decoupled distributed Kalman fuser presented bggisi
formance analysis for Kalman filtering fusion with feedback Kalman filtering method and white noise estimation theory is
presented in [243]. shown in [276]. Decomposition of a linear process model into

Low-power DKF based on a fast polynomial filter is show@ cascade of simpler subsystems is given in [277]. Diseibut
in [262]. Consensus Problem and their special cases are fHsion steady-state Kalman filtering by using the moderretim
ported in [263]. DKF for sparse large-scale systems mogitorS€'es analysis method is shown as [278]. Distributed Kalma
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TABLE Il
DISTRIBUTED KALMAN FILTERING (DKF) METHODSII

Distributed Kalman Filter References
e Estimate sparsely connected,

large scale systems [20]
e n-th order with multiple sensors [21]
e Data-fusion over arbitrary

communication networks [22]
e lterative consensus protocols [23]
e Using bipartite fusion graphs [24]
e Local average consensus algorithms [25]
e Based on consensus strategies [26]
e Semi-definite programming

based consensus lterations [27]
e Converge Speed of consensus strategies [28]
¢ Distributed Kalman filtering, with focus on limiting the

required communication bandwidth [118]
e Distributed Kalman-type processing scheme, which pravide

optimal track-to-track fusion results at arbitrarily ceas

instants of time [148]
e Distributed architecture of track-to-track

fusion for computing the fused estimate from multiple fiter

tracking a maneuvering target with the simplified maximum

likelihood estimator [213]
e Original batch form of the Maximum Likelihood (ML) estimataq [214]
e Modified Probabilistic Neural Network [215]

filtering with weighted covariance is reported in [279]. iséer communicate only with their neighbors, and no fusion center
function describing the error behavior of the distributeadidan is worked in [168]. Distributed Kalman filtering proposed in
filter in the case of stationary noise processes is showrbii][2 the context of diffusion estimation is treated in [169], (1.7
The paper [2] shows that this result can be applied to Kalmaistributed Kalman filtering proposed in the context of aver
filtering with uncertain observations, as well as randonayi-v age consensus [171][172]. Diffusion Kalman filtering foegw
ant dynamic systems with multiple models. measurement and for every node, a local state estimatethging
Under some regularity conditions as shown in [8], in partictata from the neighborhood is provided in [173].
ular the assumption of independent sensor noises, an dptimg&xemark 111.1: In the paper [45], a diffusion scheme of EM
Kalman filtering fusion was proposed in [8], which is proved t pgwm) algorithm for Gaussian mixtures in Wireless Sensdr Ne
be equivalent to the centralized Kalman filtering using att-s \yorks (WSNSs) is proposed. At each iteration, the time-naryi
sor measurements; therefore such fusion is globally optima -ommunication network is modeled as a random graph. A
the multi-sensor random parameter matrices case, Somt"ﬁ‘ﬁfusion-step (D-step) is implemented between the Eatelp
even if the original sensor noises are mutually independeet o M-step. In the E-step, sensor nodes compute the loda-sta
sensor noises of the converted system are still crossta@ee ics py using local observation data and parameters estihat
Hence, such multi-sensor system seems to be not satisfying; the last iteration. In the D-step, each node exchangesl loc
conditions for the distributed Kalman filtering fusion givéh  information only with its current neighbors and updates fthe
(8l. cal statistics with exchanged information. In the M-stdpe t
sensor nodes compute the estimation of parameter using the
updated local statistics by the D-step at this iteration. nGo
The publications of diffusion-based DKF are classified in Tgpared with the existing distributed EM algorithms, the pyspd
ble V. Diffusion-based distributed expected maximizafleM) approach can extensively save communication for each sen-
algorithm for Gaussian mixtures is shown in [45]. Diffusionsor node while maintain the estimation performance. Défier
based Kalman filtering and smoothing algorithm is shown from the linear estimation methods such as the least-sguare
[46]. Distributed EM algorithm over sensor networks, canseand the least-mean squares estimation algorithms, each ite
sus filter used to diffuse local sufficient statistics to héigrs ation of EM algorithm is a nonlinear transform of measure-
and estimate global sufficient statistics in each node igBlie  ments. The steady-state performance of the proposed DEM al-
[92]. Consensus filter diffusion of local sufficient statistover gorithm can not be analyzed by linear way. Instead, we show
the entire network through communication with neighboremdthat the DEM algorithm can be considered as a stochastic ap-
is presented in [94]. Diffusion Kalman filtering, where nedeproximation method to find the maximum likelihood estinmatio

Il1. DIFFUSION-BASED DISTRIBUTED KALMAN FILTERING
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TABLE IlI
DISTRIBUTED KALMAN FILTERING(DKF) WITH APPLICATIONSI

DKF with Applications References
e Multi-sensor networks amenable to parallel processing [33]
e Two sensors fusion filter [34]
e Federated square root filter [35]
e Fusion filter for LTI systems with correlated noises [36]
e Fusion filter for multichannel ARMA signals [37]
e Fusion de-convolution estimators for the input white noise [38]-[39]
e Distributed Kalman filtering for cooperative localization

by reformulating as a parameter estimation problem [100]
e Distributed Kalman filtering techniques for

multi-agent localization [101][104]
e Collaborative processing of information, and gatheririgrstific

data from spatially distributed sources [109]
e Particle filter implementations use Gaussian approximatio [114]
e Channel estimation method based on the recent methodofogy o

distributed compressed sensing (DCS) and Frequency Ddfadinan Filter [151]
e Algorithm for distributed Kalman filtering, where globalfarmation

about the state covariances is required in order to compatedtimates [174]
e The synthesis of a distributed algorithm to compute weighte

least squares estimates with sensor measurements cedrelat [181]
e Distributive and efficient computation of linear MMSE foleth

multiuser detection problem [186]
e A statistical approach derived, calculating the exact Pppreximated

by well-placed Extended Kalman Filter [192]
e Distributed object tracking system which employs a clubtesed

Kalman filter in a network of wireless cameras [194]
e Distributed recursive mean-square error (MSE) optimahtjaar-estimator

based on the quantized observations [206] [207]
e Design a communication access protocol for wireless seret@rorks

tailored to converge rapidly to the desired estimate andiges scalable error performange [208][209]
e Decentralized versions of the Kalman filter [210]
e Distributed Kalman Filter estimator based on quantizedsueament innovations [211]
¢ Novel distributed filtering/smoothing approach, flexitbetade-off estimation

delay for MSE reduction, while exhibiting robustness [216]
e Distributed estimation agents designed, where a bank af Kalman filters

embedded into each sensor, where, diagnosis decisiompeddyy a distributed

hypothesis testing consensus method [228]
e State estimation of dynamical stochastic processes based o

severely quantized observations [232] [233]
e Scheme for approximate distributed Kalman filtering (DKE$&d on reaching

an average-consensus [237]

for Gaussian Mixtures. In this regard, we have in mind a net-IV. DISTRIBUTED OUT-OF-SEQUENCEMEASUREMENTS
work of M sensor nodes is considered, each of which Nas (OOSM)
data observation$y,, ,}, m=1,2, ..., M, n=1,2, ..., Ny,.

These observations are drawn fronkaGaussian mixtures with Distributed out-of-sequence measurements-based listtof p

mixture probabilitiesy,. ....., ay. lications are classified in Table VI. Recursive 'BLUE’ with-
K out prior is given in [56]. Cases of prior information abokiet
Ymyn ~ Zaj_ N(i;,%5) (19) OOSM are .presgnted in [57] [203]. Dating t'h('e state estimate
= globally optimal is worked out in [58][59]. Minimum storage

at the current time to guarantee a globally optimal updatk wi
whereN (u, X)) denote the Gaussian density function with meahree cases of prior information about OOSM are treatedah [7
w and covariances. Letz € {1,2, ...., K'} denote the missing [85], [136]. Updating the state estimate globally optimalith
data where Gaussiam comes from. an OOSM within one step time delay for a system with a non-
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TABLE IV
DISTRIBUTED KALMAN FILTERING(DKF) wWITH APPLICATIONSII

DKF with Applications References

¢ When no feedback from the fusion center to local sensorstiahdited Kalman

filtering fusion formula under a mild condition [242]

e Rigorous performance analysis for Kalman filtering fusion

with feedback [243]

e Low-power DKF based on a fast polynomial filter [262]

e Consensus Problem and their special cases [263]

e DKF for sparse large-scale systems monitored by sensoonietw [264]

e DKF to estimate actuator faults for deep space formationdjgatellites [265]

e Internal model average consensus estimator for distiddkiggman filtering [266]

e Distributed Kriged Kalman filtering [267]

e The behavior of the distributed Kalman filter varies smopthdm a

centralized Kalman filter to a local Kalman filter with aveeampnsensus update [268]

e Track fusion formulas with feedback are, like the track dusi

without feedback [270]

e Decoupled distributed Kalman fuser presented by using Kalfittering

method and white noise estimation theory [276]

e Decomposition of a linear process model into a cascade gflsimrsubsystems [277]

e Distributed fusion steady-state Kalman filtering by using modern time

series analysis method [278]

e Distributed Kalman filtering with weighted covariance [279]

Transfer function describing the error behavior of therthsted Kalman

filter in the case of stationary noise processes [294]
TABLE V

DIFFUSION-BASED DISTRIBUTED KALMAN FILTERING

Diffusion Approaches Used References
o Diffusion-Based Distributed EM algorithm for Gaussian

mixtures [45]
¢ Diffusion-Based Kalman filtering and smoothing algorithm [46]

e Distributed EM algorithm over sensor networks, consensus
filter used to diffuse local sufficient statistics to neigtto
and estimate global sufficient statistics in each node [92]
e Consensus filter diffusion of local sufficient statistics
over the entire network through communication with
neighbor nodes [94]
¢ Diffusion Kalman filtering , where nodes communicate
only with their neighbors, and no fusion center is

present [168]
e Distributed Kalman filtering proposed in the context
of diffusion estimation [169][170]
e Distributed Kalman filtering proposed in the context
of average consensus [171][172]

o Diffusion Kalman filtering for every measurement
and for every node, a local state estimate using the
data from the neighborhood [173]
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TABLE VI
DISTRIBUTED OUT-OF-SEQUENCEMEASUREMENT{OOSM)

Out-of-Sequence Measurements(OOSM) Approaches References
e Recursive BLUE without prior [56]
e Cases of prior information about the OOSM [57][203]
e Dating the state estimate globally optimally [58][59]
e Minimum storage at the current time to guarantee a globaitinmal update

with three cases of prior information about OOSM

[76] [85][136]

e Updating the state estimate globally optimally with
an OOSM within one step time delay for a system

with a nonsingular state transition matrix [77]
e Multi-step OOSM updating using augmented state smoothing [79][80][81]
e Multi-step update in OOSM [78]
e Multi-sensor OOSM problem in a cluttered environment [80][82][83]
e one-step suboptimal updating algorithms using storedimédion

for systems with a nonsingular state transition matrix [77][84]

e Efficient incorporation of OOSMs

in Kalman filters

e A globally optimal flight path update algorithm with OOSMs,

i.e. a globally optimal algorithm which not only updates therent estimate but also

[133]-[138]

updates the past estimates with using a received OOSM [158]
e Counterpart of the OOSM update problem, needed to removaréiaraneasurement
from the flight path [159]

e One-step solution for the general OOSM problem in tracking

presented independently [160] [161]

e Distributed fusion update for the local sensors with OOSMs [163]
OOSM with practical applications [162]
e Optimal analysis of one-step OOSM filtering algorithms iry& tracking [183]
e Focus on centralized update problem for multiple local sesgstems

with asynchronous OOSMs [189]
e Thel step algorithm developed for OOSM [190]
e Optimal distributed estimation fusion with out-of-seqoemeasurements (OOSM)

at local sensors [202]
e Two new algorithms for solving the out-of-sequence datdlem for the case

of linear and nonlinear dynamic control systems [219]

¢ When the delays and the sequence of arrival of all the infdomatre
not fixed, constituting the named Out-Of-Sequence Prob@@SP) [220]

e Out-Of-Sequence Problem (OOSP) developed for linear sysste [220]-[224]

e OOSP developed for non-linear systems [225][226]
e A globally optimal state trajectory update algorithm foremjgence

with arbitrary delayed OOSMs including the case of intesth© OSMs with less storages [274]
e OOSM with more applications [275]
e OOSM processing for tracking ground target using partitiers [296]
e Comparison of the KF and particle flter based out-of-segeiemeasurement fltering algorithms [297]

singular state transition matrix is developed in [77]. Nistep using a received OOSM is documented in [158]. Counterpart of
OOSM updating using augmented state smoothing is presertteel OOSM update problem, needed to remove an earlier mea-
in [79], [80], [81]. Multi-step update in OOSM is described i surement from the flight path, is analysed in [159]. One-step
[78]. Multi-sensor OOSM problem in a cluttered environmersolution for the general OOSM problem in tracking is presdnt

is the subject in [80], [82], [83]. One-step suboptimal upta independently in [160] and [161]. Distributed fusion upzat
algorithms using stored information for systems with a mons for the local sensors with OOSMs is shown in [163]. OOSM
gular state transition matrix is shown in [77], [84]. Efficten- with practical applications are the subject in [162]. Omtim
corporation of OOSMs in Kalman filters is developed in [133fnalysis of one-step OOSM filtering algorithms in targetkra
[138]. A globally optimal flight path update algorithm withing is presented in [183]. Focus on centralized update probl
OOSMs, that is, a globally optimal algorithm which not onlyor multiple local sensor systems with asynchronous OOSMs
updates the current estimate but also updates the pasheestinis treated in [189]. Thé step algorithm developed for OOSM
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is given in [190]. Optimal distributed estimation fusiontiwi [88], [89]. Closed-form analytical solution of steady fdseo-
out-of-sequence measurements (OOSM) at local sensorsecaumdriance of information matrix fusion with arbitrary nurmkod
found in [202]. New algorithms for solving the out-of-segae sensor derived is developed in [90]. Focus on various issues
data problem for the case of linear and nonlinear dynamie camique to fusion for dynamic systems, present a general data
trol systems are developed in [219]. When the delays and thedel for discretized asynchronous multi-sensor systemes,
sequence of arrival of all the information are not fixed, correated in [110]. Recursive BLUE fusion without prior infioa-
stituting the named out-of-sequence problem (OOSP) cantho is worked out in [111]. Statistical interval estimatifusion
traced to [220]. Out-of-sequence problem developed faalin is contained in [112]. Fused estimate communicated to aaent
systems is described in [220]-[224]. OOSP developed for namode to be used for some task is presented in [119]. Optirgal di
linear systems are presented in [225][226]. A globallymali tributed estimation fusion algorithm with the transforndata
state trajectory update algorithm for a sequence with ranyit is proposed in [120], which is actually equivalent to thetcaih
delayed OOSMs including the case of interlaced OOSMs withed estimation fusion. State estimation fusion algoritti-

less storages is given in [274]. More applications of OOSK! canal in the sense of maximum a posteriori (MAP) is developed
be found in [275]. OOSM processing for tracking ground tain [122]. Corresponding distributed fusion problem, pregd

get using particle filters is included in [296]. A comparisain based on a unified data model for linear unbiased estimator is
the KF and particle filter-based out-of-sequence measuremgresented in [123]. An algorithm, fuses one step predistin

fltering algorithms is included in [297]. both the fusion center and all current sensor estimateyéngi
in [124]. In multi-sensor linear dynamic system, severéi ef
V. MULTI-SENSORDATA FUSION SYSTEMS (MSDF) cient algorithms of centralized sensor fusion, distribgensor

In Tables VII, VIl and IX, multi-sensor data fusion system&usion, and multi-algorithm fusion to minimize the Eucadi
(MSDF)-based list of publications are classified . Sens@a® estimation error of the state vector are documented in [125]
of converted systems cross-correlated but independertteof t Derivation of approximation technique for arbitrary preba
original system is covered in [8]-[9]. Sensor noises of arted bI|Ity densities, providing the same distributive fusidrusture
system cross-correlated, and also correlated with thenatig as the linear information filter is presented in [126]. Multi
system is treated in [1]. Centralized fusion center, exg@ddy Sensor distributed fusion filters based on three weightgd-al
a linear combination of the local estimates is presente@]in [fithms, applied to the systems with uncertain observataors
Without centralized fusion center, algorithms tend to tghhi  correlated noises are detailed in [164], [165]. Multi-s@ruis-
resilient to lose one or more sensing nodes is treated iDfjg}. tributed fusion in state estimation fields, and easy faulece
crete smoothing fusion with ARMA signals is presented irj[29tion, isolation and more reliability is developed in [16B]66],
Linear minimum variance (LMV) with information fusion filte [167]. Centralized fusion Kalman filtering algorithm, ototed
is developed in [30], [31]. Deconvolution estimation of ARM by combining all measurement data is developed in [178]. De-
signal with multiple sensors is presented in [32]. Fusidteer Sign of general and optimal asynchronous recursive fusitin e
rion weighted by scalars is proposed in [41]. Functionaliequ mator for a kind of multi-sensor asynchronous samplingesyst
alence of two measurement fusion methods is provided in [45 presented in [182]. Problem of data fusion in a decentral-
Centralized filter where data processed/communicatedatgnt ized and distributed network of multi-sensor processindeso
is discussed in [43]. New performance bound for sensor fusits contained in [188]. To assure the validity of data fusion,
with model uncertainty is developed in [43]. All prior fusice- @ centralized trust rating system is presented in [195]. &Vhit
sults with asynchronous measurements is provided in [56i. Unoise filter weighted by scalars based on Kalman predictor is
fied fusion model and unified batch fusion rules is presenteddeveloped in [235]. White noise deconvolution estimatoes ar
[54], [53]. Unified rules by examples are found in [52]. Comdesvcribed in [236]. Optimal information fusion distrikdt
puting formulation for cross-covariance of the local estiion Kalman smoother given for discrete time multi-channel eatto
is presented in [51]. Conditions for centralized and distied gressive moving average (ARMA) signals with correlatedsgoi
fusers to be identical is developed in [50]. Relationshipsag is presented in [239]. Optimal dimensional reduction ofsegn
the various fusion rules is given in [49]. Optimal rules faca data by using the matrix decomposition, pseudo-inversd, an
sensor to compress its measurements is considered in [48]. \gigenvalue techniques is contained in [244]. Multi-seriger
ious issues unique to fusion for dynamic systems is develog@rmation fusion distributed Kalman filter and applicasois
in [47]. Bayesian framework for adaptive quantizationjdas presented in [247]. Based on analysis of the fused state esti
center feedback, and estimation of a spatial random fieldtandmate covariances of the two measurement fusion methods is de
parameters are treated in [60]. A framework for alternapes $cribed in [248]. Multi-sensor data fusion approachessolre
quantile quantizer and fusion center is provided in [61]. problem of obtaining a joint state-vector estimate, betten
Diagonal weighting matrices are presented in [62]. Diffefh€ individual sensor-based estimates is documented #],[24
ent fusion rates for the different states are contained &j. [6[250], [251]. Decentralized multi-sensor extended Kalrfin
Optimal distributed estimation fusion in the linear minimu ter (EKF) whichis divided up into modules, one associateti wi
variance (LMV) estimation is presented in [86]. Median fueach sensor is developed in [252].
sion and information fusion, not based on weighted sums ofA distributed reduced-order fusion Kalman filter (DRFKF) is
local estimates, are presented in [87]. Distributed filigral- treated in [254]. Fusion algorithm based on multi-sensgr sy
gorithms, optimal in mean square sense linear combinatibngems and a distributed multi-sensor data fusion algorithsed
the matrix or scalar weights with derivations are develojped on Kalman filtering is presented in [269]. Track fusion formu
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las with feedback are, like the track fusion without feeddae following discrete time dynamic system is considered:

contained in [270]. The optimal DKF fusion algorithms foeth

case with feedback and cross-uncorrelated sensor measutrem

noises are presented in [272]. General optimal linear fuisio Yr = Hpp +wi, k=0,1,2,3, ... (23)

worked out in [273]. Information fusion in distributed sens wherez;, € R is the system statg; € RY is the measurement

networks is shown in [299]. Multi-scale recursive estiroati matrix, vy € R is the process noise, and, € RV is the mea-

data fusion, and regularization are proposed in [302]. surement noise. The subscripis the time index.F, € R™*"
Remark V.1: In [29], using estimators of white measureyng 7, e RN <" are random matrices.

ment noise, an optimal information fusion distributed Kafm ’

smoother is given for multichannel ARMA signals with corre- V1. DISTRIBUTED NETWORKS(DN)

lated noise. The work on ARMA signal and information fusson i The list of publications on distributed networks (DN) is

also done n [30] and [31]. Basically it hasathr_ee—layer 8  |assified in Table X. Distributed networked control system
structure with fault tolerant, and robust properties. Thetffu- DNCS) with multiple nodes is presented in [64]. Two approx-
sion layer and the second fusion layer both have nested IFmrafmate filtering algorithms for estimating states of a DNCS is
structures to determine the prediction error cross-coaage resented in [65]. Distributed expectation maximizati&Mj

of the stgte and the smoothing error cross-covariance of t orithm over sensor networks, consensus filter used fiosdif
ARMA signal bet_ween any two f_aultless sensors at each tijgE,) sufficient statistics to neighbors and estimate dlebfi-
step. And the third fusion layer is the fusion centre to dete(fient statistics in each node are developed in [92]. Deresity
mine the optimal matrix weights and obtain the optimal fosiq; 1tion and unsupervised clustering, first step in exptoya
distributed smogther for ARMA signgls. The cqmputation fo&ata analysis is treated in [93], [95]. Consensus filterueiff
mula of smoo_thln_g error cross-covariance matrix betweey ag;,, of |ocal sufficient statistics over the entire netwdnough
two Sensors Is given for Wh'te measurement noise. Th_e CQYYmmunication with neighbor nodes, is provided in [94]. -Dis
putation formula of smoothing error cross-covariance matr v, e fusion of multiple sensor data to networks is cdesd

bﬁtwg_en any two senslo_rshis giv?n for white mtTasurement NOI§127]. Robust distributed state estimation againstfalata
The discrete time multi-channel ARMA signal system consjfe ion is treated in [149]. Distributed sensor netwarn-

ered here with sensors is: sisting of a set of spatially scattered sensors that canurneas

Try1 = Frpop + g (22)

Bla=Ys(t) = Cla=1wl(t 20 various properties of the environment, formulate local disd
(g7)s(?) (a7 )w®) ) (20) tributed inferences, and make responses to events or gugge
yi(t) = s(t) +vit), i =1, ..., L (21)  developed in [150]. Sensor network where single or multiple

sensors amplify and forward their measurements of a common
linear dynamical system to a remote fusion center via noisy
fading wireless channels is given in [187]. Modified adagptiv
Kalman filter for sensor-less current control of a threesgha-
verter based distributed generation system is proposed®iti [
Distributed estimation scheme for tracking the state of agsa
X(gH=Xo + X1(¢H)+ ... + X, q " Markov model by means of observations at sensors connected
in a network is the subject of [196]. A message-passing @Brsi
where the argumeng—! is the back shift operator, that is, of the Kalman consensus filter (KCF) is considered in [204].
g la(t)=x(t-1), X;,i=0,1,,....., n, are the coefficient A peer-to-peer (P2P) architecture of DKF that rely on reach-
matrices, the degree df (¢~ 1) is denoted by,,. ing a consensus on estimates of local Kalman filters is anal-
In the multi-sensor random parameter matrices case, sonysed in [205]. For decentralized tracking applications, DK
times, even if the original sensor noises are mutually ietep and smoothing algorithms are derived for any-time MMSE op-
dent, the sensor noises of the converted system are sti§-crdimal consensus-based state estimation using WirelessoBen
correlated. Hence, such multi-sensor system seems net satietworks are considered in [212]. Trade-off between the es-
fying the conditions for the distributed Kalman filteringsion timation performance and the number of communicating nodes
as given in [8], [9]. In the paper [1], it was proved that whenwith respect to the major MAC protocols used in wireless sens
the sensor noises or the random measurement matrices of nieéworks is developed in [218]. Distributed networked coint
original system are correlated across sensors, the ser@iges system (DNCS) consisting of multiple agents communicating
of the converted system are cross-correlated. Even if sti; siover a lossy communication channel is presented in [227]. Im
larly with [6], centralized random parameter matrices Kam pact of the network reliability on the performance of thedfee
filtering, where the fusion center can receive all sensor-melaack loop is considered in [229].
surements, can still be expressed by a linear combinatioheof Remark VI.1:1n literature, a single plant is usually assumed
local estimates. Therefore, the performance of the disteth for an NCS and the links between the plant and the estimator
filtering fusion is the same as that of the centralized fusioier or controller channel. This notion is extended by a distgdu
the assumption that the expectations of all sensor measumtermetworked control system (DNCS) in which there are multi-
matrices are of full row rank. Numerical examples are giveple agents communicating over a lossy communication channe
which support our analysis and show significant performan¢@4]. A DNCS extends an NCS to model a distributed multi-
loss of ignoring the randomness of the parameter matrichs. Tagent system such as the Vicsek model. The best examples

wheres(t) € R™ is the signal to estimatey;(¢t) € R™ is the
measurement of thigh sensorw(t) € R" is the process noise,
v;(t) € R™ is the measurement noise of tite sensor,L is
the number of sensors, and(¢~!), C(¢~!) are polynomial
matrices having the form
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TABLE VI
MULTI-SENSORDATA FUSION SYSTEMS(MSDF) |

Multi-sensor Data Fusion(MSDF) Design Approaches References
e Sensor noises of converted systems cross-correlated,

whilst original system independent [8]-[9]
e Sensor noises of converted system cross-correlated,

whilst original system also correlated [1]
e Centralized fusion center, expressed by a linear comioinati

of the local estimates [6]
e No centralized fusion center, but algorithm highly regitie

to lose one or more sensing nodes [7]
e Discrete smoothing fusion with ARMA Signals [29]
linear minimum variance(LMV) with information fusion filte [30][31]
e Deconvolution estimation of ARMA signal with

multiple sensors [32]
e Fusion criterion weighted by scalars [41]
e Functional equivalence of two measurement fusion methods [42]
e Centralized filter, data processed/communicated ceytrall [43]
e New performance bound for sensor fusion with model unagstai [43]
e All prior fusion results with Asynchronous Measurements [55]
e Unified fusion model and unified batch fusion rules [54][53]
e Unified rules by examples [52]
e Computing formulation for cross-covariance of the locaireation [51]
e Conditions for centralized and distributed fusers to bafidal [50]
e Relationships among the various fusion rules [49]
e Optimal rules for each sensor to compress its measurements [48]
e Various issues unique to fusion for dynamic systems [47]
e Bayesian framework for adaptive quantization,

fusion-center feedback, and estimation of a spatial ranfilch

and its parameters [60]
e Framework for alternates to quantile quantizer

and fusion center [61]

of such system include ad-hoc wireless sensor networks andaanic model of the agentcan be described as following:
network of mobile agents. The exact state estimation method
based on the Kalman filter is introduced in [64]. However,

the time complexity of the exact method can be exponential in
the number of communication links.are closed by a common

(unreliable) communication In the paper [65], this issuads  wherek ¢ Z+, z;(k) € R™ is the state of the agejiat time
dressed by developing two approximate filtering algoritions 1, 4,;(k) € R™» is a white noise processl;; € R *"=, and
estimating states of a DNCS. The approximate filtering alggr; ¢ R™=*"w . Hence, the state of the agenis governed by
rithms bound the state estimation error of the exact filteeiR  the previous states of alV agents. It can also be considered

gorithm and the time complexity of approximate methods is Nthat A,;z;(k) as a control input from the agento the agentj
dependent on the number of communication links. The stabilfgr ; £ 3.

of estimators under a lossy communication channel is studie
in [304], [305]. However, the extension of the result to tleag VIl. M ATHEMATICAL DESIGN IN TRACK-TO-TRACK
eral case with an arbitrary number of lossy communicatioksli FusionN

is unknown. While computing the exact communication link yack fusion (TF)-based list of publications are classified
probabilities required for stable state estimation is manal, Tap1e X|. Track fusion with information filter is presente i

the general conditions for stable state estimation usinmgpjlin- [8]. Track fusion optimality with ML is presented in [10], T1
ear system theory are described. The following first digtat [18], [19]. Two track estimates cross-covariance are prese
control system consisting d¥ agents is considered, in whichi, 111]. Track fusion local estimate dependency is desdribe
there is no communication loss. The discrete-time linear dm [12]. Track fusion measurement is given in [13]. Track fu-
sion multi-sensor algorithm is proposed in [14] and tradidn
cross-covariance with independent noises is presentetbin [
Steady-state fusing problem is analysed in [15] whereaglgte

N
vi(k+1) =Y Aywi(k) + Gjw;(k) (24)
=1
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TABLE VIII
MULTI-SENSORDATA FUSION SYSTEMS(MSDF) Il

Multi-sensor Data Fusion(MSDF) Design Approaches References
e Diagonal weighting matrices [62]
e Different fusion rates for the different states [63]
e Optimal distributed estimation fusion in the

linear minimum variance (LMV) estimation [86]
e Median fusion and information fusion, not based on weiglsiats

of local estimates [87]
e Distributed filtering algorithms, optimal in mean squarasselinear
combinations of the matrix or scalar weights with derivatio [88][89]
e Closed form analytical solution of steady fused covariance

of information matrix fusion with arbitrary number of senslerived [90]

e Focus on various issues unique to fusion for dynamic systems
present a general data model for discretized asynchronous

multi-sensor systems [110]
e Recursive BLUE fusion without prior information [111]
e Statistical interval estimation fusion [112]
e Fused estimate communicated to a central node

to be used for some task [119]

e Optimal distributed estimation fusion algorithm
with the transformed data is proposed, which is actuallyvedent

to the centralized estimation fusion [120]
e State estimation fusion algorithm, optimal in the sense of

maximum a posteriori (MAP) [122]
e Corresponding distributed fusion problem, proposed based

on a unified data model for linear unbiased estimator [123]
e An algorithm, fuses one step predictions at both

the fusion center and all current sensor estimates [124]

e In multi-sensor linear dynamic system, several efficiegpbathms of
centralized sensor fusion, distributed sensor fusionnaniti-algorithm
fusion to minimize the Euclidian estimation error of the

state vector [125]

state fused covariance for hierarchical track fusion &echire shown in [298]. Track association and track fusion with non-
with feedback is provided in [66]. Cross-covariance of theal deterministic target dynamics is presented in [300]. Cainpa
track is developed in [67]. Weighted covariance stateerectson of two-sensor tracking methods based on state vecionfus
Track fusion is analysed in [68]-[69]. Pseudo-measuremanrtd measurement fusion is considered in [301].

state-vector track fusion is presented in [70]-[71]. Stestate

fused covariance matrix is the subject of [72]. Various &eth VIIl. DISTRIBUTED CONSENSUSBASED ESTIMATION

tures for track association and fusion is contained in [73}- Distributed Consensus-Based Estimation list of publicai
Fused estimate communicated to a central node to be used{of cjassified in Table XII. Iterative consensus protoco|sro-
some ta_sk is shown in [119]. Track-to-track fusion aIgcmth posed in [23]. Local average consensus algorithms is tieate
_optlmal in the sense of MLf_or more than two sensors is tr_eatﬁg]_ Similar reults are reported in [26], [175] based on<on
in [121]. Measurement fusion and state vector track fustondengys strategies and in [27] based on consensus lterdftuas
considered in _[255]. State_ vector track fusion with pseudsg e of converge speed of consensus strategies is sho@8jin [
measurement is presented in [256], [257]. Performancem®f Vaynamic consensus problems regarding fusion of the measure
ious track-to-track fusion algorithms from aspects oféasaC- ments and covariance information with consensus filters are
curacy, feedback and process noises are treated in [2588 Fyloated in [75]. Results on using standard Kalman filterllgca
state vectors using Weighted Covariance (WC) is presenteqdfether with a consensus step in order to ensure that ta loc
[259], [260]. Weighted covariance algorithm turns out 10 bgstimates agree are developed in [5]. Distributed expieotat

a xaximum likelihood estimate is proposed in [261]. Perforpyayimization (EM) algorithm over sensor networks, consens
track fusion optimally for a multiple-sensor system Withp@$ it ysed to diffuse local sufficient statistics to neighband
cific processing architecture is treated in [290]. Trackre®k  egtimate global sufficient statistics in each node are thest
fusion for multi-sensor data fusion is contained in [291¢nG ¢ [92]. Consensus filter diffusion of local sufficient staigs

mon process noise on the two-sensor fused-track covariancgyer the entire network through communication with neighbo
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TABLE IX
MULTI-SENSORDATA FUSION SYSTEMS(MSDF) 111

Multi-sensor Data Fusion(MSDF) Design Approaches References

e Derivation of approximation technique for arbitrary probigy

densities, providing the same distributable fusion stmects the linear
information filter [126]
e Multi-sensor distributed fusion filters based on three \wig
algorithms, applied to the systems with uncertain obsematand correlated noises [164] [165]
e Multi-sensor distributed fusion in state estimation fielaisd easy

fault detection, isolation and more reliability [165][166][167]
e Centralized fusion Kalman filtering algorithm, obtained by

combining all measurement data [178]
e Design of general and optimal asynchronous recursive fiusstimator

for a kind of multi-sensor asynchronous sampling system [182]
e Problem of data fusion in a decentralized and distributed/owk of

multi-sensor processing nodes [188]
e To assure the validity of data fusion, a centralized trushgesystem [195]
e white noise filter weighted by scalars based on Kalman predic [235]
e White noise de-convolution estimators [236]

e Optimal information fusion distributed Kalman smootherayi
for discrete time multichannel autoregressive moving ayer(ARMA) signals

with correlated noise [239]
e Optimal dimensionality reduction of Sensor Data by usirgrtatrix

decomposition, pseudo-inverse, and eigenvalue techsiique [244]
e Multi-sensor Information fusion distributed Kalman filt@nd

applications [247]
e Based on analysis of the fused state estimate covariantks tfio

measurement fusion methods [248]

e Multi-sensor data fusion approaches to resolve problem of
obtaining a joint state-vector estimate, better than thevidual

sensor-based estimates [249][250][251]
e Decentralized multi-sensor EKF which has been divided tp in

modules, one associated with each sensor [252]
e A distributed reduced-order fusion Kalman filter (DRFKF) [254]
e Fusion algorithm based on multi-sensor systems and a

distributed multi-sensor data fusion algorithm based olmiga filtering [269]
e Track fusion formulas with feedback are, like the track dusi

without feedback [270]

e The optimal distributed Kalman Filtering fusion algoritam
for the case with feedback and cross-uncorrelated sensasureament

noises [272]
e General optimal linear fusion [273]
e Information fusion in distributed sensor networks [299]
e Multi-scale Recursive Estimation, Data Fusion, and Reaigd&on [302]

nodes is presented in in[94]. Consensus-based distriliated consensus algorithm for measurements of noisy signals ob-
ear filtering problem is developed in [97]. The interactia® b tained fromn sensors in the form of a distributed low-pass fil-
tween the consensus matrix, the number of messages exchamgeis described in [106] and average-consensus algorivhm f
per sampling time, and the Kalman gain for scalar systems amnstant values is given in [107], [108]. Consensus-Based d
analysed in [98]. Kalman filter coupled with a consensustfiltdributed implementation of the unscented particle is dgved
ensuring estimates asymptotically converge to the sameevain filter [113]. Consensus-based distributed approachéohia
are presented in [99]. A novel state estimation algorithm féilters for linear systems [116], [117]. A message-passieg v
linear stochastic systems, proposed on the basis of oypénigp sion of the Kalman consensus filter (KCF) is proposed in [204]
system decomposition, implementation of local state egtins A peer-to-peer (P2P) architecture of DKF that rely on reach-
by intelligent agents, application of a consensus strafggy ing a consensus on estimates of local Kalman filters is shown i
viding the global state estimates are detailed in [L05].rAge- [205]. Consensus-based suboptimum Kalman filtering scheme
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TABLE X
DISTRIBUTED NETWORKS(DN)

Design Approaches Used in DN References
e Distributed networked control system (DNCS) with multipledes [64]
e Two approximate filtering algorithms for estimating statéa DNCS [65]

¢ Distributed expectationmaximization (EM) algorithm ogensor networks
consensus filter used to diffuse local sufficient statigtaseighbors

and estimate global sufficient statistics in each node [92]
e Density estimation and unsupervised clustering, first step

exploratory data analysis [93][95]
e Consensus filter diffusion of local sufficient statistics

over the entire network through communication with neighimdes [94]
e Distributed fusion of multiple sensor data to networks [127]
e Robust distributed state estimation against false dagatiojn [149]

e Distributed sensor network, consisting of a set of spatiall
scattered sensors that can measure various properties of th
environment, formulate local and distributed infereneesl
make responses to events or queries [150]
e Sensor network where single or multiple sensors amplify and

forward their measurements of a common linear dynamicaéey$o a remote

fusion center via noisy fading wireless channels [187]
e Modified adaptive Kalman filter for sensor-less current oant

of a three-phase inverter based distributed generatidarays [191]
e Distributed estimation scheme for tracking the state of agsdviarkov

model by means of observations at sensors connected in anketw [196]
e A message-passing version of the Kalman-Consensus FKIGFY [204]
e A peer-to-peer (P2P) architecture of DKF that rely on reaghi

a consensus on estimates of local Kalman filters [205]

e For decentralized tracking applications, distributedriah

filtering and smoothing algorithms are derived for any-tiil&ISE optimal
consensus-based state estimation using Wireless Senseorike [212]
e Trade-off between the estimation performance and the numbe

of communicating nodes with respect to the major MAC prot®cased in

wireless sensor networks [218]
e Distributed networked control system (DNCS) consisting of

multiple agents communicating over a lossy communicatianael [227]
e Impact of the network reliability on the performance of

the feedback loop [229]

is developed in [217]. Finally, distributed filter that alls the of global sufficient statistics is achieved by using an agera
nodes of a sensor network to track the average sgnsor mea- consensus filter. The consensus filter can diffuse the loéfi s
surements using an average consensus based distribugedfiltcient statistics over the entire network through commutioca
documented in [238]. with neighbor nodes [22], [23], [307] and estimate the gldba

Remark VIIIl.1: In the paper [92], the number of Gaussia_ﬁumde”_t statistics _using Ioca! information and r_1e_ighbbr_ca|
components is given. In the next step, distributed unsigeev information. By using the estimated global suff|C|en't stags,
clustering approach is used to select the number of Gauss2#ch node updates the parameters in the M-step in the same
components, or it can use a distributed algorithm to estimaf/@y s in the standard EM algorithm. Because the consensus
this number and run expectation maximization (EM) algarith filter only requires local communication, that is, each nodéy
simultaneously. A well-fitted approach to this integratisthe "€€ds to communicate with its neighbors and gradually gains
one proposed in [306]. The proposed distributed EM algarith global information, this distributed algorithm is scalabllt is

in the paper [92] handles this difficulty through estimatithg s_hown that the equations of parameter estimation in this-alg _
global sufficient statistics using local information andigte rithm are not related to the number of sensor nodes. Thus, iti

bors local information. It calculates the local sufficienatis- /SO robust. Failures of any nodes do not affect the alganith
tics in the E-step as usual first. Then, it estimates the dlaifa  Performance given the network is still connected. Evefyal
ficient statistics. Finally, it updates the parameters ia M-step the estimated parameters can be accessed from any nodes in
using the estimated global sufficient statistics. The egtan the network. In this paper, section, we a networkléfsen-
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TABLE XI
MATHEMATICAL DESIGN IN TRACK-TO-TRACK FUSION

Track-to-Track Fusion Approaches References
e Track fusion with information filter [8]
e Track fusion optimality with ML [10][17][18][19]
e Two track estimates cross-covariance [11]
e Track fusion local estimate dependency [12]
e Track fusion measurement [13]
e Track fusion multi-sensor algorithm [14]
e Track fusion cross-covariance

with independent noises [16]
e Steady-state fusing problem [15]
e Steady state fused covariance for hierarchical

track fusion architecture with feedback [66]
e Cross-covariance of the local track [67]
e Weighted covariance state-vector Track fusion [68]-[69]
e Pseudo-measurement state-vector Track fusion [70]-[71]
e Steady state fused covariance matrix [72]
e \Various architectures for track association and fusion [73]-[74]
e Fused estimate communicated to a central node to be used

for some task [119]
e Track-to-track fusion algorithm, optimal in the sense of ML

for more than 2 sensors [121]
e Measurement Fusion and State vector track fusion [255]
e State vector track fusion with pseudo-measurement [256] [257]
e Performance of various track-to-track fusion algorithmesrf aspects of

fusion accuracy, feedback and process noises [258]
e Fuse state vectors using Weighted Covariance (WC) [259][260]
e Weighted covariance algorithm turns out to be a Maximumiilikked estimate [261]
e Perform track fusion optimally for a multiple-sensor syste

with a specific processing architecture [290]
e Track-to-track fusion for multi-sensor data fusion [291]
e Common process noise on the two-sensor fused-track caearia [298]
e Track association and track fusion with non-determinitgtiget dynamics [300]
e Comparison of two-sensor tracking methods based on stetenfeision

and measurement fusion [301]

sors is considered, each of which has, data observations

Ymn(m=1, ..., M,n=1, ... , N,,. The environment is as-
sumed to be a Gaussian mixture setting withmixture proba-
bilities o, &, (k =1, ....., K). The unobserved state is denote

as z and z;, represents: = k. For each unobserved statg,
observatiory,, ., follows a Gaussian distribution with mean
and varianceX,:

7%(ym,nfﬂk)TE;l(ym,nfl(QB)

1
m.,n ,E = —F7— < 1€
Plomnlie ) = e

The Gaussian mixture distribution for observatign ,, is:
K

p(ym’ﬂ|9) = Z am,k:p(ym,n
k=1

> Sk ) (26)

IX. DISTRIBUTED PARTICLE FILTERING(DPF)

A Distributed Particle Filtering(DPF) list of publicatisrare
ﬁl]assified in Table Xlll. Consensus-Based distributed @npl

entation of the unscented particle filter is shown in [1P&r-
ticle filtering transformation into continuous represeios is
presented in [128]. Consensus-based, distributed implame
tion of the unscented particle filter is shown in [129]. Rati
filter implementations using Gaussian approximations lier t
local posteriors are proposed in [130], [131]. A novel frame
work for delay-tolerant particle filtering, with delayedufeof-
sequence) measurements is treated in [132]. An approath tha
stores sets of particles for the lasime steps, wheréis the pre-
determined maximum delay is reported in [139]. Markov chain
Monte Carlo (MCMC) smoothing step for (out-of-sequence)
measurements is presented in [140]. Approximate OOSM par-
ticle filter based on retrodiction(predicts backward) igegi in
[141]. Also uses retrodiction (predicts backward), but Eapg

wheref is the set of the distribution parameters to be estimatélde Gaussian particle filter is found in [141]. Recent adeanc

0 ={omp i, Zrsk=1, .., Km=1, ..., M}.

in particle smoothing, storage-efficient particle filtee atoc-
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TABLE Xl
DISTRIBUTED CONSENSUSBASED ESTIMATION

Design Approaches used in Distributed Consensus References
e lterative consensus protocols [23]
e Local average consensus algorithms [25]
e Based on consensus strategies [26][175]
e Based consensus Iterations [27]
e Converge Speed of consensus strategies [28]
e Dynamic consensus problems regarding fusion of the measunts and

covariance information with consensus filters [75]
e Using Standard Kalman filter locally, together with a corssemnstep

in order to ensure that the local estimates agree [5]

e Distributed expectationmaximization (EM) algorithm ogensor networks,
consensus filter used to diffuse local sufficient statigbaseighbors
and estimate global sufficient statistics in each node [92]
e Distributed expectationmaximization (EM) algorithm ogensor networks,
consensus filter used to diffuse local sufficient statigbaseighbors

and estimate global sufficient statistics in each node [92]
e Consensus filter diffusion of local sufficient statistics

over the entire network through communication with neightmdes [94]
e Consensus-based distributed linear filtering problem [97]

e The interaction between the consensus matrix, the number of
messages exchanged per sampling time, and the Kalman gaicalar systems [98]
e Kalman filter with a consensus filter, ensuring estimates
asymptotically converge to the same value [99]
e Novel state estimation algorithm for linear stochastidays,
proposed on the basis of overlapping system decomposition,
implementation of local state estimators by intelligernt s,

application of a consensus strategy providing the glolaaéststimates [105]
e Average-consensus algorithm fermeasurements of noisy signals

obtained fromn sensors in the form of a distributed low-pass filter [106]
e Average-consensus algorithm ferconstant values [107][108]
e Consensus-Based distributed implementation

of the unscented particle filter [113]
e Consensus-based distributed approached Kalman filteliméar systems [116][117]
e A message-passing version of the Kalman-Consensus FHIGF)Y [204]
e A peer-to-peer (P2P) architecture of DKF that rely on reaghi

a consensus on estimates of local Kalman filters [205]
e Consensus-based suboptimum Kalman filtering scheme [217]
e Distributed filter that allows the nodes of a sensor networtkdck the average

of n sensor measurements using an average consensus basbdtdisfilter [238]

umented in [143]. A number of heuristic metrics to estimaia a wireless sensor network are provided in [245]. Updatieg
the utility of delayed measurements is proposed in [144] ansdmplete particle filter on each individual sensor node$/srg

a threshold based procedure to discard uninformative ddlayn [246]. Out-of-sequence measurement processing foktrac
measurements, calculating their informativeness is tegdan ing ground target using particle filters is presented in [296
[145]. Optimal estimation using quantized innovationsthwi comparison of the KF and particle flter based out-of-seqeenc
application to distributed estimation over sensor netsaiking measurement fltering algorithms is documented in [297].
Kalman-like particle filter is the subject of [176]. SOI-Rele-

Filter (SOI-PF) derived to enhance the performance of tee diX. SELF-TUNING BASED DISTRIBUTED FUSION KALMAN
tributed estimation procedure is presented in [193]. Rnobbf FILTER

tracking a moving target in a multi-sensor environment gisin A Distribut rticle filterina (DPE) list of licati
distributed particle filters (DPFs) is described in [230ptonal . oo ?r‘: $ng: s Meulti-gsénsor) Sjstzmpsusvifﬁ o

fusion method, introduced to fuse the collected GMMs with d'model parameters and noise variances, by the information ma

fe_rent numb_er Of. components, is presented in [231].' Two d't?l'x approach, the self-tuning distributed state fusiofoima-
tributed particle filters to estimate and track the movingets tion filter are presented in [152]. Self-tuning distributstdte
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TABLE XIlI
DISTRIBUTED PARTICLE FILTERING(DPF)

Design Approaches used in DPF References
e Consensus-Based distributed implementation

of the unscented particle filter [113]
e Particle filtering transformation into

continuous representations [128]
e Consensus-based, distributed implementation

of the unscented particle filter [129]
e Particle filter implementations using Gaussian

approximations for the local posteriors [130][131]
e A novel framework for delay-tolerant particle filtering,

with delayed (out-of-sequence) measurements [132]
e An approach that stores sets of particles for thellast

time steps, whereéis the predetermined maximum delay [139]
e Markov chain Monte Carlo (MCMC) smoothing step for

(out-of-sequence) measurements [140]
Approximate OOSM particle filter based on retrodiction(bces backward) [141]
e Also uses retrodiction (predicts backward), but employs

the Gaussian particle filter [141]
e Recent advances in particle smoothing,

storage-efficient particle filter [143]
e Proposed a number of heuristic metrics to estimate the

utility of delayed measurements [144]
e Proposed a threshold based procedure to discard uninfeemat

delayed measurements, calculating their informativeness [145]
e Optimal estimation using quantized innovations, with aaion

to distributed estimation over sensor networks using Kaktilee particle filter [176]
e SOl-Particle-Filter (SOI-PF) derived to enhance the

performance of the distributed estimation procedure [193]
e Problem of tracking a moving target in a multi-sensor envinent

using distributed particle filters (DPFs) [230]
e Optimal fusion method, introduced to fuse the collected GM

with different number of components [231]

e Two distributed particle filters to estimate and track theving

targets in a wireless sensor network [245]
e Updating the complete particle filter on each individualssemodes [246]
e Out-of-sequence measurement processing for trackinghgrtarget

using particle filters [296]
e Comparison of the KF and particle flter based out-of-segaemeasurement

fltering algorithms [297]

fusion Kalman filter with weighted covariance approach is réusion structure based on linear minimum variance is regbrt
ported in [154]. Self-tuning decoupled fusion Kalman pren [234]. Optimal self-tuning smoother is proposed in [240]
dictor is proposed in [155] and self-tuning weighted measurOptimal self-tuning fix-lag smoother is developed in [24A.
ment Kalman filter is included in [156]. Multi-sensor systemnew convergence analysis method for self-tuning Kalman pre
with unknown noise variances, a new self-tuning weighted-malictor is presented in [253]. Self-tuning measurementesyst
surement fusion Kalman filter is presented in [177], which haising the correlation method, can be viewed as the leasiregu
asymptotic global optimality. Weighted self-tuning statsion (LS) fused estimator and found in [280]. Self-tuning filter-
filters is given in [179], [180]. Sign of innovation-particfil- ing for systems with unknown model and/or noise variances is
ter (SOI-PF) improves the tracking performance when the taresented in [281]-[284]. Self-tuning distributed statsion
get moves according to a linear and a gaussian model as ftalman estimators is reported in [285][286] Self-tuning-di
sented in [184]. Efficiency of the SOI-PF in a nonlinear antibuted (weighed) measurement fusion Kalman filters issgho
a non gaussian case, considering a jump-state Markov moidgR87], [288], [289].

for the target trajectory is derived in [185]. Self-tuningar- Remark X.1: For self-tuning decoupled fusion Kalman pre-
mation fusion reduced-order Kalman predictor with a twagst gictor. the following multi-sensor linear discrete tinmasriant
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SELF-TUNING BASED DISTRIBUTED FUSION KALMAN FILTER

Self-Tuning Design Approaches References
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and noise variances, by the information matrix approach,

the self-tuning distributed state fusion information filie presented [152]
e Self-tuning distributed state fusion Kalman filter

with weighted covariance approach [154]
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e Self-tuning weighted measurement Kalman filter [156]
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e Weighted self-tuning state fusion filters [179][180]
e Sign of Innovation- Particle Filter (SOI-PF) improves thacking
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e Optimal self-tuning smoother [240]
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e A new convergence analysis method for Self-Tuning

Kalman Predictor [253]
e Self-Tuning measurement system using the correlation adeth

can be viewed as the least-squares (LS) fused estimator [280]
e Self-tuning filtering for systems with unknown model

and/or noise variances [281]-[284]
e Self-tuning distributed state fusion Kalman estimators [285][286]
e Self-tuning distributed (weighed) measurement fusiomiat filters [287][288][289]
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