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Abstract— The critical importance of sustaining fault
diagnosis, as a major system tool, is unquestiendiihe high
performance and reliability of increasingly-complkngineering
systems is to be sustained over time and acrosdeaoperating
range. However, it is quiet difficult to retainetfoint ability of
fault detection and isolation as it requires a rgjresystem
architecture. This is why, before designing an B8idal
supervision system, the determination of a systemositoring
ability based on technical specifications is impottas finding
the source of the failure is not trivial in systemih large
number of components and complex component rekttips.
This paper presents an efficient and cost-effedtiuét detection
and isolation (FDI) scheme that evolved from anlieaone
[23]. FDI specifications are translated into coastis of the
optimization problem considering that the whole gaft
Analytical Redundancy Relations has been generatedker the
assumption that all candidate sensors are instaltedlater on
tested by an optimization algorithm using of linpemgramming
and relaxed versions of non-linear programming.dBing so,
the critical information about the presence or abseof a fault
is gained in the shortest possible time, with natlyo
confirmation of the findings but also an accuratdolding-in-
time of the finer details of the fault, thus comjlg the overall
diagnostic—quality—menitering picture of the systeimder test.
The proposed scheme is evaluated extensively omoatank
process used in industry exemplified by a benchethrk
laboratory scale coupled-tank system.

Keywords—Sensor Location, Optimization, Fault Detection,
Isolation, Analytical Redundancy Relations, linear
programming, Benchmarked laboratory-scaled two-tystem.

|. INTRODUCTION

P rocess faults, if undetected, have a serious itnpac
process economy, product quality, safety, proditgtiv
and pollution level. In order to detect, diagnosel a
correct these abnormal process behaviors, efficaemnt
advanced automated diagnostic systems are of great
importance to modern industries. Fault diagnosisl an
process supervision are an increasingly imporipittin
many industrial applications and also in an active
academic research area. Considerable researchohas g
into the development of such diagnostic systemsNIbist
approaches for fault detection and isolation (FBI3ome
sense involve the comparison of the observed behafi
the process to a reference model.

The process behavior is inferred using sensors
measuring the important variables in the processicH,
the efficiency of the diagnostic approach depends
critically on the location of sensors used for nhoring
process variables. The emphasis of most of the wark
model-based fault diagnosis has been more on puoegd
to perform diagnosis given a set of sensors argldaghe
actual location of sensors for efficient identifioa of
faults. The problem of sensor placement for FDIststs
of determining the optimal set of instruments stizdt a
predefined set of faults are detected and isolatechany
cases, this set is defined in order to design samedial
actions such that the control loop is able to cwi
operating even in the presence of a fault (faudrsnt
control).

Il. RELATED WORKS

In sensor location optimization, the usual objextio
minimize in the sensor placement problem, is thesce
cost. There are several articles devoted to traysitithe
design of sensor networks using goals correspontiing
normal monitoring operation. Aside from cost, diéfet
other objective functions such as precision, rdiighor
simply observability were used. Different technisjueere
also used, such as graph theory, mathematical
programming, genetic algorithms and multi-objective
optimization, among others. The problem has alsenbe
extended to incorporate upgrade considerations and
maintenance costs. In [2], it is being noticed thiz
problem of sensor placement in the model-based FDI
community is still an open problem. However, some
contributions have already been done in this dads],

[41, [5], [6], [7]. [8], [9], among others.

In model-based Fault Detection and Isolation (FDI),
faults are modeled as deviations of parameter satre
unknown signals, and diagnostic models are, in such
cases, often brought back to a residual form. Forksy
based on continuous differential/difference-equmatio
based models (see, e.g.,, see [1] and [10] and the
references therein for discrete-event models [12] and
for diagnosis of hybrid systems [13]. To be able to
perform model-based supervision, some redundancy is
needed, and this redundancy is typically provided b



sensors mounted on the process. Scientific atteritas
mainly been devoted to design a diagnosis systeeng
model of a process equipped with a set of sendtus.
much attention has yet been devoted to decidingtwhi
sensors to include in the process. Deciding wherput
sensors correctly, which makes it possible to raegiten
diagnosis performance specification, is the togfichis
paper. There are many types of performance measures
diagnosis, for example, detection performanceefalarm
probabilities, time to detection, etc. In this pamensors
are placed such that maximum isolability is possibk.,
faults in different components should, as far assjie
and desired, be able to be isolated from each .08iece
sensor placement is often done early in the dgsigrse,
possibly before a reliable process model can be
developed, the method developed in this paperssdan

a structural process model.

The main approaches to construct residuals aredbase
on using Analytical Redundancy Relations (ARRS)
generated either using the parity space [14] oenles
approaches [15]. In [16] the sensor placement praokik
solved by the analysis of a set of possible ARRagus
algorithms of cycle generation in graphs. Some rothe
results devoted to sensor placement for diagnasisgu
graph tools can be found in [17], [18], [19], [2(1]. All
these works use a structural model-based approagh a
define different diagnosis specifications to soltre
sensor placement problem. In [22], the sensor place
problem is solved by the analysis of a set of fnasi
Analytical Redundancy Relations (ARR) using aldoris
of cycle generation in graphs.

In [23], an optimal sensor placement for model-dase
FDI requires finding the set of all possible ARRs,
considering that all possible candidate sensors are
installed. Then, a set of sensors that minimizesttial
cost of the network is selected such that the tiegul
ARRSs satisfy that a pre-established set of faulls be
detected and isolated. For sensor placementyéojisired
to use an ARR generation algorithm that is complete
Otherwise, the sensor placement could exclude from
consideration some sensor configurations just ksecau
some ARRs were not generated. Excluded configurstio
could provide better FDI results that the ones thate
generated. Or, even in some dramatic cases, theorsen
placement could not find a solution because oflttk of
completeness, whereas, in fact, if all ARRs were
generated a solution would have been found.

The structure of the paper is as follows. Sectigivés
the Introduction and Section Il gives the detaifstiee
related works. In Section Ill, the sensor location
optimization problem statement is presented. IntiGec
IV, the implementation and results are being shown.

Finally, some conclusions and extensions are stegés
Section V.

Ill. SENSORLOCATION OPTIMIZATION PROBLEM
STATEMENT

A most critical and important issue surrounding the
design of automatic control systems with the swsigely
increasing complexity is guaranteeing a high system
performance over a wide operating range and me#ting
requirements on system reliability and dependabilito
have an effective and optimal implementation ofs thi
performance, an optimal sensor placement is redjuire
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Fig 1. Proposed Scheme

In this paper, a sensor location optimization apphois
proposed to meet the requirements for a quick alabie
fault detection and isolation scheme and thus ptimgado
a FDI Optimization. The tasks of our fault diagmsosi
scheme (Fig.1) are executed by the implication afi-n
linear programming and the relaxed version of linea
programming by targeting the optimal sensor placgme
and an optimal objective cost value. The proposbérse
has been evaluated on a laboratory scaled basethtko
system. It is the most used prototype applied ie th
wastewater treatment plant, the petro-chemicaltpkamd
the oil/gas systems.

A. Model of the Coupled Tank System

The physical system under evaluation is formedaaf t
tanks connected by a pipe. The leakage is simulatdte
tank by opening the drain valve. A DC motor-driven
pump supplies the fluid to the first tank and a&troller
is used to control the fluid level in the secondktdy
maintaining the level at a specified level, as shawrig.

2.

A step input is applied to the dc motor- pump syste
fill the first tank. The opening of the drainagdweafaults
introduces a leakage in the tank. Various typesakage
are introduced and the liquid height in the second
tank,H,, and the inflow rate€) , are both measured. The

National Instruments LABVIEW package is employed to
collect these data.

TABLE 1. VARIABLES OF THECOUPLED TANK SYSTEM



Variable Description

h, Tank 1 level
h, Tank 2 level
Qv Valve flow
Oo Pump flow
Uy Valve control input
Up Pump control input
TABLE 2. HYPOTHETICAL FAULTS OF THESYSTEM
Variable Description
fa Tank 1 leak
f, Tank 2 leak
fr1 Wrong tank 1 level
sensor reading
fro Wrong tank 2 level
sensor reading
fov Wrong valve flow
sensor reading
fop Wrong sensor flow
sensor reading
fuv Wrong valve control
input sensor reading
fup Wrong pump control
input sensor reading

As mentioned earlier, various types of leakagesewe
introduced by opening the drainage valve and theidi
height profiles in the second tank were subsequentl
analyzed. Three variables being measured in thlusgss
are hydraulic height, hydraulic flow and the cohtro
output. In all, there are four internal variablexd awo
input variables in the system, as summarized inerab
So the candidate sensor set comprises up to SFOKED
= {hy, h, g, g, u, ug}. Eight hypothetical faults are
considered in the system (see Table 2): leakseanahk 1
and tank 2, and wrong readings of each candidatgose
So the fault sets afe= F, OF; ={f,, i} O {fru, fu, fov,
fe » fw + fup} Where F, stands for Process faults afd
stands for sensor faults.

A benchmark model of a cascade connection of a dc
motor and a pump relating the input to the motprand
the flow, Q , is a first-order system:

Q =-2,Q +b,¢u) (1)
wherea,,and b, are the parameters of the motor-pump
system andg@(u)is a dead-band and saturation type of

nonlinearity. It is assumed that the leaka@eoccurs in
tank 1 and is given by:

Qf’ = Cd(' \ 2ng (2)

With the inclusion of the leakage, the liquid level
system is modeled by:

AT =Q-Cp(H,-H)-CH(H) @)
Azd:;[z = 12¢(H1_H2)_C<¢(H 2) 4)

where ¢(.) =sign(.)y/29(.),Q, =C,¢(H,) is the leakage
flow rate, Q, = Cy#(H,)is the output flow rateH,is the
height of the liquid in tank 1H, is the height of the liquid
in tank 2, A and A, are the cross-sectional areas of the 2
tanks, g=98@m/se¢ is the gravitational constanC,,
and C, are the discharge coefficient of the inter-tankl an
output valves, respectively.

The model of the two-tank fluid control system, who
above in Fig. 3, is of a second order and is nealirwith
a smooth square-root type of nonlinearity. Forigtes

purposes, a linearized model of the fluid system is
required and is given below in (5) and (6):

d
_hl = blqi _(a1 +a) h1 + a1h2(5)

Sah-(a-Ah ©

wherehand h,are the increments
(leakage-free) heights)and H?:

bi = i a1 = # = C—
A 2y2g9(H) - H3y)

0
2/2gH?
Cdi
2/ 2gH?

and the parametar indicates the amount of leakage.
A PI controller, with gainsk and k,, is used to

maintain the level of the Tank 2 at the desire@nezice
inputr .

where ¢, ,9,, d,.h and h, are the increments in
Q,,Q,,Q, ,H and H?, respectively, the parametess
and a, are associated with linearization whereas the
parametersy and [ are respectively associated with the
leakage and the output flow rate, igg.= ah,, q, = gh,.

in the nominal

a,=a+——_ g-=
2\/2gH?
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Figure 2. Two-tank model

IV. IMPLEMENTATION AND RESULTS

A. Generation of ARR Table using Fuzzy Rules

The main approaches to construct the residualgyusin
ARRs generated either using parity space or observe
based approaches. The approach develop over hatefo
ARR Generations is by using the observer-based
technique improvised by using a sensor network Fig.

A sensor is modeled by a gain and an additive nase
given below:

Y =kgy’ Vv, (7)

where y,, yJand v are the measured sensor output,

true or fault-free output and additive noise, respely.

Here the gain is such théit< k; <1, with the degree of
the fault ranging from no fault at all fok; =1 to a
complete failure fork; =0. The subsystems such as
actuators, processors and controllers are denoted b
transfer functionsG, . Many systems consisting of several

closed loops, each with its own reference inputy ba
viewed as a sensor network that can be described by
ring-type topology.

The objective of the sensor network is to diagnose
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faults in both the sensors, through the gdipsand in the
subsystemss, by monitoring the sensor outpuys.

The mathematical relations governing the sensor
outputs y, to the input toG, , denoted bye are:



yl = GOl(SOe-'- VO
y2 = GOlesle+ Vl
y3 = GOGlG 2ks 2e + V2

Y =G,GG,.. G K1+ Vi,

~i-1s

(8)

wheree=r -y.

The fuzzy rules are being defined by using thedstea
state values of the sensor outpyts,denoted by™. A
change in the gairkg or a change in the steady-state gain

of the transfer functiorG,, denoted b%=®, is indicative

of a fault in the i-th sensor and i-th subsystem,
respectively (see Fig.2). Assuming that the no&sentis
subsumed in the fuzzy membership function, thedstea
state model takes the form:

V" = GIGIGE. Gk e o

Let us now define linguistic variables suchzas, and
non-zero. For simplicity, we will consider the case where
only one device can be faulty at any given time, the
fault is assumed to be simple. In this case, theyfuules
may take the following form:

Rule 1: If y* is non-zero, then there is a fault in the
steady-state gainG;orGForG; or...or G* or ith
sensor gaik

Rule II: If y® is zero, then there is no fault in the
subsystem’s steady-state gait;"orG*orG;’or...or
G or ith sensor gaik

Rulelll: If y> is zero andy,,,, is non-zero then there
is a fault in subsyster?, or sensok,

RuleIV: If y*® is non-zero andy,,,, is zero then there
is a fault in sensok

Note: These rules may be generalized to multiple faults.

B. Optimization Problem Formulation

As in [23], the optimal sensor placement problem ca
be formulated as the following optimization problem
shown in Equation (10). Letj be a vector of binary
elements that denotes which candidate sensors are
installed or not.qg = 1 means that sensgi]S is

installed, whereag, = 0 means thas; is not.

min:J(q) =Y w,q,
j=1

subject to

(10)

F, isdetectable ( Fault Diagnosis used for
Detectibility of the fault)

F, isisolable (Fault Diagnosis used for the
Isolability of the fault)
wherem is the total number of candidate sensors and

w, is the cost of sensors; comprising purchase,

maintenance, installation and reliability costs.
Problem (1) will be solved for two general cases:

¢ CASELF'=F,
¢ CASEI:F," =F,OF,

In CASE |, theTarget Fault Set is knowna priori,
before solving the optimization problem. In CASEtHis
is not true, since~, will be knowna posteriori, after the

optimization problem is solved. Considering theases,
the following constraint equations are being used:

R R =F,

Fo' isdetectable - > Mg 21, O f OF, (11)
rOR

Note: F, contains f,, f,, f,, f,.

F':F"=F OF

F," isdetectable

’ 1 if f,O0F
o Y Mipgzy 0f 0OF (12)
! g if f, OF
rOR
Note: F, contains f, f,, f,,f, and Fg contains
fg, fs, T, fg.
F,'is ISOLABLE

Mi-Mi|p 21 0%, 1 OF, . f 2 f 3

-2

rOR




F," isisolable

1 if f,f0F
~ " if f,0F andf OF,
«-»ZMik—aniE qk_ or K~ Slof OF
-~ g if f,OF andf OFg
. if fi, fiOF
(14)

Let o be the binary ARR selector denoting whether

ARR r; is valid (o =1) or not (o= 0) and Miand

M are the matrices generated from thédnd i" .

C. Implementation of Fuzzy Rules on the Coupled Tank
System to generate the ARR Table
We will use a set of fuzzy logic rules to detect a

leakage. The fuzzy IF and THEN rules for the twokta
fluid system are derived using the sensor netwbdws

in Fig.3. For the fault diagnosis problem, the eglént of
Fig. 3, is shown in Fig. 4 whose various sub-systamd
sensor blocks are all explained below. First, ribéd the
first two blocks in Fig. 4, i.eG, andG, =Gy, , represent

the controller and the actuator sub-systems, réispse
As shown in Fig. 4, the leakage is modeled by thia g,
which is used to quantify the amount of flow lostrh the
tank. Thus the net outflow is quantified by the ngai
(1-y,). Since the two blocks, and (L-y, ) cannot be
dissociated from each other, they are fused ingingle
block labelled G, =GJ (1-y,). The feedback sensor,

modelled by the gaiky , is used to feed the plant outgut

back to the controller, and is modelled by the lastk
G, in Fig. 3, wher&, =k, . An additional sensor, termed

as the redundant sensor of dain is used here to
discriminate between faults in the height sensod an
feedback sensor. Even though the control inpabes not
necessitate a separate sensor to monitor its oagiitis
freely available from the digital controller&), a
separate unit gain, labelell, =1, is attributed to it.
Similarly, the last sensor, used to monitor thedbsek
sensor output, is also attributed a unit gain, kg.=1.
The reason for adding these two unit gains to Eigs
motivated by our desire to make the overall sensor
network structure for the leakage detection probiinm
well within the general sensor network. By doing s
two fuzzy rules (Rules 1 and 2 given earlier) can b
readily applied to Fig. 4. The four residualg, r,, T,
andr, , are the deviations between the fault-free antt-fau

bearing measurements of the control input , flote,ra

height from the redundant sensor, and height from t
feedback sensor, respectively.

1 Comments: The physical two-tank fluid system is
nonlinear including dead-band nonlinearity and Fest
dynamics. The identified model order is differenvnfi
that of the model derived from the physical lawisT
makes it difficult to employ the conventional parter
identification technique [6] as the functiog(.) is

difficult to obtain. Performing a number of offline
experiments on the physical system by varying the
detection parameters captures the influence of the
detection parameters on the input-output behavior
reliably.

controller

q
leakage

Fig. 4 Fluid system subject to a leakage

TABLE 3. EXAMPLE OF AN ARR TABLE

hy h, Op Qv Up Uy
ARRy; 0 1 0 1 1 1
ARRs, 0 1 0 1 1 1
ARRg 0 1 0 1 0 1
ARR« 0 1 0 1 1 0
ARRs 0 0 0 1 1 1
ARRss 0 1 0 0 1 1

TABLE 4. EXAMPLE OF A FAULT SIGNATURE MATRIX

f F2 fro fou fup fuv
ARRs 0 1 1 1 1 1
ARRy 1 0 1 1 1 1
ARRs3 1 1 1 1 0 1
ARRy 1 1 0 1 1 1
ARRss 1 1 0 1 1 1
ARRg 1 1 1 0 1 1

Applying the exhaustive ARR generation algorithm
described in [19] a Full ARR Table and a Full Fault
Signature Matrix was created, a sample of whicthimwvn
in Table 3 and Table 4. where for exampRRy denotes
the 1st sample generated.

D. Optimization Results
Cost Distribution table of 6 sensors as per theltFau



Signature matrix was generated as follows (SeeeTlapl

TABLE 5. COSTDISTRIBUTION TABLE

Variable | Description Cost Distribution of the sensors
h, Tank 1 10 X | X X X
level
h, Tank 2 100 X | X X
level
Qv Valve flow 10 | X X | X X
Op Pump flow 10 | X| X | X | X | X X
Uy Valve 10 | X| X | X | X X
control
input
Up Pump 100 | X | X X
control
input

Various techniques have been employed which are a)
Binary Non-Linear Programming Technique b) Non-
Linear Programming with relaxation c) Binary Linear
Programming and d) Linear Programming with reladati

A sample of non-linear constraints is shown as Welo
(See Equation 16-22):

Min 10q n,+100q n+ 100q* 1004+ 100+ 1000y, ; (15)

Note : During constraint formulation, On, =0g, 0n =04, Ogv
=0s; Adgp =Ys: Ouv =Y7; Aup =Us

04* 0s* 07" Og+ 0™ Ofs* 07+ 0™ O™ g+ 0™ 07 g+ O™ G7* Gg> =1 (16)
04* 05* 07" Og+ 0™ Ofs* 07+ 0™ O™ g+ 0™ O7* O+ O™ G7* 07> =1 (17)
04* 05* O7* Og+ 0™ Ofs* 07+ 0™ O™ g+ 0™ 07 O+ O™ G7* Gg> =1 (18)
04" 05" O7* Og+ O™ Os* O7* Og+ O™ O™ Gi7+ O™ O™ Qg+ O™ 07" Os= Cla
(19)
04" 05" O7* Og+ Oa* O™ O7* gt Oa™ Os* Oz + Oa™ O™ Olg+ O™ O7* 0> =0Tis
(20)
04" 05" O7* Og+ Oa* O™ O7* gt Oa™ Os™ Oz + O™ O7* Olg+ O™ O7* g™ =07
(21)
04" 05" O7* Og+ Oa* O™ O7* gt Oa™ Os* Olgt Os™ O7* Olg+ O™ O7* g™ =Cis
(22)

In the linearized version of programming, the
constraints are being linearized in the followingmer.
For the following non-linear constraint :

04" 05* 07" Gg (23)

The linearized version of equation (23) can betamitas
follows (See Equation 24-28):

Oat Qs+ Q7+ Og<=Xy+ 1+1+1; (24)

X11<=04 ; (25)
X11<=0s ; (26)
X11<=0y7; (27)
X11<=0g; (28)

A sample of detailed results for linear programming
with relaxation technique is as follows (See Td)te

TABLE 6. SAMPLE OF DETAILED RESULTS FOR
LINEAR PROGRAMMING WITH RELAXATION

Variables LB Relaxed UB  Marginal
---- VAR q3 . +INF  10.000
- VAR g4 0.707 +INF
---- VAR 5 1.000 +INF .
VAR g6 , +INF  10.000
VAR g7 1.000 +INF .

- VAR g8 0.707 +INF
---- VAR x1 0.707 +INF
- VAR x2 0.707 +INF
---- VAR %3 1.000 +INF
---- VAR x4 0.414 +INF
---- VAR x5 0.707 +INF
---- VAR %6 0.707 +INF
---- VAR x7 0.707 +INF
- VAR x8 0.414 +INF
---- VAR %9 0.414 +INF
---- VAR x10 0.707 +INF
- VAR x11 0414 +INF
-—--- VAR f -INF 161.421 +INF

Moreover, it is shown that out of six sensors i.e.
{hy, hy, qy, gy .Uy, Up}, the optimal sensor placement is of
four sensors which af® q,, u, and u, Thus, the optimal
sensor configuration for the 6 sensors being erparied
is as follows:

S = {hy, qu, Uy, Uy} (29)

The objective value and the computational time Itesu
for the four techniques employed are as followss(Re#
1- 2):

Result # 1:

BINARY NON-LINEAR PROGRAMMING

***x* OBJECTIVE VALUE = 220.00

GENERATION TIME = 0.031 SECONDS
Result # 2:

LINEAR PROG. WITH RELAXATION
**** OBJECTIVE VALUE = 161.4214
GENERATION TIME = 0.094 SECONDS

It can be seen from the results that the objeactalae
of binary non-linear programming and linear
programming with relaxation that linear programming
with relaxation took a slightly large computationathe.
But, the objective value results for linear prognaing



with relaxation are better than non-linear prograngn
One can also notice that the relaxed version hase mo
optimal objective value cost as the sensors aréoohd

to straddle only between 0 and 1.

V. CONCLUSION

The sensor location problem has been addresséisin t
paper. Considering [23], the detectability and abdlty
performance are considered for optimal sensor piacé
It allows determining the set of sensors that ming® a
pre-defined cost function satisfying at the sammeeta pre-
established set of FDI specifications for a given of
faults. Sets of all possible Analytical Redundancy
Relations have been generated through a set ofy fuzz
rules, considering all possible candidate senswtslied.
The optimization techniques of linear and nonlinear
programming have been applied which shows an
improved cost function, accompanied by a reduction
computational time.

Nevertheless, there are still some open issueshwhic
could be considered as a further research. Firsltly,
causality constraints involved in the structuraldeling of
dynamic equations are not taken into account. S#gpn
faults that change the structure of the model ast n
considered either, only additive faults on meaderab
variables have been dealt with here. The variablees
with the relaxation technique show a particular dwédr
which, if analyzed as per the behavior of the syste
warrants further study. Fault detectability andldabdity
constraints have been formulated in this paper,otiugr
specifications such as fault identifiability, fasknsitivity,
etc., could be easily included in the optimal senso
placement problem.
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