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Bibliographic Review on
Distributed Kalman Filtering

Magdi S. Mahmoud and Haris M. Khalid

Abstract—In recent years, a compelling need has arisen to understand
the effects of distributed information structures on estimation and filter-
ing. In this paper, a bibliographical review on Distributed Kalman Filter-
ing (DKF) is provided. The paper contains a classification of different ap-
proaches and methods involved to DKF. The applications of DKF are also
discussed and explained separately. A comparison of different approaches
is briefly carried out. Focuses on the contemporary researchare also ad-
dressed with emphasis on the practical application of the techniques. An
exhaustive list of publications, linked directly or indirectly to DKF in the
open literature, is compiled to provide an overall picture of different devel-
oping aspects of this area.

Index Terms—Distributed Kalman filtering, Self-tuning distributed fu-
sion Kalman filter, Distributed particle filtering, Distribu ted consensus-
based estimation, Track-to-track fusion, Distributed networks, Multi-
sensor data fusion systems, Distributed out-of-sequence measurements,
Diffusion-based distributed Kalman filtering.

I. I NTRODUCTION

In hi-tech environment, a strict surveillance unit is required
for an appropriate supervision. It often utilizes a group ofdis-
tributed sensors which provide information of the local targets.
Comparing with the centralized Kalman filtering (CKF), which
can be used in mission critical scenarios, where every localsen-
sor is important with its local information, the distributed fusion
architecture has many advantages. There is no second thought
that in certain scenarios, centralized kalman filter plays ama-
jor role, and it involves minimum information loss. A general
structure for the Distributed Kalman Filter (DKF) can seen in
figure (see Fig. 1). The distributed system architecture, on
the whole, is very powerful since it allows the design of the
individual units or components to be much simpler, while not
compromising too much on the performance. Additional ben-
efits include increased robustness to component loss, increased
flexibility in that the components can be reconfigured for many
different tasks and so on. However, the design of such systems
challenges various problems of assumptions, handling, fusing
the architecture of such systems. Our purpose is to provide a
bibliographic survey on DKF and its architectures, comprising
of distribution, fusion, filtering and estimation. A classifica-
tion of such an architecture can be seen in the figure (see Fig.
2), which shows the vision of filtering and estimation under the
umbrella of DKF. Therefore, in this paper, we present a bibli-
ographic literature survey and technical review of DKF. There-
maining part of the paper is organized as follows: Bibliographic
review and technical survey of Distributed Kalman filtering
and its applications are presented in Section II, diffusion-based
DKF in Section III, followed by Distributed Out-of-Sequence
Measurements (OOSM) in Section IV, multi-sensor data fusion
(MSDF) systems in section V, followed by distributed networks
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(DN) in section VI, mathematical design in track-to-track fu-
sion in Section VII, Distributed Consensus-Based estimation in
Section VIII, Distributed particle filtering (DKF) in Section IX,
self-tuning-Based distributed fusion kalman filter in Section X.
Finally some concluding remarks are given in Section XI.

II. D ISTRIBUTED KALMAN FILTER METHODS AND THEIR

APPLICATIONS

A. DKF methods

DKF can be introduced through different methods promoting
to an better filtering approach, also considering various scenar-
ios. A list of publications in DKF is summarized in Table I and
Table II. For example, under uncertain observations, method
which include measurement with a false alarm probability asa
special case is considered in [1], and randomly variant dynamic
systems with multiple models are considered in [2]. Optimal
centralized and distributed fusers are algebraically equivalent in
this case [3]. Looking at mode estimation in power systems,
a trust-based distributed Kalman filtering approach to estimate
the modes of power systems is presented in [4]. Using stan-
dard Kalman filter locally together with a consensus step in or-
der to ensure that the local estimates agree are shown in [5].
Frequency-domain characterization of the distributed estima-
tor’s steady-state performance are presented in [96]. Version of
Extend Kalman filtering to globally optimal Kalman filteringfor
the dynamic systems with finite-time correlated noises is shown
in [146]. Distributed Kalman-type processing schemes essen-
tially make use of the fact that the sensor measurements do not
enter into the update equation for the estimation error covari-
ance matrices, that is, covariance matrices of all sensors calcu-
lated at each individual sensor site without any further need of
communication is presented in [147]. Also, in distributed fusion
Kalman filtering, weighted covariance approach is reportedin
[153]. Distributed Kalman filtering fusion with passive packet
loss or initiative intermittent communications from localesti-
mators to a fusion center while the process noise does exist,is
presented in [157]. For each Kalman update, an infinite num-
ber of consensus steps, how restricted to one is presented in
[197] [198]. For each Kalman update, state estimates addition-
ally exchanged, are presented in [199]. When only the estimates
at each Kalman update over-head are exchanged, the results
are reported in [200]. Analysis of the number of messages to
exchange between successive updates in a distributed Kalman
filter is documented in [201]. Global optimality of distributed
Kalman filtering fusion exactly equal to the corresponding cen-
tralized optimal Kalman filtering fusion, is shown in [271].A
parallel and distributed state estimation structure is developed
in the form of hierarchical estimation structure is specified in
[292]. A computational procedure to transform a hierarchical
Kalman filter into a partially decentralized estimation structure
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Fig. 1. A general structure of Distributed Kalman Filter

is presented in [293]. Optimal distributed Kalman filter based
on a-priori determination of measurements is given in [295].

Estimation of sparsely connected, large scale systems is re-
ported in [20] and ann-th order with multiple sensors presen-
tation is shown in [21]. Data-fusion over arbitrary communi-
cation networks is shown in [22]. Iterative consensus protocols
are provided in [23]. Using bipartite fusion graphs, the issue
of how DKF is performed is the subject of [24]. Local aver-
age consensus algorithms for DKF are shown in[25]. Consen-
sus strategies for DKF are reported in [26]. Semi-definite pro-
gramming based consensus iterations, developed for DKF, are
shown in [27]. Converge speed of consensus strategies, is given
in [28]. Distributed Kalman filtering, with focus on limiting
the required communication bandwidth, is shown in [118]. Dis-
tributed Kalman-type processing schemes, which provide opti-
mal track-to-track fusion results at arbitrarily chosen instants of
time, are developed in [148]. Distributed architecture of track-
to-track fusion for computing the fused estimate from multiple
filters tracking a maneuvering target with the simplified max-
imum likelihood estimator, are presented in [213]. Original
batch form of the Maximum Likelihood (ML) estimator, is de-
veloped in [214] and modified probabilistic neural network is
shown in [215].

Remark II.1: In [157], anℓ-sensor distributed dynamic sys-

tem is described by:

xk+1 = φkxk + υk,k = 0,1, .... (1)

yi
k = Hi

kxk +wi
k, i = 1, ...., ℓ (2)

whereφk is a matrix of orderr × r, xk, vk ∈Rr, Hk
i ∈RNi×r,

yi
k , wk

i ∈ RNi . The process noiseυk and measurement noise
wk

i are both zero-mean random variables independent of each
other temporally butwk

i and wk
j may be cross-correlated for

i 6= j at the same time instantk.
To compare performances between the centralized and dis-

tributed filtering fusion, the stacked measurement equation is
written as:

yk = Hkxk +wk (3)

where

yk = (y1t

k , ......,yℓt

k )t,Hk = (H1t

k , ......,Hℓt

k )t,

wk = (w1t

k , ......,wℓt

k )t (4)

and the covariance of the noisewk is given by:

Cov(wk) = Rk,Ri
k = Cov(wi

k), i = 1, ...., ℓ (5)

whereRk andRi
k are both invertible for alli. According to the

standard results of Kalman filtering, the local Kalman filtering
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Fig. 2. Classification of Distributed Kalman Filter
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at thei-th sensor is expressed as:

K̂i
k = P̂ i

k/kHit

k R̂i−1

k (6)

x̂i
k/k = x̂i

k/k−1 + K̂i
k(yi

k −Hi
kx̂i

k/k−1) (7)

P̂ i
k/k = P̂ i

k/k−1 − K̂i
kHkP̂ i

k/k−1 (8)

(9)

where, the covariance of filtering error can be stated as:

P̂ i−1

k/k = P̂ i−1

k/k−1 +Hi
k

t
R̂i−1

k Hi
k (10)

with

x̂i
k/k−1 = Φ̂kx̂i

k−1/k−1,

P̂ i
k/k = E[(x̂i

k/k − x̂k)(x̂i
k/k−1 − x̂k)t]

P̂ i
k/k−1 = E[(x̂i

k/k−1 − x̂k)(x̂i
k/k−1 − x̂k)t]

Similarly, the centralized Kalman filtering with all sensordata
is given by:

K̂k = P̂k/kHt
kR̂−1

k (11)

x̂k/k = x̂k/k−1 + K̂k(yk −Hkx̂k/k−1) (12)

P̂k/k = P̂k/k−1 − K̂kHkP̂k/k−1 (13)

(14)

where, the covariance of filtering error can be described as:

P̂−1
k/k = P̂−1

k/k−1 +Hk
tR̂−1

k Hk (15)

with

x̂k/k−1 = Φ̂kx̂k−1/k−1,

P̂k/k = E[(x̂k/k − x̂k)(x̂k/k−1 − x̂k)t]

P̂k/k−1 = E[(x̂k/k−1 − x̂k)(x̂k/k−1 − x̂k)t]

It is quite clear when the sensor noises are cross-dependentthat

Ht
kR̂−1

k Hk =
l∑

i=1

Hit

k R̂i−1

k Hi
k

Likewise, the centralized filtering and error matrix could be ex-
plicitly expressed in terms of the local filtering and error matri-
ces as follows:

P̂−1
k/k = P̂−1

k/k−1 +

l∑

i=1

(P̂ i−1

k/k − P̂ i−1

k/k−1) (16)

and

P̂−1
k/kx̂k/k = P̂−1

k/k−1

+
l∑

i=1

(P̂ i−1

k/k x̂i
k/k − P̂ i−1

k/k−1x̂
i
k/k−1) (17)

Also,

Hi′

k R̂i−1

k yi
k = P̂ i−1

k/k x̂i
k/k − P̂ i−1

k/k−1x̂
i
k/k−1 (18)

In what follows, we are going to deal with the practical situation
in which the local sensors may fail to send their estimates tothe
fusion center. In this case, the measurement equation of thecor-
responding centralized multi-sensor system has to be modified,
that is, the original multiple individual observations should be
stacked as a modified single observation.

B. DKF with applications

A list of publications in some application-oriented research
is summarized in Table III and Table IV. As it can be seen,
a large amount of research has been carried out in the frame-
work of modified filters. Multi-sensor networks are developed
that are amenable to parallel processing in [33]. Then, a two
sensors fusion filter system has been applied in [34], followed
by federated square root filter in [35]. Fusion filters are de-
veloped for linear time-invariant (LTI) systems with correlated
noises and multi-channel ARMA signals, respectively in [36]
and [37]. Fusion de-convolution estimators for the input white
noise are worked out in [38]-[39]. Distributed Kalman filter-
ing for cooperative localization is re-formulated as a parameter
estimation problem in [100]. DKF techniques for multi-agent
localization is dealt with in [101], [104]. Collaborative process-
ing of information, and gathering scientific data from spatially
distributed sources is described in [109]. Particle filter imple-
mentations using Gaussian approximations are documented in
[114]. Channel estimation method based on the recent method-
ology of distributed compressed sensing (DCS) and frequency
domain Kalman filter is worked out in [151]. Algorithms for
distributed Kalman filtering, where global information about
the state covariances is required in order to compute the esti-
mates are shown in [174]. The synthesis of a distributed al-
gorithm to compute weighted least squares estimates with sen-
sor measurements correlated is presented in [181]. Distributive
and efficient computation of linear minimum mean square er-
ror (MMSE) for the multiuser detection problem is presentedin
[186]. A statistical approach for calculating the exact PDFap-
proximated by well-placed Extended Kalman Filter is presented
in [192]. Distributed object tracking system which employsa
cluster-based Kalman filter in a network of wireless cameras
is presented in [194]. Distributed recursive mean-square error
(MSE) optimal quantizer-estimator based on the quantized ob-
servations is presented in [206] [207]. Design a communication
access protocol for wireless sensor networks tailored to con-
verge rapidly to the desired estimate and provides scalableerror
performance is presented in [208], [209]. Decentralized ver-
sions of the Kalman filter is presented in [210]. Distributed
Kalman filter based on quantized measurement innovations is
presented in [211]. Novel distributed filtering/smoothingap-
proach, flexible to trade-off estimation delay for MSE reduction,
while enhancing robustness is presented in [216]. In distributed
estimation agents, where a bank of local Kalman filters is em-
bedded into each sensor and diagnosis decision is performedby
a distributed hypothesis testing consensus method is presented
in [228]. State estimation of dynamical stochastic processes
based on severely quantized observations is reported in [232],
[233]. Scheme for approximate DKF and is based on reaching
an average-consensus is presented in [237]

In the multi-sensor random parameter matrices case [1],
sometimes, even if the original sensor noises are mutually in-
dependent, the sensor noises of the converted system are still
cross-correlated. Hence, such multi-sensor system seems not
satisfying the conditions for the distributed Kalman filtering fu-
sion given in [8]-[9]. It was proved that when the sensor noises
or the random measurement matrices of the original system are
correlated across sensors, the sensor noises of the converted sys-
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TABLE I

DISTRIBUTED KALMAN FILTERING (DKF) METHODS I

Distributed Kalman Filtering(DKF) Design Approaches Used References

• Under uncertain observations, including measurement witha
false alarm probability as a special case [1]
• Under uncertain observations, randomly variant dynamic systems
with multiple models [2]
• Optimal centralized and distributed fusers are algebraically
equivalent in this case [3]
• Power systems: mode estimation. A trust-based distributedKalman
filtering approach to estimate the modes of power systems [4]
• Using Standard Kalman filter locally, together with a
consensus step in order to ensure that the local estimates agree [5]
• Frequency-domain characterization of the distributed
estimator’s steady-state performance [96]
• Extend Kalman filtering to globally optimal Kalman filtering
for the dynamic systems with finite-time correlated noises [146]
• Distributed Kalman-type processing scheme essentially
makes use of the fact that the sensor measurements do not enter into
the update equation for the estimation error covariance matrices
i.e. covariance matrices of all sensors calculated at each individual
sensor site without any further need of communication [147]
• In Distributed fusion Kalman filtering, weighted covariance approach [153]
• Distributed Kalman filtering fusion with passive packet loss
or initiative intermittent communications from local estimators to a fusion
center while the process noise does exist [157]
• For each Kalman update, an infinite number of consensus steps
to restricted to one [197] [198]
• For each Kalman update, state estimates are additionally exchanged [199]
• Only the estimates at each Kalman update over-head are exchanged [200]
• Analyzes the number of messages to exchange between successive updates
in a distributed Kalman filter [201]
• Global Optimality of distributed Kalman filtering fusion exactly
equal to the corresponding centralized optimal Kalman filtering fusion [271]
• A parallel and distributed state estimation structure developed
from an hierarchical estimation structure [292]
• A computational procedure to transform an hierarchical Kalman filter
into a partially decentralized estimation structure [293]
• Optimal Distributed Kalman filter based on a-priori determination
of measurements [295]

tem are cross-correlated. Even if so, similarly with [6], cen-
tralized random parameter matrices Kalman filtering, wherethe
fusion center can receive all sensor measurements, can still be
expressed by a linear combination of the local estimates. There-
fore, the performance of the distributed filtering fusion isthe
same as that of the centralized fusion under the assumption that
the expectations of all sensor measurement matrices are of full
row rank. When there is no feedback from the fusion center
to local sensors, a distributed Kalman filtering fusion formula
under a mild condition is presented as [242]. A rigorous per-
formance analysis for Kalman filtering fusion with feedbackis
presented in [243].

Low-power DKF based on a fast polynomial filter is shown
in [262]. Consensus Problem and their special cases are re-
ported in [263]. DKF for sparse large-scale systems monitored

by sensor networks is treated in [264]. DKF to estimate actu-
ator faults for deep space formation flying satellites are devel-
oped in [265]. Internal model average consensus estimator for
distributed Kalman filtering is worked out in [266]. Distributed
’Kriged’ Kalman filtering is addressed in [267]. The behav-
ior of the distributed Kalman filter that varies smoothly from
a centralized Kalman filter to a local Kalman filter with aver-
age consensus update is presented in [268]. Both track fusion
formulas with feedback and without feedback are analysed in
[270]. Decoupled distributed Kalman fuser presented by using
Kalman filtering method and white noise estimation theory is
shown in [276]. Decomposition of a linear process model into
a cascade of simpler subsystems is given in [277]. Distributed
fusion steady-state Kalman filtering by using the modern time
series analysis method is shown as [278]. Distributed Kalman
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TABLE II

DISTRIBUTED KALMAN FILTERING (DKF) METHODS II

Distributed Kalman Filter References

• Estimate sparsely connected,
large scale systems [20]
• n-th order with multiple sensors [21]
• Data-fusion over arbitrary
communication networks [22]
• Iterative consensus protocols [23]
• Using bipartite fusion graphs [24]
• Local average consensus algorithms [25]
• Based on consensus strategies [26]
• Semi-definite programming
based consensus Iterations [27]
• Converge Speed of consensus strategies [28]
• Distributed Kalman filtering, with focus on limiting the
required communication bandwidth [118]
• Distributed Kalman-type processing scheme, which provides
optimal track-to-track fusion results at arbitrarily chosen
instants of time [148]
• Distributed architecture of track-to-track
fusion for computing the fused estimate from multiple filters
tracking a maneuvering target with the simplified maximum
likelihood estimator [213]
• Original batch form of the Maximum Likelihood (ML) estimator [214]
• Modified Probabilistic Neural Network [215]

filtering with weighted covariance is reported in [279]. Transfer
function describing the error behavior of the distributed Kalman
filter in the case of stationary noise processes is shown in [294].
The paper [2] shows that this result can be applied to Kalman
filtering with uncertain observations, as well as randomly vari-
ant dynamic systems with multiple models.

Under some regularity conditions as shown in [8], in partic-
ular the assumption of independent sensor noises, an optimal
Kalman filtering fusion was proposed in [8], which is proved to
be equivalent to the centralized Kalman filtering using all sen-
sor measurements; therefore such fusion is globally optimal. In
the multi-sensor random parameter matrices case, sometimes,
even if the original sensor noises are mutually independent, the
sensor noises of the converted system are still cross-correlated.
Hence, such multi-sensor system seems to be not satisfying the
conditions for the distributed Kalman filtering fusion given in
[8].

III. D IFFUSION-BASED DISTRIBUTED KALMAN FILTERING

The publications of diffusion-based DKF are classified in Ta-
ble V. Diffusion-based distributed expected maximization(EM)
algorithm for Gaussian mixtures is shown in [45]. Diffusion-
based Kalman filtering and smoothing algorithm is shown in
[46]. Distributed EM algorithm over sensor networks, consen-
sus filter used to diffuse local sufficient statistics to neighbors
and estimate global sufficient statistics in each node is shown in
[92]. Consensus filter diffusion of local sufficient statistics over
the entire network through communication with neighbor nodes
is presented in [94]. Diffusion Kalman filtering, where nodes

communicate only with their neighbors, and no fusion center
is worked in [168]. Distributed Kalman filtering proposed in
the context of diffusion estimation is treated in [169], [170].
Distributed Kalman filtering proposed in the context of aver-
age consensus [171][172]. Diffusion Kalman filtering for every
measurement and for every node, a local state estimate usingthe
data from the neighborhood is provided in [173].

Remark III.1: In the paper [45], a diffusion scheme of EM
(DEM) algorithm for Gaussian mixtures in Wireless Sensor Net-
works (WSNs) is proposed. At each iteration, the time-varying
communication network is modeled as a random graph. A
diffusion-step (D-step) is implemented between the E-stepand
the M-step. In the E-step, sensor nodes compute the local statis-
tics by using local observation data and parameters estimated
at the last iteration. In the D-step, each node exchanges local
information only with its current neighbors and updates thelo-
cal statistics with exchanged information. In the M-step, the
sensor nodes compute the estimation of parameter using the
updated local statistics by the D-step at this iteration. Com-
pared with the existing distributed EM algorithms, the proposed
approach can extensively save communication for each sen-
sor node while maintain the estimation performance. Different
from the linear estimation methods such as the least-squares
and the least-mean squares estimation algorithms, each iter-
ation of EM algorithm is a nonlinear transform of measure-
ments. The steady-state performance of the proposed DEM al-
gorithm can not be analyzed by linear way. Instead, we show
that the DEM algorithm can be considered as a stochastic ap-
proximation method to find the maximum likelihood estimation
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TABLE III

DISTRIBUTED KALMAN FILTERING(DKF) WITH APPLICATIONS I

DKF with Applications References

• Multi-sensor networks amenable to parallel processing [33]
• Two sensors fusion filter [34]
• Federated square root filter [35]
• Fusion filter for LTI systems with correlated noises [36]
• Fusion filter for multichannel ARMA signals [37]
• Fusion de-convolution estimators for the input white noise [38]-[39]
• Distributed Kalman filtering for cooperative localization
by reformulating as a parameter estimation problem [100]
• Distributed Kalman filtering techniques for
multi-agent localization [101][104]
• Collaborative processing of information, and gathering scientific
data from spatially distributed sources [109]
• Particle filter implementations use Gaussian approximations [114]
• Channel estimation method based on the recent methodology of
distributed compressed sensing (DCS) and Frequency DomainKalman Filter [151]
• Algorithm for distributed Kalman filtering, where global information
about the state covariances is required in order to compute the estimates [174]
• The synthesis of a distributed algorithm to compute weighted
least squares estimates with sensor measurements correlated [181]
• Distributive and efficient computation of linear MMSE for the
multiuser detection problem [186]
• A statistical approach derived, calculating the exact PDF approximated
by well-placed Extended Kalman Filter [192]
• Distributed object tracking system which employs a cluster-based
Kalman filter in a network of wireless cameras [194]
• Distributed recursive mean-square error (MSE) optimal quantizer-estimator
based on the quantized observations [206] [207]
• Design a communication access protocol for wireless sensornetworks
tailored to converge rapidly to the desired estimate and provides scalable error performance [208][209]
• Decentralized versions of the Kalman filter [210]
• Distributed Kalman Filter estimator based on quantized measurement innovations [211]
• Novel distributed filtering/smoothing approach, flexible to trade-off estimation
delay for MSE reduction, while exhibiting robustness [216]
• Distributed estimation agents designed, where a bank of local Kalman filters
embedded into each sensor, where, diagnosis decision performed by a distributed
hypothesis testing consensus method [228]
• State estimation of dynamical stochastic processes based on
severely quantized observations [232] [233]
• Scheme for approximate distributed Kalman filtering (DKF) based on reaching
an average-consensus [237]

for Gaussian Mixtures. In this regard, we have in mind a net-
work ofM sensor nodes is considered, each of which hasNm

data observations{ym,n}, m = 1,2, ...., M , n = 1,2, ....., Nm.
These observations are drawn from aK Gaussian mixtures with
mixture probabilitiesα1, ....., αk.

ym,n ∼
K∑

j=1

αj .N(µj ,Σj) (19)

whereN(µ,Σ) denote the Gaussian density function with mean
µ and covarianceΣ. Letz ∈ {1,2, ...., K} denote the missing
data where Gaussiany comes from.

IV. D ISTRIBUTED OUT-OF-SEQUENCEMEASUREMENTS

(OOSM)

Distributed out-of-sequence measurements-based list of pub-
lications are classified in Table VI. Recursive ’BLUE’ with-
out prior is given in [56]. Cases of prior information about the
OOSM are presented in [57] [203]. Dating the state estimate
globally optimal is worked out in [58][59]. Minimum storage
at the current time to guarantee a globally optimal update with
three cases of prior information about OOSM are treated in [76],
[85], [136]. Updating the state estimate globally optimally with
an OOSM within one step time delay for a system with a non-
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TABLE IV

DISTRIBUTED KALMAN FILTERING(DKF) WITH APPLICATIONS II

DKF with Applications References

• When no feedback from the fusion center to local sensors, a distributed Kalman
filtering fusion formula under a mild condition [242]
• Rigorous performance analysis for Kalman filtering fusion
with feedback [243]
• Low-power DKF based on a fast polynomial filter [262]
• Consensus Problem and their special cases [263]
• DKF for sparse large-scale systems monitored by sensor networks [264]
• DKF to estimate actuator faults for deep space formation flying satellites [265]
• Internal model average consensus estimator for distributed Kalman filtering [266]
• Distributed Kriged Kalman filtering [267]
• The behavior of the distributed Kalman filter varies smoothly from a
centralized Kalman filter to a local Kalman filter with average consensus update [268]
• Track fusion formulas with feedback are, like the track fusion
without feedback [270]
• Decoupled distributed Kalman fuser presented by using Kalman filtering
method and white noise estimation theory [276]
• Decomposition of a linear process model into a cascade of simpler subsystems [277]
• Distributed fusion steady-state Kalman filtering by using the modern time
series analysis method [278]
• Distributed Kalman filtering with weighted covariance [279]
Transfer function describing the error behavior of the distributed Kalman
filter in the case of stationary noise processes [294]

TABLE V

DIFFUSION-BASED DISTRIBUTED KALMAN FILTERING

Diffusion Approaches Used References

• Diffusion-Based Distributed EM algorithm for Gaussian
mixtures [45]
• Diffusion-Based Kalman filtering and smoothing algorithm [46]
• Distributed EM algorithm over sensor networks, consensus
filter used to diffuse local sufficient statistics to neighbors
and estimate global sufficient statistics in each node [92]
• Consensus filter diffusion of local sufficient statistics
over the entire network through communication with
neighbor nodes [94]
• Diffusion Kalman filtering , where nodes communicate
only with their neighbors, and no fusion center is
present [168]
• Distributed Kalman filtering proposed in the context
of diffusion estimation [169][170]
• Distributed Kalman filtering proposed in the context
of average consensus [171][172]
• Diffusion Kalman filtering for every measurement
and for every node, a local state estimate using the
data from the neighborhood [173]
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TABLE VI

DISTRIBUTED OUT-OF-SEQUENCEMEASUREMENTS(OOSM)

Out-of-Sequence Measurements(OOSM) Approaches References

• Recursive BLUE without prior [56]
• Cases of prior information about the OOSM [57] [203]
• Dating the state estimate globally optimally [58][59]
• Minimum storage at the current time to guarantee a globally optimal update
with three cases of prior information about OOSM [76] [85][136]
• Updating the state estimate globally optimally with
an OOSM within one step time delay for a system
with a nonsingular state transition matrix [77]
• Multi-step OOSM updating using augmented state smoothing [79][80][81]
• Multi-step update in OOSM [78]
• Multi-sensor OOSM problem in a cluttered environment [80][82][83]
• one-step suboptimal updating algorithms using stored information
for systems with a nonsingular state transition matrix [77][84]
• Efficient incorporation of OOSMs
in Kalman filters [133]-[138]
• A globally optimal flight path update algorithm with OOSMs,
i.e. a globally optimal algorithm which not only updates thecurrent estimate but also
updates the past estimates with using a received OOSM [158]
• Counterpart of the OOSM update problem, needed to remove an earlier measurement
from the flight path [159]
• One-step solution for the general OOSM problem in tracking
presented independently [160] [161]
• Distributed fusion update for the local sensors with OOSMs [163]
OOSM with practical applications [162]
• Optimal analysis of one-step OOSM filtering algorithms in target tracking [183]
• Focus on centralized update problem for multiple local sensor systems
with asynchronous OOSMs [189]
• Thel step algorithm developed for OOSM [190]
• Optimal distributed estimation fusion with out-of-sequence measurements (OOSM)
at local sensors [202]
• Two new algorithms for solving the out-of-sequence data problem for the case
of linear and nonlinear dynamic control systems [219]
• When the delays and the sequence of arrival of all the information are
not fixed, constituting the named Out-Of-Sequence Problem (OOSP) [220]
• Out-Of-Sequence Problem (OOSP) developed for linear systems [220]-[224]
• OOSP developed for non-linear systems [225][226]
• A globally optimal state trajectory update algorithm for a sequence
with arbitrary delayed OOSMs including the case of interlaced OOSMs with less storages [274]
• OOSM with more applications [275]
• OOSM processing for tracking ground target using particle filters [296]
• Comparison of the KF and particle flter based out-of-sequence measurement fltering algorithms [297]

singular state transition matrix is developed in [77]. Multi-step
OOSM updating using augmented state smoothing is presented
in [79], [80], [81]. Multi-step update in OOSM is described in
[78]. Multi-sensor OOSM problem in a cluttered environment
is the subject in [80], [82], [83]. One-step suboptimal updating
algorithms using stored information for systems with a nonsin-
gular state transition matrix is shown in [77], [84]. Efficient in-
corporation of OOSMs in Kalman filters is developed in [133]-
[138]. A globally optimal flight path update algorithm with
OOSMs, that is, a globally optimal algorithm which not only
updates the current estimate but also updates the past estimates

using a received OOSM is documented in [158]. Counterpart of
the OOSM update problem, needed to remove an earlier mea-
surement from the flight path, is analysed in [159]. One-step
solution for the general OOSM problem in tracking is presented
independently in [160] and [161]. Distributed fusion update
for the local sensors with OOSMs is shown in [163]. OOSM
with practical applications are the subject in [162]. Optimal
analysis of one-step OOSM filtering algorithms in target track-
ing is presented in [183]. Focus on centralized update problem
for multiple local sensor systems with asynchronous OOSMs
is treated in [189]. Theℓ step algorithm developed for OOSM
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is given in [190]. Optimal distributed estimation fusion with
out-of-sequence measurements (OOSM) at local sensors can be
found in [202]. New algorithms for solving the out-of-sequence
data problem for the case of linear and nonlinear dynamic con-
trol systems are developed in [219]. When the delays and the
sequence of arrival of all the information are not fixed, con-
stituting the named out-of-sequence problem (OOSP) can be
traced to [220]. Out-of-sequence problem developed for linear
systems is described in [220]-[224]. OOSP developed for non-
linear systems are presented in [225][226]. A globally optimal
state trajectory update algorithm for a sequence with arbitrary
delayed OOSMs including the case of interlaced OOSMs with
less storages is given in [274]. More applications of OOSM can
be found in [275]. OOSM processing for tracking ground tar-
get using particle filters is included in [296]. A comparisonof
the KF and particle filter-based out-of-sequence measurement
fltering algorithms is included in [297].

V. M ULTI -SENSORDATA FUSION SYSTEMS (MSDF)

In Tables VII, VIII and IX, multi-sensor data fusion systems
(MSDF)-based list of publications are classified . Sensor noises
of converted systems cross-correlated but independent of the
original system is covered in [8]-[9]. Sensor noises of converted
system cross-correlated, and also correlated with the original
system is treated in [1]. Centralized fusion center, expressed by
a linear combination of the local estimates is presented in [6].
Without centralized fusion center, algorithms tend to be highly
resilient to lose one or more sensing nodes is treated in [7].Dis-
crete smoothing fusion with ARMA signals is presented in [29].
Linear minimum variance (LMV) with information fusion filter
is developed in [30], [31]. Deconvolution estimation of ARMA
signal with multiple sensors is presented in [32]. Fusion crite-
rion weighted by scalars is proposed in [41]. Functional equiv-
alence of two measurement fusion methods is provided in [42].
Centralized filter where data processed/communicated centrally
is discussed in [43]. New performance bound for sensor fusion
with model uncertainty is developed in [43]. All prior fusion re-
sults with asynchronous measurements is provided in [55]. Uni-
fied fusion model and unified batch fusion rules is presented in
[54], [53]. Unified rules by examples are found in [52]. Com-
puting formulation for cross-covariance of the local estimation
is presented in [51]. Conditions for centralized and distributed
fusers to be identical is developed in [50]. Relationships among
the various fusion rules is given in [49]. Optimal rules for each
sensor to compress its measurements is considered in [48]. Var-
ious issues unique to fusion for dynamic systems is developed
in [47]. Bayesian framework for adaptive quantization, fusion-
center feedback, and estimation of a spatial random field andits
parameters are treated in [60]. A framework for alternates to
quantile quantizer and fusion center is provided in [61].

Diagonal weighting matrices are presented in [62]. Differ-
ent fusion rates for the different states are contained in [63].
Optimal distributed estimation fusion in the linear minimum
variance (LMV) estimation is presented in [86]. Median fu-
sion and information fusion, not based on weighted sums of
local estimates, are presented in [87]. Distributed filtering al-
gorithms, optimal in mean square sense linear combinationsof
the matrix or scalar weights with derivations are developedin

[88], [89]. Closed-form analytical solution of steady fused co-
variance of information matrix fusion with arbitrary number of
sensor derived is developed in [90]. Focus on various issues
unique to fusion for dynamic systems, present a general data
model for discretized asynchronous multi-sensor systems,are
treated in [110]. Recursive BLUE fusion without prior informa-
tion is worked out in [111]. Statistical interval estimation fusion
is contained in [112]. Fused estimate communicated to a central
node to be used for some task is presented in [119]. Optimal dis-
tributed estimation fusion algorithm with the transformeddata
is proposed in [120], which is actually equivalent to the central-
ized estimation fusion. State estimation fusion algorithm, opti-
mal in the sense of maximum a posteriori (MAP) is developed
in [122]. Corresponding distributed fusion problem, proposed
based on a unified data model for linear unbiased estimator is
presented in [123]. An algorithm, fuses one step predictions at
both the fusion center and all current sensor estimates is given
in [124]. In multi-sensor linear dynamic system, several effi-
cient algorithms of centralized sensor fusion, distributed sensor
fusion, and multi-algorithm fusion to minimize the Euclidian
estimation error of the state vector are documented in [125].

Derivation of approximation technique for arbitrary proba-
bility densities, providing the same distributive fusion structure
as the linear information filter is presented in [126]. Multi-
sensor distributed fusion filters based on three weighted algo-
rithms, applied to the systems with uncertain observationsand
correlated noises are detailed in [164], [165]. Multi-sensor dis-
tributed fusion in state estimation fields, and easy fault detec-
tion, isolation and more reliability is developed in [165],[166],
[167]. Centralized fusion Kalman filtering algorithm, obtained
by combining all measurement data is developed in [178]. De-
sign of general and optimal asynchronous recursive fusion esti-
mator for a kind of multi-sensor asynchronous sampling system
is presented in [182]. Problem of data fusion in a decentral-
ized and distributed network of multi-sensor processing nodes
is contained in [188]. To assure the validity of data fusion,
a centralized trust rating system is presented in [195]. White
noise filter weighted by scalars based on Kalman predictor is
developed in [235]. White noise deconvolution estimators are
desvcribed in [236]. Optimal information fusion distributed
Kalman smoother given for discrete time multi-channel autore-
gressive moving average (ARMA) signals with correlated noise
is presented in [239]. Optimal dimensional reduction of sensor
data by using the matrix decomposition, pseudo-inverse, and
eigenvalue techniques is contained in [244]. Multi-sensorIn-
formation fusion distributed Kalman filter and applications is
presented in [247]. Based on analysis of the fused state esti-
mate covariances of the two measurement fusion methods is de-
scribed in [248]. Multi-sensor data fusion approaches to resolve
problem of obtaining a joint state-vector estimate, betterthan
the individual sensor-based estimates is documented in [249],
[250], [251]. Decentralized multi-sensor extended Kalmanfil-
ter (EKF) which is divided up into modules, one associated with
each sensor is developed in [252].

A distributed reduced-order fusion Kalman filter (DRFKF) is
treated in [254]. Fusion algorithm based on multi-sensor sys-
tems and a distributed multi-sensor data fusion algorithm based
on Kalman filtering is presented in [269]. Track fusion formu-
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las with feedback are, like the track fusion without feedback are
contained in [270]. The optimal DKF fusion algorithms for the
case with feedback and cross-uncorrelated sensor measurement
noises are presented in [272]. General optimal linear fusion is
worked out in [273]. Information fusion in distributed sensor
networks is shown in [299]. Multi-scale recursive estimation,
data fusion, and regularization are proposed in [302].

Remark V.1: In [29], using estimators of white measure-
ment noise, an optimal information fusion distributed Kalman
smoother is given for multichannel ARMA signals with corre-
lated noise. The work on ARMA signal and information fusion is
also done in [30] and [31]. Basically it has a three-layer fusion
structure with fault tolerant, and robust properties. The first fu-
sion layer and the second fusion layer both have nested parallel
structures to determine the prediction error cross-covariance
of the state and the smoothing error cross-covariance of the
ARMA signal between any two faultless sensors at each time
step. And the third fusion layer is the fusion centre to deter-
mine the optimal matrix weights and obtain the optimal fusion
distributed smoother for ARMA signals. The computation for-
mula of smoothing error cross-covariance matrix between any
two sensors is given for white measurement noise. The com-
putation formula of smoothing error cross-covariance matrix
between any two sensors is given for white measurement noise.
The discrete time multi-channel ARMA signal system consid-
ered here withL sensors is:

B(q−1)s(t) = C(q−1)w(t) (20)

yi(t) = s(t)+ υi(t), i = 1, ...., L (21)

wheres(t) ∈ ℜm is the signal to estimate,yi(t) ∈ ℜm is the
measurement of theith sensor,w(t) ∈ ℜr is the process noise,
υi(t) ∈ ℜm is the measurement noise of theith sensor,L is
the number of sensors, andB(q−1), C(q−1) are polynomial
matrices having the form

X(q−1) = X0 + X1(q
−1) + ..... + Xnx

q−nx

where the argumentq−1 is the back shift operator, that is,
q−1x(t) = x(t− 1), Xi, i = 0,1, , ....., nx are the coefficient
matrices, the degree ofX(q−1) is denoted bynx.

In the multi-sensor random parameter matrices case, some-
times, even if the original sensor noises are mutually indepen-
dent, the sensor noises of the converted system are still cross-
correlated. Hence, such multi-sensor system seems not satis-
fying the conditions for the distributed Kalman filtering fusion
as given in [8], [9]. In the paper [1], it was proved that when
the sensor noises or the random measurement matrices of the
original system are correlated across sensors, the sensor noises
of the converted system are cross-correlated. Even if so, simi-
larly with [6], centralized random parameter matrices Kalman
filtering, where the fusion center can receive all sensor mea-
surements, can still be expressed by a linear combination ofthe
local estimates. Therefore, the performance of the distributed
filtering fusion is the same as that of the centralized fusionunder
the assumption that the expectations of all sensor measurement
matrices are of full row rank. Numerical examples are given
which support our analysis and show significant performance
loss of ignoring the randomness of the parameter matrices. The

following discrete time dynamic system is considered:

xk+1 = Fkxk + υk (22)

yk = Hkxk +ωk,k = 0,1,2,3, .... (23)

wherexk ∈ ℜr is the system state,yk ∈ ℜN is the measurement
matrix,υk ∈ ℜr is the process noise, andωk ∈ ℜN is the mea-
surement noise. The subscriptk is the time index.Fk ∈ ℜr×r

andHk ∈ ℜN×r are random matrices.

VI. D ISTRIBUTED NETWORKS (DN)

The list of publications on distributed networks (DN) is
classified in Table X. Distributed networked control system
(DNCS) with multiple nodes is presented in [64]. Two approx-
imate filtering algorithms for estimating states of a DNCS is
presented in [65]. Distributed expectation maximization (EM)
algorithm over sensor networks, consensus filter used to diffuse
local sufficient statistics to neighbors and estimate global suffi-
cient statistics in each node are developed in [92]. Densityes-
timation and unsupervised clustering, first step in exploratory
data analysis is treated in [93], [95]. Consensus filter diffu-
sion of local sufficient statistics over the entire network through
communication with neighbor nodes, is provided in [94]. Dis-
tributed fusion of multiple sensor data to networks is considered
in [127]. Robust distributed state estimation against false data
injection is treated in [149]. Distributed sensor network,con-
sisting of a set of spatially scattered sensors that can measure
various properties of the environment, formulate local anddis-
tributed inferences, and make responses to events or queries are
developed in [150]. Sensor network where single or multiple
sensors amplify and forward their measurements of a common
linear dynamical system to a remote fusion center via noisy
fading wireless channels is given in [187]. Modified adaptive
Kalman filter for sensor-less current control of a three-phase in-
verter based distributed generation system is proposed in [191].
Distributed estimation scheme for tracking the state of a Gauss-
Markov model by means of observations at sensors connected
in a network is the subject of [196]. A message-passing version
of the Kalman consensus filter (KCF) is considered in [204].
A peer-to-peer (P2P) architecture of DKF that rely on reach-
ing a consensus on estimates of local Kalman filters is anal-
ysed in [205]. For decentralized tracking applications, DKF
and smoothing algorithms are derived for any-time MMSE op-
timal consensus-based state estimation using Wireless Sensor
Networks are considered in [212]. Trade-off between the es-
timation performance and the number of communicating nodes
with respect to the major MAC protocols used in wireless sensor
networks is developed in [218]. Distributed networked control
system (DNCS) consisting of multiple agents communicating
over a lossy communication channel is presented in [227]. Im-
pact of the network reliability on the performance of the feed-
back loop is considered in [229].

Remark VI.1:In literature, a single plant is usually assumed
for an NCS and the links between the plant and the estimator
or controller channel. This notion is extended by a distributed
networked control system (DNCS) in which there are multi-
ple agents communicating over a lossy communication channel
[64]. A DNCS extends an NCS to model a distributed multi-
agent system such as the Vicsek model. The best examples
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TABLE VII

MULTI -SENSORDATA FUSION SYSTEMS(MSDF) I

Multi-sensor Data Fusion(MSDF) Design Approaches References

• Sensor noises of converted systems cross-correlated,
whilst original system independent [8]-[9]
• Sensor noises of converted system cross-correlated,
whilst original system also correlated [1]
• Centralized fusion center, expressed by a linear combination
of the local estimates [6]
• No centralized fusion center, but algorithm highly resilient
to lose one or more sensing nodes [7]
• Discrete smoothing fusion with ARMA Signals [29]
linear minimum variance(LMV) with information fusion filter [30][31]
• Deconvolution estimation of ARMA signal with
multiple sensors [32]
• Fusion criterion weighted by scalars [41]
• Functional equivalence of two measurement fusion methods [42]
• Centralized filter, data processed/communicated centrally [43]
• New performance bound for sensor fusion with model uncertainty [43]
• All prior fusion results with Asynchronous Measurements [55]
• Unified fusion model and unified batch fusion rules [54][53]
• Unified rules by examples [52]
• Computing formulation for cross-covariance of the local estimation [51]
• Conditions for centralized and distributed fusers to be identical [50]
• Relationships among the various fusion rules [49]
• Optimal rules for each sensor to compress its measurements [48]
• Various issues unique to fusion for dynamic systems [47]
• Bayesian framework for adaptive quantization,
fusion-center feedback, and estimation of a spatial randomfield
and its parameters [60]
• Framework for alternates to quantile quantizer
and fusion center [61]

of such system include ad-hoc wireless sensor networks and a
network of mobile agents. The exact state estimation method
based on the Kalman filter is introduced in [64]. However,
the time complexity of the exact method can be exponential in
the number of communication links.are closed by a common
(unreliable) communication In the paper [65], this issue isad-
dressed by developing two approximate filtering algorithmsfor
estimating states of a DNCS. The approximate filtering algo-
rithms bound the state estimation error of the exact filtering al-
gorithm and the time complexity of approximate methods is not
dependent on the number of communication links. The stability
of estimators under a lossy communication channel is studied
in [304], [305]. However, the extension of the result to the gen-
eral case with an arbitrary number of lossy communication links
is unknown. While computing the exact communication link
probabilities required for stable state estimation is non-trivial,
the general conditions for stable state estimation using jump lin-
ear system theory are described. The following first distributed
control system consisting ofN agents is considered, in which
there is no communication loss. The discrete-time linear dy-

namic model of the agentj can be described as following:

xj(k +1) =
N∑

i=1

Aijxi(k)+Gjwj(k) (24)

wherek ∈ Z
+, xj(k) ∈ R

nx is the state of the agentj at time
k, wj(k) ∈ R

nw is a white noise process,Aij ∈ R
nx×nx , and

Gj ∈ R
nx×nW . Hence, the state of the agentj is governed by

the previous states of allN agents. It can also be considered
thatAijxi(k) as a control input from the agenti to the agentj
for i 6= j.

VII. M ATHEMATICAL DESIGN IN TRACK-TO-TRACK

FUSION

Track fusion (TF)-based list of publications are classifiedin
Table XI. Track fusion with information filter is presented in
[8]. Track fusion optimality with ML is presented in [10], [17],
[18], [19]. Two track estimates cross-covariance are presented
in [11]. Track fusion local estimate dependency is described
in [12]. Track fusion measurement is given in [13]. Track fu-
sion multi-sensor algorithm is proposed in [14] and track fusion
cross-covariance with independent noises is presented in [16].
Steady-state fusing problem is analysed in [15] whereas steady
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TABLE VIII

MULTI -SENSORDATA FUSION SYSTEMS(MSDF) II

Multi-sensor Data Fusion(MSDF) Design Approaches References

• Diagonal weighting matrices [62]
• Different fusion rates for the different states [63]
• Optimal distributed estimation fusion in the
linear minimum variance (LMV) estimation [86]
• Median fusion and information fusion, not based on weightedsums
of local estimates [87]
• Distributed filtering algorithms, optimal in mean square sense linear
combinations of the matrix or scalar weights with derivations [88][89]
• Closed form analytical solution of steady fused covariance
of information matrix fusion with arbitrary number of sensor derived [90]
• Focus on various issues unique to fusion for dynamic systems,
present a general data model for discretized asynchronous
multi-sensor systems [110]
• Recursive BLUE fusion without prior information [111]
• Statistical interval estimation fusion [112]
• Fused estimate communicated to a central node
to be used for some task [119]
• Optimal distributed estimation fusion algorithm
with the transformed data is proposed, which is actually equivalent
to the centralized estimation fusion [120]
• State estimation fusion algorithm, optimal in the sense of
maximum a posteriori (MAP) [122]
• Corresponding distributed fusion problem, proposed based
on a unified data model for linear unbiased estimator [123]
• An algorithm, fuses one step predictions at both
the fusion center and all current sensor estimates [124]
• In multi-sensor linear dynamic system, several efficient algorithms of
centralized sensor fusion, distributed sensor fusion, andmulti-algorithm
fusion to minimize the Euclidian estimation error of the
state vector [125]

state fused covariance for hierarchical track fusion architecture
with feedback is provided in [66]. Cross-covariance of the local
track is developed in [67]. Weighted covariance state-vector
Track fusion is analysed in [68]-[69]. Pseudo-measurement
state-vector track fusion is presented in [70]-[71]. Steady state
fused covariance matrix is the subject of [72]. Various architec-
tures for track association and fusion is contained in [73]-[74].
Fused estimate communicated to a central node to be used for
some task is shown in [119]. Track-to-track fusion algorithm,
optimal in the sense of ML for more than two sensors is treated
in [121]. Measurement fusion and state vector track fusion is
considered in [255]. State vector track fusion with pseudo-
measurement is presented in [256], [257]. Performance of var-
ious track-to-track fusion algorithms from aspects of fusion ac-
curacy, feedback and process noises are treated in [258]. Fuse
state vectors using Weighted Covariance (WC) is presented in
[259], [260]. Weighted covariance algorithm turns out to be
a xaximum likelihood estimate is proposed in [261]. Perform
track fusion optimally for a multiple-sensor system with a spe-
cific processing architecture is treated in [290]. Track-to-track
fusion for multi-sensor data fusion is contained in [291]. Com-
mon process noise on the two-sensor fused-track covarianceis

shown in [298]. Track association and track fusion with non-
deterministic target dynamics is presented in [300]. Compari-
son of two-sensor tracking methods based on state vector fusion
and measurement fusion is considered in [301].

VIII. D ISTRIBUTED CONSENSUS-BASED ESTIMATION

Distributed Consensus-Based Estimation list of publications
are classified in Table XII. Iterative consensus protocols is pro-
posed in [23]. Local average consensus algorithms is treated in
[25]. Similar reults are reported in [26], [175] based on con-
sensus strategies and in [27] based on consensus Iterations. The
issue of converge speed of consensus strategies is shown in [28].
Dynamic consensus problems regarding fusion of the measure-
ments and covariance information with consensus filters are
treated in [75]. Results on using standard Kalman filter locally,
together with a consensus step in order to ensure that the local
estimates agree are developed in [5]. Distributed expectation-
maximization (EM) algorithm over sensor networks, consensus
filter used to diffuse local sufficient statistics to neighbors and
estimate global sufficient statistics in each node are the subject
of [92]. Consensus filter diffusion of local sufficient statistics
over the entire network through communication with neighbor
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TABLE IX

MULTI -SENSORDATA FUSION SYSTEMS(MSDF) III

Multi-sensor Data Fusion(MSDF) Design Approaches References

• Derivation of approximation technique for arbitrary probability
densities, providing the same distributable fusion structure as the linear
information filter [126]
• Multi-sensor distributed fusion filters based on three weighted
algorithms, applied to the systems with uncertain observations and correlated noises [164] [165]
• Multi-sensor distributed fusion in state estimation fields, and easy
fault detection, isolation and more reliability [165][166][167]
• Centralized fusion Kalman filtering algorithm, obtained by
combining all measurement data [178]
• Design of general and optimal asynchronous recursive fusion estimator
for a kind of multi-sensor asynchronous sampling system [182]
• Problem of data fusion in a decentralized and distributed network of
multi-sensor processing nodes [188]
• To assure the validity of data fusion, a centralized trust rating system [195]
• white noise filter weighted by scalars based on Kalman predictor [235]
• White noise de-convolution estimators [236]
• Optimal information fusion distributed Kalman smoother given
for discrete time multichannel autoregressive moving average (ARMA) signals
with correlated noise [239]
• Optimal dimensionality reduction of Sensor Data by using the matrix
decomposition, pseudo-inverse, and eigenvalue techniques [244]
• Multi-sensor Information fusion distributed Kalman filterand
applications [247]
• Based on analysis of the fused state estimate covariances ofthe two
measurement fusion methods [248]
• Multi-sensor data fusion approaches to resolve problem of
obtaining a joint state-vector estimate, better than the individual
sensor-based estimates [249][250][251]
• Decentralized multi-sensor EKF which has been divided up into
modules, one associated with each sensor [252]
• A distributed reduced-order fusion Kalman filter (DRFKF) [254]
• Fusion algorithm based on multi-sensor systems and a
distributed multi-sensor data fusion algorithm based on Kalman filtering [269]
• Track fusion formulas with feedback are, like the track fusion
without feedback [270]
• The optimal distributed Kalman Filtering fusion algorithms
for the case with feedback and cross-uncorrelated sensor measurement
noises [272]
• General optimal linear fusion [273]
• Information fusion in distributed sensor networks [299]
• Multi-scale Recursive Estimation, Data Fusion, and Regularization [302]

nodes is presented in in[94]. Consensus-based distributedlin-
ear filtering problem is developed in [97]. The interaction be-
tween the consensus matrix, the number of messages exchanged
per sampling time, and the Kalman gain for scalar systems are
analysed in [98]. Kalman filter coupled with a consensus filter,
ensuring estimates asymptotically converge to the same value
are presented in [99]. A novel state estimation algorithm for
linear stochastic systems, proposed on the basis of overlapping
system decomposition, implementation of local state estimators
by intelligent agents, application of a consensus strategypro-
viding the global state estimates are detailed in [105]. Average-

consensus algorithm forn measurements of noisy signals ob-
tained fromn sensors in the form of a distributed low-pass fil-
ter is described in [106] and average-consensus algorithm for n

constant values is given in [107], [108]. Consensus-Based dis-
tributed implementation of the unscented particle is developed
in filter [113]. Consensus-based distributed approached Kalman
filters for linear systems [116], [117]. A message-passing ver-
sion of the Kalman consensus filter (KCF) is proposed in [204].
A peer-to-peer (P2P) architecture of DKF that rely on reach-
ing a consensus on estimates of local Kalman filters is shown in
[205]. Consensus-based suboptimum Kalman filtering scheme
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TABLE X

DISTRIBUTED NETWORKS(DN)

Design Approaches Used in DN References

• Distributed networked control system (DNCS) with multiplenodes [64]
• Two approximate filtering algorithms for estimating statesof a DNCS [65]
• Distributed expectationmaximization (EM) algorithm oversensor networks,
consensus filter used to diffuse local sufficient statisticsto neighbors
and estimate global sufficient statistics in each node [92]
• Density estimation and unsupervised clustering, first stepin
exploratory data analysis [93][95]
• Consensus filter diffusion of local sufficient statistics
over the entire network through communication with neighbor nodes [94]
• Distributed fusion of multiple sensor data to networks [127]
• Robust distributed state estimation against false data injection [149]
• Distributed sensor network, consisting of a set of spatially
scattered sensors that can measure various properties of the
environment, formulate local and distributed inferences,and
make responses to events or queries [150]
• Sensor network where single or multiple sensors amplify and
forward their measurements of a common linear dynamical system to a remote
fusion center via noisy fading wireless channels [187]
• Modified adaptive Kalman filter for sensor-less current control
of a three-phase inverter based distributed generation system [191]
• Distributed estimation scheme for tracking the state of a Gauss-Markov
model by means of observations at sensors connected in a network [196]
• A message-passing version of the Kalman-Consensus Filter (KCF) [204]
• A peer-to-peer (P2P) architecture of DKF that rely on reaching
a consensus on estimates of local Kalman filters [205]
• For decentralized tracking applications, distributed Kalman
filtering and smoothing algorithms are derived for any-timeMMSE optimal
consensus-based state estimation using Wireless Sensor Networks [212]
• Trade-off between the estimation performance and the number
of communicating nodes with respect to the major MAC protocols used in
wireless sensor networks [218]
• Distributed networked control system (DNCS) consisting of
multiple agents communicating over a lossy communication channel [227]
• Impact of the network reliability on the performance of
the feedback loop [229]

is developed in [217]. Finally, distributed filter that allows the
nodes of a sensor network to track the average ofn sensor mea-
surements using an average consensus based distributed filter is
documented in [238].

Remark VIII.1: In the paper [92], the number of Gaussian
components is given. In the next step, distributed unsupervised
clustering approach is used to select the number of Gaussian
components, or it can use a distributed algorithm to estimate
this number and run expectation maximization (EM) algorithm
simultaneously. A well-fitted approach to this integrationis the
one proposed in [306]. The proposed distributed EM algorithm
in the paper [92] handles this difficulty through estimatingthe
global sufficient statistics using local information and neigh-
bors local information. It calculates the local sufficient statis-
tics in the E-step as usual first. Then, it estimates the global suf-
ficient statistics. Finally, it updates the parameters in the M-step
using the estimated global sufficient statistics. The estimation

of global sufficient statistics is achieved by using an average
consensus filter. The consensus filter can diffuse the local suffi-
cient statistics over the entire network through communication
with neighbor nodes [22], [23], [307] and estimate the global
sufficient statistics using local information and neighbors local
information. By using the estimated global sufficient statistics,
each node updates the parameters in the M-step in the same
way as in the standard EM algorithm. Because the consensus
filter only requires local communication, that is, each nodeonly
needs to communicate with its neighbors and gradually gains
global information, this distributed algorithm is scalable. It is
shown that the equations of parameter estimation in this algo-
rithm are not related to the number of sensor nodes. Thus, it is
also robust. Failures of any nodes do not affect the algorithm
performance given the network is still connected. Eventually,
the estimated parameters can be accessed from any nodes in
the network. In this paper, section, we a network ofM sen-
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TABLE XI

MATHEMATICAL DESIGN IN TRACK-TO-TRACK FUSION

Track-to-Track Fusion Approaches References

• Track fusion with information filter [8]
• Track fusion optimality with ML [10][17][18][19]
• Two track estimates cross-covariance [11]
• Track fusion local estimate dependency [12]
• Track fusion measurement [13]
• Track fusion multi-sensor algorithm [14]
• Track fusion cross-covariance
with independent noises [16]
• Steady-state fusing problem [15]
• Steady state fused covariance for hierarchical
track fusion architecture with feedback [66]
• Cross-covariance of the local track [67]
• Weighted covariance state-vector Track fusion [68]-[69]
• Pseudo-measurement state-vector Track fusion [70]-[71]
• Steady state fused covariance matrix [72]
• Various architectures for track association and fusion [73]-[74]
• Fused estimate communicated to a central node to be used
for some task [119]
• Track-to-track fusion algorithm, optimal in the sense of ML
for more than 2 sensors [121]
• Measurement Fusion and State vector track fusion [255]
• State vector track fusion with pseudo-measurement [256] [257]
• Performance of various track-to-track fusion algorithms from aspects of
fusion accuracy, feedback and process noises [258]
• Fuse state vectors using Weighted Covariance (WC) [259][260]
• Weighted covariance algorithm turns out to be a Maximum likelihood estimate [261]
• Perform track fusion optimally for a multiple-sensor system
with a specific processing architecture [290]
• Track-to-track fusion for multi-sensor data fusion [291]
• Common process noise on the two-sensor fused-track covariance [298]
• Track association and track fusion with non-deterministictarget dynamics [300]
• Comparison of two-sensor tracking methods based on state vector fusion
and measurement fusion [301]

sors is considered, each of which hasNm data observations
ym,n(m = 1, .... ,M, n = 1, ....., Nm. The environment is as-
sumed to be a Gaussian mixture setting withK mixture proba-
bilities αm,k,(k = 1, ....., K). The unobserved state is denoted
as z and zk representsz = k. For each unobserved statezk,
observationym,n follows a Gaussian distribution with meanµk

and varianceΣk:

p(ym,n|µk,Σk) =
1√

2π‖Σk‖
1

2

e−
1

2
(ym,n−µk)T Σ−1

k
(ym,n−µk)(25)

The Gaussian mixture distribution for observationym,n is:

p(ym,n|θ) =

K∑

k=1

αm,kp(ym,n|µk,Σk) (26)

whereθ is the set of the distribution parameters to be estimated
θ = {αm,k,µk,Σk;k = 1, ...., K,m = 1, ....., M}.

IX. D ISTRIBUTED PARTICLE FILTERING(DPF)

A Distributed Particle Filtering(DPF) list of publications are
classified in Table XIII. Consensus-Based distributed imple-
mentation of the unscented particle filter is shown in [113].Par-
ticle filtering transformation into continuous representations is
presented in [128]. Consensus-based, distributed implementa-
tion of the unscented particle filter is shown in [129]. Particle
filter implementations using Gaussian approximations for the
local posteriors are proposed in [130], [131]. A novel frame-
work for delay-tolerant particle filtering, with delayed (out-of-
sequence) measurements is treated in [132]. An approach that
stores sets of particles for the lastl time steps, whereℓ is the pre-
determined maximum delay is reported in [139]. Markov chain
Monte Carlo (MCMC) smoothing step for (out-of-sequence)
measurements is presented in [140]. Approximate OOSM par-
ticle filter based on retrodiction(predicts backward) is given in
[141]. Also uses retrodiction (predicts backward), but employs
the Gaussian particle filter is found in [141]. Recent advances
in particle smoothing, storage-efficient particle filter are doc-
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TABLE XII

DISTRIBUTED CONSENSUS-BASED ESTIMATION

Design Approaches used in Distributed Consensus References

• Iterative consensus protocols [23]
• Local average consensus algorithms [25]
• Based on consensus strategies [26][175]
• Based consensus Iterations [27]
• Converge Speed of consensus strategies [28]
• Dynamic consensus problems regarding fusion of the measurements and
covariance information with consensus filters [75]
• Using Standard Kalman filter locally, together with a consensus step
in order to ensure that the local estimates agree [5]
• Distributed expectationmaximization (EM) algorithm oversensor networks,
consensus filter used to diffuse local sufficient statisticsto neighbors
and estimate global sufficient statistics in each node [92]
• Distributed expectationmaximization (EM) algorithm oversensor networks,
consensus filter used to diffuse local sufficient statisticsto neighbors
and estimate global sufficient statistics in each node [92]
• Consensus filter diffusion of local sufficient statistics
over the entire network through communication with neighbor nodes [94]
• Consensus-based distributed linear filtering problem [97]
• The interaction between the consensus matrix, the number of
messages exchanged per sampling time, and the Kalman gain for scalar systems [98]
• Kalman filter with a consensus filter, ensuring estimates
asymptotically converge to the same value [99]
• Novel state estimation algorithm for linear stochastic systems,
proposed on the basis of overlapping system decomposition,
implementation of local state estimators by intelligent agents,
application of a consensus strategy providing the global state estimates [105]
• Average-consensus algorithm forn measurements of noisy signals
obtained fromn sensors in the form of a distributed low-pass filter [106]
• Average-consensus algorithm forn constant values [107][108]
• Consensus-Based distributed implementation
of the unscented particle filter [113]
• Consensus-based distributed approached Kalman filters forlinear systems [116][117]
• A message-passing version of the Kalman-Consensus Filter (KCF) [204]
• A peer-to-peer (P2P) architecture of DKF that rely on reaching
a consensus on estimates of local Kalman filters [205]
• Consensus-based suboptimum Kalman filtering scheme [217]
• Distributed filter that allows the nodes of a sensor network to track the average
of n sensor measurements using an average consensus based distributed filter [238]

umented in [143]. A number of heuristic metrics to estimate
the utility of delayed measurements is proposed in [144] and
a threshold based procedure to discard uninformative delayed
measurements, calculating their informativeness is reported in
[145]. Optimal estimation using quantized innovations, with
application to distributed estimation over sensor networks using
Kalman-like particle filter is the subject of [176]. SOI-Particle-
Filter (SOI-PF) derived to enhance the performance of the dis-
tributed estimation procedure is presented in [193]. Problem of
tracking a moving target in a multi-sensor environment using
distributed particle filters (DPFs) is described in [230]. Optimal
fusion method, introduced to fuse the collected GMMs with dif-
ferent number of components, is presented in [231]. Two dis-
tributed particle filters to estimate and track the moving targets

in a wireless sensor network are provided in [245]. Updatingthe
complete particle filter on each individual sensor nodes is given
in [246]. Out-of-sequence measurement processing for track-
ing ground target using particle filters is presented in [296]. A
comparison of the KF and particle flter based out-of-sequence
measurement fltering algorithms is documented in [297].

X. SELF-TUNING BASED DISTRIBUTED FUSION KALMAN

FILTER

A Distributed particle filtering (DPF) list of publicationsare
classified in Table XIV. Multi-sensor systems with unknown
model parameters and noise variances, by the information ma-
trix approach, the self-tuning distributed state fusion informa-
tion filter are presented in [152]. Self-tuning distributedstate
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TABLE XIII

DISTRIBUTED PARTICLE FILTERING(DPF)

Design Approaches used in DPF References

• Consensus-Based distributed implementation
of the unscented particle filter [113]
• Particle filtering transformation into
continuous representations [128]
• Consensus-based, distributed implementation
of the unscented particle filter [129]
• Particle filter implementations using Gaussian
approximations for the local posteriors [130][131]
• A novel framework for delay-tolerant particle filtering,
with delayed (out-of-sequence) measurements [132]
• An approach that stores sets of particles for the lastl

time steps, wherel is the predetermined maximum delay [139]
• Markov chain Monte Carlo (MCMC) smoothing step for
(out-of-sequence) measurements [140]
Approximate OOSM particle filter based on retrodiction(predicts backward) [141]
• Also uses retrodiction (predicts backward), but employs
the Gaussian particle filter [141]
• Recent advances in particle smoothing,
storage-efficient particle filter [143]
• Proposed a number of heuristic metrics to estimate the
utility of delayed measurements [144]
• Proposed a threshold based procedure to discard uninformative
delayed measurements, calculating their informativeness [145]
• Optimal estimation using quantized innovations, with application
to distributed estimation over sensor networks using Kalman-like particle filter [176]
• SOl-Particle-Filter (SOI-PF) derived to enhance the
performance of the distributed estimation procedure [193]
• Problem of tracking a moving target in a multi-sensor environment
using distributed particle filters (DPFs) [230]
• Optimal fusion method, introduced to fuse the collected GMMs
with different number of components [231]
• Two distributed particle filters to estimate and track the moving
targets in a wireless sensor network [245]
• Updating the complete particle filter on each individual sensor nodes [246]
• Out-of-sequence measurement processing for tracking ground target
using particle filters [296]
• Comparison of the KF and particle flter based out-of-sequence measurement
fltering algorithms [297]

fusion Kalman filter with weighted covariance approach is re-
ported in [154]. Self-tuning decoupled fusion Kalman pre-
dictor is proposed in [155] and self-tuning weighted measure-
ment Kalman filter is included in [156]. Multi-sensor systems
with unknown noise variances, a new self-tuning weighted mea-
surement fusion Kalman filter is presented in [177], which has
asymptotic global optimality. Weighted self-tuning statefusion
filters is given in [179], [180]. Sign of innovation-particle fil-
ter (SOI-PF) improves the tracking performance when the tar-
get moves according to a linear and a gaussian model as pre-
sented in [184]. Efficiency of the SOI-PF in a nonlinear and
a non gaussian case, considering a jump-state Markov model
for the target trajectory is derived in [185]. Self-tuning infor-
mation fusion reduced-order Kalman predictor with a two-stage

fusion structure based on linear minimum variance is reported
in [234]. Optimal self-tuning smoother is proposed in [240].
Optimal self-tuning fix-lag smoother is developed in [241].A
new convergence analysis method for self-tuning Kalman pre-
dictor is presented in [253]. Self-tuning measurement system
using the correlation method, can be viewed as the least-squares
(LS) fused estimator and found in [280]. Self-tuning filter-
ing for systems with unknown model and/or noise variances is
presented in [281]-[284]. Self-tuning distributed state fusion
Kalman estimators is reported in [285][286] Self-tuning dis-
tributed (weighed) measurement fusion Kalman filters is shown
in [287], [288], [289].

Remark X.1: For self-tuning decoupled fusion Kalman pre-
dictor, the following multi-sensor linear discrete time-invariant
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stochastic system is considered in the paper [303]:

x(t +1) = Φx(t)+Γw(t) (27)

yi(t) = Hix(t)+ υi(t) , i = 1, ....., L (28)

wherex(t) ∈ ℜn,yi(t) ∈ ℜmi , w(t) ∈ ℜr and υi(t) ∈ ℜmi

are the state, measurement, process and measurement noises
of theith sensor subsystem, respectively, andΦ, Γ andHi are
constant matrices with compatible dimensions.

XI. CONCLUSIONS

The distributed system architecture, on the whole, is very
powerful since it allows the design of the individual units or
components to be much simpler, while not compromising too
much on the performance. A brief technical review and bibli-
ography listing on the advances in distributed Kalman filtering
(DKF) have been presented in this paper. The current and previ-
ous approaches have been reported in this paper. DKF compris-
ing of OOSM approaches, Diffusion-Based approaches, Con-
sensus Based Estimation, Self-Tuning designs and various ap-
plications of DKF have been classified. Some open problems
and current research activities have been discussed and around
300 references have been categorized. We apologize in advance
for any omission of publications, in spite of our best effort.
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