
  
Abstract— The critical importance of sustaining fault 
diagnosis, as a major system tool, is unquestionable if the high 
performance and reliability of increasingly-complex engineering 
systems is to be sustained over time and across a wide operating 
range.  However, it is quiet difficult to retain the joint ability of 
fault detection and isolation as it requires a strong system 
architecture. This is why, before designing an industrial 
supervision system, the determination of a system’s monitoring 
ability based on technical specifications is important as finding 
the source of the failure is not trivial in systems with large 
number of components and complex component relationships. 
This paper presents an efficient and cost-effective fault detection 
and isolation (FDI) scheme that evolved from an earlier one 
[23]. FDI specifications are translated into constraints of the 
optimization problem considering that the whole set of 
Analytical Redundancy Relations has been generated, under the 
assumption that all candidate sensors are installed and later on 
tested by an optimization algorithm using of linear programming 
and relaxed versions of non-linear programming. By doing so, 
the critical information about the presence or absence of a fault 
is gained in the shortest possible time, with not only 
confirmation of the findings but also an accurate unfolding-in-
time of the finer details of the fault, thus completing the overall 
diagnostic quality monitoring picture of the system under test.  
The proposed scheme is evaluated extensively on a two-tank 
process used in industry exemplified by a benchmarked 
laboratory scale coupled-tank system. 

Keywords—Sensor Location, Optimization, Fault Detection, 
Isolation, Analytical Redundancy Relations, linear 
programming, Benchmarked laboratory-scaled two-tank system. 

I. INTRODUCTION 

 rocess faults, if undetected, have a serious impact on 
process economy, product quality, safety, productivity 

and pollution level. In order to detect, diagnose and 
correct these abnormal process behaviors, efficient and 
advanced automated diagnostic systems are of great 
importance to modern industries. Fault diagnosis and 
process supervision are an increasingly important topic in 
many industrial applications and also in an active 
academic research area. Considerable research has gone 
into the development of such diagnostic systems [1]. Most 
approaches for fault detection and isolation (FDI) in some 
sense involve the comparison of the observed behavior of 
the process to a reference model. 

 
 

The process behavior is inferred using sensors 
measuring the important variables in the process. Hence, 
the efficiency of the diagnostic approach depends 
critically on the location of sensors used for monitoring 
process variables. The emphasis of most of the work on 
model-based fault diagnosis has been more on procedures 
to perform diagnosis given a set of sensors and less on the 
actual location of sensors for efficient identification of 
faults. The problem of sensor placement for FDI consists 
of determining the optimal set of instruments such that a 
predefined set of faults are detected and isolated. In many 
cases, this set is defined in order to design some remedial 
actions such that the control loop is able to continue 
operating even in the presence of a fault (fault-tolerant 
control). 

II.  RELATED WORKS 

In sensor location optimization, the usual objective to 
minimize in the sensor placement problem, is the sensor 
cost. There are several articles devoted to the study of the 
design of sensor networks using goals corresponding to 
normal monitoring operation. Aside from cost, different 
other objective functions such as precision, reliability, or 
simply observability were used. Different techniques were 
also used, such as graph theory, mathematical 
programming, genetic algorithms and multi-objective 
optimization, among others. The problem has also been 
extended to incorporate upgrade considerations and 
maintenance costs. In [2], it is being noticed that the 
problem of sensor placement in the model-based FDI 
community is still an open problem. However, some 
contributions have already been done in this direction [3], 
[4], [5], [6], [7], [8], [9], among others. 

In model-based Fault Detection and Isolation (FDI), 
faults are modeled as deviations of parameter values or 
unknown signals, and diagnostic models are, in such 
cases, often brought back to a residual form. For works 
based on continuous differential/difference-equation-
based models (see, e.g., see [1] and [10] and the 
references therein for discrete-event models [11], [12] and 
for diagnosis of hybrid systems [13]. To be able to 
perform model-based supervision, some redundancy is 
needed, and this redundancy is typically provided by 
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sensors mounted on the process. Scientific attention has 
mainly been devoted to design a diagnosis system given a 
model of a process equipped with a set of sensors. Not 
much attention has yet been devoted to deciding which 
sensors to include in the process. Deciding where to put 
sensors correctly, which makes it possible to meet a given 
diagnosis performance specification, is the topic of this 
paper. There are many types of performance measures in 
diagnosis, for example, detection performance, false alarm 
probabilities, time to detection, etc. In this paper, sensors 
are placed such that maximum isolability is possible, i.e., 
faults in different components should, as far as possible 
and desired, be able to be isolated from each other. Since 
sensor placement is often done early in the design phase, 
possibly before a reliable process model can be 
developed, the method developed in this paper is based on 
a structural process model.  

The main approaches to construct residuals are based 
on using Analytical Redundancy Relations (ARRs) 
generated either using the parity space [14] or observer 
approaches [15]. In [16] the sensor placement problem is 
solved by the analysis of a set of possible ARRs using 
algorithms of cycle generation in graphs. Some other 
results devoted to sensor placement for diagnosis using 
graph tools can be found in [17], [18], [19], [20], [21]. All 
these works use a structural model-based approach and 
define different diagnosis specifications to solve the 
sensor placement problem. In [22], the sensor placement 
problem is solved by the analysis of a set of possible 
Analytical Redundancy Relations (ARR) using algorithms 
of cycle generation in graphs. 

In [23], an optimal sensor placement for model-based 
FDI requires finding the set of all possible ARRs, 
considering that all possible candidate sensors are 
installed. Then, a set of sensors that minimizes the total 
cost of the network is selected such that the resulting 
ARRs satisfy that a pre-established set of faults can be 
detected and isolated. For sensor placement, it is required 
to use an ARR generation algorithm that is complete. 
Otherwise, the sensor placement could exclude from 
consideration some sensor configurations just because 
some ARRs were not generated. Excluded configurations 
could provide better FDI results that the ones that were 
generated. Or, even in some dramatic cases, the sensor 
placement could not find a solution because of this lack of 
completeness, whereas, in fact, if all ARRs were 
generated a solution would have been found. 

The structure of the paper is as follows. Section I gives 
the Introduction and Section II gives the details of the 
related works. In Section III, the sensor location 
optimization problem statement is presented. In Section 
IV, the implementation and results are being shown. 

Finally, some conclusions and extensions are suggested in 
Section V. 

III.  SENSOR LOCATION OPTIMIZATION PROBLEM 

STATEMENT 

A most critical and important issue surrounding the 
design of automatic control systems with the successively 
increasing complexity is guaranteeing a high system 
performance over a wide operating range and meeting the 
requirements on system reliability and dependability. To 
have an effective and optimal implementation of this 
performance, an optimal sensor placement is required.  

 
Fig 1. Proposed Scheme 

In this paper, a sensor location optimization approach is 
proposed to meet the requirements for a quick and reliable 
fault detection and isolation scheme and thus promoting to 
a FDI Optimization. The tasks of our fault diagnosis 
scheme (Fig.1) are executed by the implication of non-
linear programming and the relaxed version of linear 
programming by targeting the optimal sensor placement 
and an optimal objective cost value. The proposed scheme 
has been evaluated on a laboratory scaled based two-tank 
system. It is the most used prototype applied in the 
wastewater treatment plant, the petro-chemical plant, and 
the oil/gas systems.  

A. Model of the Coupled Tank System 

The physical system under evaluation is formed of two 
tanks connected by a pipe. The leakage is simulated in the 
tank by opening the drain valve. A DC motor-driven 
pump supplies the fluid to the first tank and a PI controller 
is used to control the fluid level in the second tank by 
maintaining the level at a specified level, as shown in Fig. 
2.  

A step input is applied to the dc motor- pump system to 
fill the first tank. The opening of the drainage valve faults 
introduces a leakage in the tank. Various types of leakage 
are introduced and the liquid height in the second 
tank, 2H , and the inflow rate, iQ , are both measured. The 

National Instruments LABVIEW package is employed to 
collect these data.     

  
TABLE 1. VARIABLES OF THE COUPLED TANK SYSTEM 



Variable Description 
h1 Tank 1 level 
h2 Tank 2 level 
qv Valve flow 
qp Pump flow 
uv Valve control input 
up Pump control input 

TABLE 2. HYPOTHETICAL FAULTS OF THE SYSTEM 

Variable Description 
f1 Tank 1 leak 

 
f2 Tank 2 leak 

 
fh1 Wrong tank 1 level 

sensor reading 
fh2 Wrong tank 2 level 

sensor reading 
fqv Wrong valve flow 

sensor reading 
fqp Wrong sensor flow 

sensor reading 
fuv Wrong valve control 

input sensor reading 
fup Wrong pump control 

input sensor reading 
 
 As mentioned earlier, various types of leakages were 

introduced by opening the drainage valve and the liquid 
height profiles in the second tank were subsequently 
analyzed. Three variables being measured in this process 
are hydraulic height, hydraulic flow and the control 
output. In all, there are four internal variables and two 
input variables in the system, as summarized in Table 1. 
So the candidate sensor set comprises up to six sensors S 
= {hu, hl, qv, qp, uv, up}. Eight hypothetical faults are 
considered in the system (see Table 2): leaks in the tank 1 
and tank 2, and wrong readings of each candidate sensor. 
So the fault sets are F = P SF F∪  = {fu , fl} ∪  {fhu , fhl , fqv , 

fqp , fuv , fup} where Fp stands for Process faults and Fs 
stands for sensor faults.  

A benchmark model of a cascade connection of a dc 
motor and a pump relating the input to the motor, u, and 
the flow, iQ , is a first-order system: 

( )i m i mQ a Q b uφ= − +ɺ                               (1) 

where ma and mb are the parameters of the motor-pump 

system and ( )uφ is a dead-band and saturation type of 

nonlinearity.  It is assumed that the leakage Q
ℓ
 occurs in 

tank 1 and is given by: 

12dQ C gH=
ℓ ℓ

 (2) 

With the inclusion of the leakage, the liquid level 
system is modeled by: 

( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − −

ℓ
 (3) 

( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − − (4) 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ=
ℓ ℓ

is the leakage 

flow rate, ( )0 0 2Q C Hϕ= is the output flow rate, 1H is the 

height of the liquid in tank 1, 2H is the height of the liquid 

in tank 2, 1A  and 2A  are the cross-sectional areas of the 2 

tanks, g=980 2/ seccm  is the gravitational constant, 12C  

and oC  are the discharge coefficient of the inter-tank and 
output valves, respectively. 

The model of the two-tank fluid control system, shown 
above in Fig. 3, is of a second order and is nonlinear with 
a smooth square-root type of nonlinearity.  For design 
purposes, a linearized model of the fluid system is 
required and is given below in (5) and (6): 

( )1
1 1 1 1 2i

dh
b q a h a h

dt
α= − + + (5) 

( )2
2 1 2 2

dh
a h a h

dt
β= − −  (6) 

where 1h and 2h are the increments in the nominal 

(leakage-free)  heights0
1H and 0

2H : 

0
1 1 0 0 0

1 1 2 2

1
, ,

2 2 ( ) 2 2

dbC C
b a

A g H H gH
β= = =

−
,

2 1 0 0
2 12 2 2 2

do dC C
a a

gH gH
α= + = ℓ   

 
and the parameter α  indicates the amount of leakage. 

A PI controller, with gains pk and Ik , is used to 

maintain the level of the Tank 2 at the desired reference 
inputr  .  

where iq ,q
ℓ
, 0q , 1h  and 2h  are the increments in 

iQ ,Q
ℓ
, oQ , 0

1H and 0
2H , respectively, the parameters 1a  

and 2a  are associated with linearization whereas the 
parameters α  and β  are respectively associated with the 

leakage and the output flow rate, i.e. 1q hα=
ℓ

, 2oq hβ= . 



  

 
Figure 2. Two-tank model 

IV.  IMPLEMENTATION AND RESULTS 

A. Generation of ARR Table using Fuzzy Rules 

The main approaches to construct the residuals using 
ARRs generated either using parity space or observer-
based approaches. The approach develop over here for the 
ARR Generations is by using the observer-based 
technique improvised by using a sensor network Fig. 3.  

A sensor is modeled by a gain and an additive noise, as 
given below: 

 
0

i si i iy k y v= +  (7) 

 

where siy , 0
siy and iv are the measured sensor output, 

true or fault-free output and additive noise, respectively.  
Here the gain is such that 0 1sik≤ ≤ , with the degree of 

the fault ranging from no fault at all for 1sik =  to a  

complete  failure for 0sik = . The subsystems such as 

actuators, processors and controllers are denoted by 
transfer functions, iG . Many systems consisting of several 

closed loops, each with its own reference input, can be 
viewed as a sensor network that can be described by a 
ring-type topology. 

The objective of the sensor network is to diagnose  

 
Fig.3 Sensor Network 

 
faults in both the sensors, through the gains sik   and in the 

subsystems iG  by monitoring the sensor outputs iy .  

The mathematical relations governing the sensor 
outputs  iy  to the input to 0G , denoted by e  are: 

 



1 0 0 0sy G k e v= +  

2 0 1 1 1sy G G k e v= +  

3 0 1 2 2 2sy G G G k e v= +  

. 

. 

0 1 2 1 ( 1) 1...i i s i iy G G G G k e v− − −= +  

 
 
 
 
 
 
(8) 

 
where e r y= − . 

The fuzzy rules are being defined by using the steady-

state values of the sensor outputs,iy , denoted by ss
iy . A 

change in the gain sik or a change in the steady-state gain 

of the transfer function iG , denoted by ss
iG , is indicative 

of a fault in the i-th sensor and i-th subsystem, 
respectively (see Fig.2). Assuming that the noise term is 
subsumed in the fuzzy membership function, the steady-
state model takes the form: 
 

0 1 2 1 ( 1)...ss ss ss ss ss
i i s iy G G G G k e− −=  (9) 

 
Let us now define linguistic variables such as zero, and 

non-zero. For simplicity, we will consider the case where 
only one device can be faulty at any given time, i.e. the 
fault is assumed to be simple. In this case, the fuzzy rules 
may take the following form: 

Rule 1: If ss
iy  is non-zero, then there is a fault in  the 

steady-state gain 0
ssG or 1

ssG or 2
ssG or…or ss

iG   or  ith 

sensor gainsik  

Rule II: If ss
iy  is zero, then there is no fault in the 

subsystem’s steady-state gain 0
ssG or 1

ssG or 2
ssG or…or 

ss
iG or ith sensor gainsik  

Rule III: If  ss
iy  is zero and ( 1)s iy + is non-zero then there 

is a fault in subsystem 1
ss
iG + or sensor ( 1)s ik +  

Rule IV: If  ss
iy  is non-zero and ( 1)s iy + is zero then there 

is a fault in sensor sik  

Note: These rules may be generalized to multiple faults. 

B. Optimization Problem Formulation  

As in [23], the optimal sensor placement problem can 
be formulated as the following optimization problem as 
shown in Equation (10). Let q be a vector of binary 
elements that denotes which candidate sensors are 
installed or not. qj = 1 means that sensorjs S∈  is 

installed, whereas qj = 0 means that js is not. 

1

min : ( )
m

j j
j

J q w q

subject to

=

=∑
              (10) 

                       DF  is detectable ( Fault Diagnosis used for 

Detectibility of the fault) 

               DF  is isolable (Fault Diagnosis used for the 

Isolability of the fault) 

where m is the total number of candidate sensors  and 

jw  is the cost of sensor js  comprising purchase, 

maintenance, installation and reliability costs. 
Problem (1) will be solved for two general cases: 

♦ CASE I: I
D PF F=  

♦ CASE II: II
D P SF F F= ∪  

In CASE I, the Target Fault Set is known a priori, 
before solving the optimization problem. In CASE II, this 
is not true, since *S

F  will be known a posteriori, after the 

optimization problem is solved. Considering these cases, 
the following constraint equations are being used:  

 
:I

DF I
D PF F=  

I
DF  is detectable 

^

^

1,

i

ik i k P

r R

M f Fρ
∈

↔ ≥ ∀ ∈∑  (11) 

Note: PF  contains 1 2 3 4, , ,f f f f . 

:II
DF II

D P SF F F= ∪  

II
DF  is detectable 

^

^ 1

i

k P
ik i k

k k Sr R

if f F
M f F

q if f F
ρ

∈

∈ 
↔ ≥ ∀ ∈ ∈ 
∑  (12) 

Note: PF  contains 1 2 3 4, , ,f f f f  and SF  contains 

5 6 7 8, , ,f f f f . 

^

^ ^

1, , ,

i

I
D

ik il i k l P k l

r R

F is ISOLABLE

M M f f F f fρ
∈

↔ − ≥ ∀ ∈ ≠∑
 (13) 



II
DF  is isolable 

^

^ ^

1 ,

,
i

k l P

k l P k S
ik il i k

l k P l Sr R

k l k l S

if f f F

q if f F and f F
M M f F

q if f F and f F

q q if f f F

ρ
∈

∈ 
 ∈ ∈ ↔ − ≥ ∀ ∈ ∈ ∈ 
 ∈ 

∑

(14) 

Let iρ  be the binary ARR selector denoting whether 

ARR ri is valid ( iρ  =1) or not ( iρ = 0) and 
^

ikM and 
^

ilM are the matrices generated from the FD
I and FD

II . 

C. Implementation of Fuzzy Rules on the Coupled Tank 
System to generate the ARR Table 

We will use a set of fuzzy logic rules to detect a 
leakage. The fuzzy IF and THEN rules for the two-tank 
fluid system are derived using the sensor network shown 
in Fig.3. For the fault diagnosis problem, the equivalent of 
Fig. 3, is shown in Fig. 4 whose various sub-systems and 
sensor blocks are all explained below. First, note that the 

first two blocks in Fig. 4, i.e. 0G and 0
1 1 aG G γ= , represent 

the controller and the actuator sub-systems, respectively. 
As shown in Fig. 4, the leakage is modeled by the gain γ

ℓ
 

which is used to quantify the amount of flow lost from the 
tank. Thus the net outflow is quantified by the gain 

(1 γ−
ℓ
).  Since the two blocks 0

2G  and (1 γ−
ℓ
) cannot be 

dissociated from each other, they are fused into a single 

block labelled ( )0
2 2 1G G γ= −

ℓ
. The feedback sensor, 

modelled by the gainsfk , is used to feed the plant output y 

back to the controller, and is modelled by the last block 

3G  in Fig. 3, where 3 sfG k= . An additional sensor, termed 

as the redundant sensor of gain2sk , is used here to 

discriminate between faults in the height sensor and 
feedback sensor.  Even though the control input u does not 
necessitate a separate sensor to monitor its output as it is 
freely available from the digital controller (0G ), a 

separate unit gain, labeled 0 1sk = , is attributed to it. 

Similarly, the last sensor, used to monitor the feedback 
sensor output, is also attributed a unit gain, i.e. 3 1sk = . 

The reason for adding these two unit gains to Fig. 4 is 
motivated by our desire to make the overall sensor 
network structure for the leakage detection problem fit in 
well within the general sensor network. By doing so, the 
two fuzzy rules (Rules 1 and 2 given earlier) can be 
readily applied to Fig. 4. The four residuals, 0r , 1r , 2r  

and 3r , are the deviations between the fault-free and fault-

bearing measurements of the control input , flow rate,  

height from the redundant sensor, and height from the 
feedback sensor, respectively. 

1  Comments: The physical two-tank fluid system is 
nonlinear including dead-band nonlinearity and has fast 
dynamics. The identified model order is different from 
that of the model derived from the physical laws. This 
makes it difficult to employ the conventional parameter 
identification technique [6] as the function (.)ϕ  is 

difficult to obtain. Performing a number of offline 
experiments on the physical system by varying the 
detection parameters captures the influence of the 
detection parameters on the input-output behavior 
reliably.  
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Fig. 4 Fluid system subject to a leakage 

 
TABLE 3. EXAMPLE OF AN ARR TABLE 

 h1 h2 qp qv up uv 

ARRs1 0 1 0 1 1 1 

ARRs2 0 1 0 1 1 1 

ARRs3 0 1 0 1 0 1 

ARRs4 0 1 0 1 1 0 

ARRs5 0 0 0 1 1 1 

ARRs6 0 1 0 0 1 1 

 
TABLE 4. EXAMPLE OF A FAULT SIGNATURE MATRIX  

 f1 F2 fh2 fqv fup fuv 

ARRs1 0 1 1 1 1 1 

ARRs2 1 0 1 1 1 1 

ARRs3 1 1 1 1 0 1 

ARRs4 1 1 0 1 1 1 

ARRs5 1 1 0 1 1 1 

ARRs6 1 1 1 0 1 1 

Applying the exhaustive ARR generation algorithm 
described in [19] a Full ARR Table and a Full Fault 
Signature Matrix was created, a sample of which is shown 
in Table 3 and Table 4. where for example ARRs1 denotes 
the 1st sample generated.  

D. Optimization Results 

Cost Distribution table of 6 sensors as per the Fault 



Signature matrix was generated as follows (See Table 5): 
 

TABLE 5. COST DISTRIBUTION TABLE 
Variable Description Cost Distribution of the six sensors 

h1 Tank 1 
level 

10  X X  X X 

h2 Tank 2 
level 

100   X X  X 

qv Valve flow 10 X   X X X 

qp Pump flow 10 X X X X X X 

uv Valve 
control 
input 

10 X X X X  X 

up Pump 
control 
input 

100 X X   X  

 

Various techniques have been employed which are a) 
Binary Non-Linear Programming Technique b) Non-
Linear Programming with relaxation c) Binary Linear 
Programming and d) Linear Programming with relaxation. 

A sample of non-linear constraints is shown as below 
(See Equation 16-22): 

 
Min 10q hu+100q hl+10qqv+10qqp+10quv+100qup ; (15) 
 
Note : During constraint formulation, qhu =q3, q hl =q4, qqv 
=q5, qqp =q6, quv =q7, qup =q8 
 

q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1 (16) 

q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q7>=1 (17) 

q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8+q4*q7*q8>=1 (18) 

q4*q5*q7*q8+q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q4*q7*q8=q4       

                                                                                           (19) 

q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q7+q4*q5*q8+q5*q7*q8>=q5   

                                                                                          (20) 

q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q7+q5*q7*q8+q4*q7*q8>=q7  

                                                                                          (21) 

q4*q5*q7*q8+ q4*q5*q7*q8+q4*q5*q8+q5*q7*q8+q4*q7*q8>=q8  

                                                                                         (22) 

In the linearized version of programming, the 
constraints are being linearized in the following manner. 
For the following non-linear constraint :  
 

q4*q5*q7*q8                (23) 
 
The linearized version of equation (23) can be written as 
follows (See Equation 24-28):  
 
q4+q5+q7+q8<=x11+1+1+1 ; (24) 

x11<=q4 ; (25) 
x11<=q5 ; (26) 
x11<=q7 ; (27) 
x11<=q8 ; (28) 

 
A sample of detailed results for linear programming 

with relaxation technique is as follows (See Table 6): 
 

TABLE 6. SAMPLE OF DETAILED RESULTS FOR                                             

LINEAR PROGRAMMING WITH RELAXATION  

 
 

Moreover, it is shown that out of six sensors i.e.           
{h1, h2, qv, qp ,uv, up}, the optimal sensor placement is of 
four sensors which are h2, qv ,  uv and  up. Thus, the optimal 
sensor configuration for the 6 sensors being experimented 
is as follows:   

 
S* = {h2, qv, uv, up} (29) 

 
The objective value and the computational time results 

for the four techniques employed are as follows (Result # 
1- 2): 

 
 

 
Result # 1:  
 
    BINARY NON-LINEAR PROGRAMMING  

**** OBJECTIVE VALUE = 220.00 
GENERATION TIME = 0.031 SECONDS 

Result # 2:  
 
    LINEAR PROG. WITH RELAXATION 

**** OBJECTIVE VALUE = 161.4214 
GENERATION TIME = 0.094 SECONDS 
 
It can be seen from the results that the objective value 

of binary non-linear programming and linear 
programming with relaxation that linear programming 
with relaxation took a slightly large computational time.  
But, the objective value results for linear programming 



with relaxation are better than non-linear programming. 
One can also notice that the relaxed version has more 
optimal objective value cost as the sensors are not bound 
to straddle only between 0 and 1.   

V. CONCLUSION 

The sensor location problem has been addressed in this 
paper. Considering [23], the detectability and isolability 
performance are considered for optimal sensor placement. 
It allows determining the set of sensors that minimizes a 
pre-defined cost function satisfying at the same time a pre-
established set of FDI specifications for a given set of 
faults. Sets of all possible Analytical Redundancy 
Relations have been generated through a set of fuzzy 
rules, considering all possible candidate sensors installed. 
The optimization techniques of linear and nonlinear 
programming have been applied which shows an 
improved cost function, accompanied by a reduction  in 
computational time.  

Nevertheless, there are still some open issues which 
could be considered as a further research. Firstly, the 
causality constraints involved in the structural modeling of 
dynamic equations are not taken into account. Secondly, 
faults that change the structure of the model are not 
considered either, only additive faults on measurable 
variables have been dealt with here. The variable values 
with the relaxation technique show a particular behavior 
which, if analyzed as per the behavior of the system, 
warrants further study. Fault detectability and isolability 
constraints have been formulated in this paper, but other 
specifications such as fault identifiability, fault sensitivity, 
etc., could be easily included in the optimal sensor 
placement problem. 

ACKNOWLEDGEMENT 

The authors acknowledge support provided by the 
Universities of McMaster, KFUPM and UNB. 

REFERENCES 

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis 
and Fault-Tolerant Control. Springer, 2003. 

[2] M. Bagajewicz, Design and Upgrade of Process Plant 
Instrumentation. Lancaster, PA: Technomic Publishers, 2000. 

[3] S. Spanache, T. Escobet, and L. Trav´e-Massuy`es, “Sensor 
placement optimisation using genetic algorithms,” in Proc. 15th 
International Workshop on Principles of Diagnosis (DX’04), 
Carcassonne, France, June 23–25, 2004. 

[4] F. Nejjari, R. P´erez, T. Escobet, and L. Trav´e-Massuy`es, “Fault 
diagnosability utilizing quasi-static and structural modelling,” 
Math. Comput. Mod., vol. 45, pp. 606–616, 2006. 

[5] M. Staroswiecki, G. Hoblos, and A. Aitouche, “Sensor network 
design for fault tolerant estimation,” Int. J. Adapt. Control Signal 
Process., vol. 18, no. 1, pp. 55–72, 2004. 

[6] D. Maquin, M. Luong, and J. Ragot, “Fault detection and isolation 
and sensor network design,” Europ. J. Autom., vol. 31, no. 13, pp. 
396–406, 1997. 

[7] R. Raghuraj, M. Bhushan, and R. Rengaswamy, “Locating sensors 
in complex chemical plants based on fault diagnostic observability 
criteria,” AIChE J., vol. 45, no. 2, pp. 310–322, Feb. 1999. 

[8] C. Commault and J.-M. Dion, “Sensor location for diagnosis in 
linear systems: A structural analysis,” IEEE Trans. Automat. 
Contr., vol. 52, no. 2, pp. 155–169, 2007. 

[9] E. Frisk and M. Krysander, “Sensor placement for maximum fault 
isolability,” in Proc. 18th International Workshop on Principles of 
Diagnosis (DX’07), Nashville,TN,USA, May 29–31, 2007. 

[10] J. Gertler, Fault Detection and Diagnosis in Engineering Systems. 
New York: Marcel Dekker, 1998. 

[11] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and 
D. Teneketzis, “Failure diagnosis using discrete-event models,” 
IEEE Trans. Control Syst. Technol., vol. 4, no. 2, pp. 105–124, 
Mar. 1996. 

[12] J. Lunze and J. Schroeder, “Sensor and actuator fault diagnosis of 
systems with discrete inputs and outputs,” IEEE Trans. Syst., 
Man, Cybern. B, Cybern., vol. 34, no. 2, pp. 1096–1107, Apr. 
2004. 

[13] S. Narasimhan and G. Biswas, “Model-based diagnosis of hybrid 
systems,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 
37, no. 3, pp. 348–361, May 2007. 

[14] M. Staroswiecki and G. Comtet-Varga. Analytical redundancy 
relations for fault detection and isolation in algebraic dynamic 
systems. Automatica, 37(5):687–699, 2001.  

[15] R. Nikoukhah. A new methodology for observer design and 
implementation. IEEE Trans. Automat. Contr., 43 (2):229–234, 
1998. 

[16] D. Maquin, M. Luong, and J. Ragot. Fault detection and isolation 
and sensor network design. Europ. J. Autom., 31(13):396–406, 
1997. 

[17] R. Raghuraj, M. Bhushan, and R. Rengaswamy. Locating sensors 
in complex chemical plants based on fault diagnostic observability 
criteria. AIChE J., 45(2):310–322, February 1999.  

[18] M. Krysander and E. Frisk. Sensor placement for fault diagnosis. 
IEEE Trans. Syst., Man, Cybern. A, 38(6): 1398–1410, 2008. 

[19] C. Commault, J. M. Dion, and S. Y. Agha. Structural analysis for 
the sensor location problem in fault detection and isolation. 
Automatica, 44(8):2074–2080, aug 2008. 

[20] A. A. Yassine, S. Ploix, and J. M. Flaus. A method for sensor 
placement taking into account diagnosability criteria. Int. J. Appl. 
Math. Comput. Sci., 18(4):497– 512, 2008. 

[21] L. Trav´e-Massuy`es, T. Escobet, and X. Olive. Diagnosability 
analysis based on component supported analytical redundancy 
relations. IEEE Trans. Syst., Man, Cybern. A, 36(6):1146–1160, 
2006. 

[22] M. Krysander, “Design and analysis of diagnosis systems using 
structural methods,” Ph.D. dissertation, Linköpings Universitet, 
Linköping, Sweden, Jun. 2006. 

[23] R. Sarrate, V. Puig, T. Escobet, and A. Rosich. Optimal sensor 
placement for model-based fault detection and isolation. In Proc. 
46th IEEE Conference on Decision and Control, pages 2584–
2589, New Orleans, USA, December 12–14, 2007. 

 



 

 

 


