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Model Prediction-Based Approach to Fault Tolerant
Control with Applications

Magdi S. Mahmoud and Haris M. Khalid

Abstract—Fault-tolerant control (FTC) is an integral component in in-
dustrial processes as it enables the system to continue robust operation
under some conditions. In this paper, an FTC scheme is proposed for
interconnected systems within an integrated design framework to yield a
timely monitoring and detection of fault and reconfiguring the controller
according to those faults. The unscented Kalman filter (UKF)-based fault
detection and diagnosis system is initially run on the main plant and pa-
rameter estimation is being done for the local faults. This critical infor-
mation is shared through information fusion to the main system where the
whole system is being decentralized using the overlapping decomposition
technique. Using this parameter estimates of decentralized subsystems, a
model predictive control (MPC) adjusts its parameters according to the
fault scenarios thereby striving to maintain the stability of the system. Ex-
perimental results on interconnected continuous time stirred tank reactors
(CSTR) with recycle and quadruple tank system indicate that the proposed
method is capable to correctly identify various faults, and then controlling
the system under some conditions.

Index Terms—Fault tolerant control; Unscented Kalman filter; Decen-
tralized control; Overlapping decomposition; Model predictive control,
CSTR units, Quadruple tank system.

NOMENCLATURE

The variables used throughout the paper are expressed in Ta-
ble I. Moreover, f(.), g(.) and h(.) are also added in the nomen-
clature.

I. INTRODUCTION

IN process control industry, failures of some key control and
process elements are often encountered. The failure of such

major components will not only effect the performance of the
plant, but it will lead to critical operation problems leading to
instability and possible breakdown. For example, a faulty sen-
sor may easily effect the momentum of the production line and
in some cases may push the other sensors in the plant to work
beyond their design configuration, thereby leading to a major
control failure in the sensor network-based monitoring of the
plant. Other crucial scenarios can be a a burned-out thermo-
couple, a broken transducer or a stuck valve. Therefore, fault
tolerance has been one of the major issues in process control,
and its high availability has become a basic component for the
process industries.

Fault-tolerance or graceful degradation is basically the
design property that enables the system to continue operation
under some conditions, when some part of the system fails.
Because of the poor health of the system, the operation contin-
ues certainly at a reduced level, rather than failing completely.
Moreover, the performance is proportional to the severity of
the failure, as compared to a conventionally-designed system
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TABLE I
NOMENCLATURE

Symbols Function
x̄ Mean
Px Covariance
2L+1 Sigma vectors in UKF
QTS Quadruple tank System
UT Unscented transformation
α Spread of the sigma points around x̄
κ Secondary scaling parameter
β Incorporate prior knowledge of x dstrb.
λ Composite scaling parameter
L Dimension of the augmented state
Rv Process-noise covariance
Rn Measurement-noise covariance
Wi Weights
wk Identity state transition matrix
rk Noise
dk Desired output
wk Nonlinear observation
Re Constant diagonal matrix
λRLS Forgetting factor
hi Level of water in tank i in QTS
ai Area of water flowing out from tank i in QTS
Ai Area of tank i
γ1 QTS: tank 1 and tank 4 water diverting ration
γ2 QTS: tank 2 and tank 3 water diverting ration
k1 Gain of Pump 1 in QTS
k2 Gain of Pump 2 in QTS
ν1 QTS: Manipulated input 1 (pump 1)
ν2 QTS: Manipulated input 2 (pump 2)
g Gravitational constant in QTS
aleaki QTS: Leak in pipe of tank i in QTS
qin Inflow in QTS
qout Outflow in QTS
A Reactant species
B Desired product
U , R Undesired byproducts
Tj Reactor temp.
CAj Concentration of A
Qj Reactor heat input rate
Vj Reactor volume
cp Heat capacity
ρ Fluid density in reactor
f(.), g(.), h(.) Non-linear functions
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in which even a small failure can cause total breakdown. The
problem of fault tolerance is of extreme importance when it
comes to mission critical systems and life-critical systems and
several approaches have been adopted to implement a reliable
fault tolerant control scheme. Result on FTC for a direct-drive
wind turbines and five-phase permanent-magnet motors are re-
ported in [1] and [2], respectively. A scheme for optimal torque
FTC is proposed in [3]. A work on multi-phase power converter
drive for fault-tolerant machine development in aerospace ap-
plication is presented in [4]. Recent FTC applications are
found in [5], [6]. Depending upon how the redundancy is be-
ing utilized, FTC system design can be classified into two types:

• Passive fault tolerant control (PFTC) systems, and
• Active fault tolerant control (AFTC) systems.
In PFTC systems, controllers are fixed and are designed to be

robust against a class of a priori known faults. This approach
needs neither fault diagnosis and detection (FDD) schemes nor
controller reconfiguration, but it has limited fault-tolerant ca-
pabilities. Once the controller is designed in the passive fault
tolerant scheme, it will remain fix during the entire system op-
eration. Even in the event of component failures, the control
system should be able to maintain the designed performance. A
multiple disjoint decentralized control was proposed, in which
redundancy lies in the employment of multiple controllers [7].
Further extensions to control design against actuator failures
was developed using a state-feedback controller implementa-
tion [8]-[9]. PFTC is also known in the literature as reliable
control systems or control systems with integrity.

In contrast to PFTC system, AFTC systems react to compo-
nent failures actively by reconfiguring control actions so that
the stability and acceptable performance of the entire system
can be maintained. AFTC system is also referred to as self-
repairing [11], reconfigurable [12], restructurable [14], or self-
designing [15] systems. AFTC system consists basically of a)
a fault detection and diagnosis scheme b) controller reconfigu-
ration mechanism, and c) reconfigurable controller, with all of
these ingredients have to work in a systematic manner. In this
regard, AFTC systems were also named as fault detection, iden-
tification (diagnosis) and accommodation schemes [16]-[17].
Also [25] presents a strong tracking filter based generic model
control which leads to the reconfigurable controllers. Work on
AFTC for magnetic leviation systems is being made in [26]-
[27], where sensor faults have been considered.

In this paper, we have proposed an AFTC system. An im-
proved FTC scheme is developed within an integrated fault
detection and tolerance-based design framework. The devel-
oped methodology utilizes a model-prediction based fault tol-
erant technique to enhance the accuracy and reliability of para-
metric estimation done through UKF in the process fault de-
tection phase. The main contribution of the paper is the in-
corporation of the model-prediction based fault control at the
later stage, handling the system, with the UKF based improved
fault detection and estimation at the former stage. The proposed
scheme has then been successfully evaluated on an intercon-
nected CSTR unit with recycle and quadruple tank systems, thus
corroborating the theory underpinning it.

The paper is organized as follows: Fault tolerant problem

statement and the proposed solution formulation is presented
in section II, followed by the evaluation of the proposed scheme
in section III. Section IV presents the simulation results for the
techniques implemented. Finally some concluding remarks are
given in section V.

II. SYSTEM DESCRIPTION

To have an effective fault detection and tolerance, we have
assumed various faults in an interconnected system have been
successfully monitored, estimated and protected through toler-
ance by the encapsulation of the UKF with model-prediction
based decentralized control. Fig. 1 shows the proposed imple-
mentation plan. Unscented filters are employed in n states of
the system. They are planted here for the fault detection pur-
pose in high dynamic system. The residual is comparing the
output of unscented filters’ output and output of n states of a
healthy model of the plant which contain no faults, this results
in n residuals rn, which will give us the drift detection of the
system, these drift detections and output of the unscented fil-
ters will add in a summer to give us the parameter estimation
of the system. The drift detection and parameter estimation are
fed in an information unit known as FDD unit, from where the
information is fused, and proceeds further to the subsystems of
a particular system, made by overlapping decomposition, the
fused information tells the potency of the fault and its upper and
lower limits, which helps us to build a decentralized MPC-based
fault tolerant controller, which adjusts its parameters according
to the fault scenarios thereby striving to maintain the stability of
the system.

Assume that a process is monitored by N different sensors,
described by the following general nonlinear process and mea-
surement models in discrete time state-space framework:

x(k) = f(x(k− 1),u(k− 1),d(k− 1))+w(k− 1)

zi = ci(x(k))+ νi(k); i= 1, .....,N (1)

where f(.) and hi(.) are the known nonlinear functions, repre-
senting the state transition model and the measurement model,
respectively. x(k) ∈ Rnx is the process state-vector, u(k) ∈
Rnu denotes the manipulated process variables, d(k) ∈ Rnd

represents the process faults modeled by the process distur-
bances, zi(k) ∈ Rnzi are the measured variables obtained from
the N installed sensors, w(k) and vi(k) indicate the stochas-
tic process and measurement disturbances modeled by zero-
mean white Gaussian noises with covariance matrices Q(k) and
Ri(k), respectively.

A. Discrete-time UKF

In most practical applications of interest, the process and/or
measurement dynamic models are described by non-linear
equations, represented in system (1). This means that the non-
linear behavior can affect the process operation at least through
its own process dynamics or measurement equation. In such
cases, the standard Kalman filter algorithm is often unsuit-
able to estimate the process states using its linearized time-
invariant state-space model at the desired process nominal op-
erating point. UKF gives a simple and effective remedy to over-
come such non-linear estimation problem. Its basic idea is to
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Fig. 1. FTC implementation plan

locally linearize the non-linear functions, described by system
(1), at each sampling time instant around the most recent pro-
cess condition estimate. This allows the Kalman filter to be
applied to the following linearized time varying model:

x(k) = A(k)x(k− 1)+Bu(k)u(k− 1)+Bd(k)d(k− 1)

+w(k− 1)

zi(k) = Ci(k)x(k)+ νi(k); i= 1, ...,N (2)

where the state transition matrix A(k), the input matrices Bu(k)
and Bd(k), and the observation matrix Hi(k) are the jacobian
matrices which are evaluated at the most recent process operat-
ing condition in real-time rather than the process fixed nominal
values:

A(k) =
∂f

∂x
|x̂(k), Bu(k) =

∂f

∂u
|u(k) (3)

Bd(k) =
∂f

∂d
|d̂(k), Ci(k) =

∂hi

∂x
|x̂(k), i= 1, ....,10 (4)

In conventional control, disturbance variables d(k) are
treated as known inputs with distinct entry in the process
state-space model. This distinction between state and distur-
bance as non-manipulated variables, however, is not justified
from the monitoring perspective using the estimation proce-
dure. Therefore, a new augmented state variable vector x∗(k) =
[dT (k) xT (k)]T is developed by considering the process dis-
turbances or faults as additional state variables. To implement

this view, the process faults are assumed to be random state vari-
ables governed by the following stochastic auto-regressive (AR)
model equation:

d(k) = d(k− 1)+wd(k− 1) (5)

This assumption changes the linearized model formulations in
system (2) to the following augmented state-space model:

x∗(k) = A∗(k)x∗(k− 1)+B∗(k)u(k− 1)+

w∗(k− 1)

zi(k) = C∗
i (k)x

∗(k)+ νi(k); i= 1, ...,N (6)

Noting that:

A∗(k) =

[
Ind×nd 0nd×nx

Bd(k)
nx×nd A(k)nx×nx

]
B∗(k) =

[
0nd×nu Bu(k)

nx×nu
]T

C∗
i (k) =

[
01×nd Ci(k)

1×nx
]

W ∗(k− 1) =
[
wd(k− 1)nd×1 w(k− 1)nx×1

]T (7)

Assumption II.1: There exists a known positive constant L0

such that for any norm bounded x1(t),x2(t) ∈ Rn, the follow-
ing inequality holds:

∥f(u(t),y(t),x1(t))− f(u(t),y(t),x2(t))∥
≤ L0∥x1(t)−x2(t)∥ (8)
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Assumption II.2: The transfer function matrix C[zI − (A−
KC)]−1B is strictly positive real, where K ∈ Rn×r is chosen
such that A−KC is stable.

Remark II.1: For a given positive definite matrix Q > 0 ∈
Rn×n, there exists matrices P = PT > 0 ∈Rn×n and a scalar
R such that:

(A−KC)TP (A−KC) = −Q (9)
PB = CTR (10)

To detect the fault, the following is constructed:

x̂(k) = Ax̂(k)+ g(u(k),y(k))+BξHf(u(k),y(k), x̂(k))

+K(y(k)− ŷ(k)) (11)
ŷ(k) = Cx̂(k) (12)

where x̂(k) ∈ Rn is the state estimate, the input is u ∈ Rm,
and the output is y ∈ Rr. The pair (A,C) is observable. The
non-linear term g(u(k),y(k)) depends on u(k) and y(k) which
are directly available. The f(u(k), y(k), x(k)) ∈ Rr is a non-
linear vector function of u(k), y(k) and x(k). The ξ(k) ∈ R is
a parameter which changes unexpectedly when a fault occurs.
Since it has been assumed that the pair (A,C) is observable,
a gain matrix K can be selected such that A−KC is a stable
matrix. We define:

ex(k) = x(t)− x̂(k), ey(k) = y(k)− ŷ(k) (13)

Then, the error equations can be given by:

ex(k+1) = (A−KC)ex(k)+B[ξ(k)f(u(k),y(k),x(k))

−ξHf(u(k),y(k), x̂(k))], (14)
ey(k) = Cex(k) (15)

The convergence of the above filter is guaranteed by the follow-
ing theorem II.1:

Theorem II.1: Under the assumption (II.2), the filter is
asymptotically convergent when no fault occurs (ξ(k) =
ξH),i.e. limk→∞ey(k) = 0.

Proof: Consider the following Lyapunov function

V (e(k)) = eTx (k)Pex(k) (16)

where P is the solution of (9), Q is chosen such that ρ1 =
λmin(Q) − 2∥C∥.|R|ξHL0 > 0 Along the trajectory of the
fault-free system (14), the corresponding lyapunov difference
along the trajectories e(k) is:

∆V = E{V (e(k+1)|ek,pk)}−V (e(k))

= E{eT (k+1)Pie(k+1)}− eT (k)Pie(k)

= (Aeex +BLue)
TP (Aeex +BLue)− eTx (k)Pex(k)

= eT (k)[(P (A−KC)+ (A−KC)TP )

+ PBξH [f(u(k),y(k),x(k))

− f(u(k),y(k), x̂(k))]]e(k) (17)

From (II.1) and system (9), one can further obtain that

∆V ≤ −eTx (k)Qex(t)+ 2∥ey(k)∥.|R|ξHL0∥ex(k)∥
≤ −ρ1∥ex∥2 < 0 (18)

Thus, limk→∞ ex(k) = 0 and limk→∞ey(k) = 0. This com-
pletes the proof.

The UKF essentially addresses the approximation issues of the
EKF [18], [19], [20]. The basic difference between the EKF and
UKF stems from the manner in which Gaussian random vari-
ables (GRV) is presented through system dynamics. In the EKF,
the state distribution is approximated by GRV, which is then
propagated analytically though the first-order linearization of
the non-linear system. This can introduce large errors in the true
posterior mean covariance of the transformed GRV, which may
lead to sub-optimal performance and sometimes divergence of
the filter. The UKF addresses this problem by using a determin-
istic sampling approach. The state distribution is again approx-
imated by a GRV, but is now represented using a minimal set
of carefully chosen sample points. These sample points com-
pletely capture the true mean and covariance of the GRV, and
when propagated through the true non-linear system, capture
the posterior mean and covariance accurately to second order
(Taylor Series Expansion) for any nonlinearity. The EKF, in
contrast, only achieves first-order accuracy.

A.1 Unscented Transformation (UT)

The structure of the UKF is elaborated by UT for calculating
the statistics of a random variable which undergoes a nonlinear
transformation [20]. Consider propagating a random variable x
(dimension L) through a nonlinear function, y = f(x). Assume
x has mean x̄ and covariance Px. To calculate the statistics of y,
we form a matrix X of 2L+1 sigma vectors Xi according to:

X0 = x̄,

Xi = x̄+(
√
(L+λ)Px)i, i= 1, ......,L

Xi = x̄− (
√
(L+λ)Px)i −L, i= L+1, ......,2L (19)

where λ = α2(L+ κ)− L is a scaling parameter. The con-
stant α determines the spread of the sigma points around x̄, and
is usually set to a small positive value (1 ≤ α ≤ 10−4). The
constant κ is a secondary scaling parameter, which is usually
set to 3−L, and β is used to incorporate prior knowledge of
the distribution of x (for Gaussian distributions, β = 2) is op-
timal). (

√
(L+λ)Px)i is the ith column of the matrix square

root (that is, lower-triangular Cholesky factorization). These
sigma vectors are propagated through the nonlinear function
Yi = f(Xi), i = 0, ..., 2L. Now the mean and covariance for
y are approximated using a weighted sample mean and covari-
ance of the posterior sigma points:

ȳ ≈
2L∑
i=0

Wm
i Yi,

Py ≈
2L∑
i=0

W c
i (Yi − ȳ)(Yi − ȳ)T ,

W
(m)
0 =

λ

L+λ
,

W
(c)
0 =

λ

L+λ
+1−α2 +β,

W
(m)
i = W

(c)
i =

1

2(L+λ)
, i= 1, ....,2L.

A block diagram illustrating the steps in performing the UT
is shown in Fig. 1.
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Remark II.2: Note that this method differs substantially from
general Monte Carlo sampling methods which require orders of
magnitude more sample points in an attempt to propagate an
accurate (possibly non-Gaussian) distribution of the state. The
deceptively simple approach taken with the UT results in ap-
proximations that are accurate to the third order for Gaussian
inputs for all nonlinearities. For non-Gaussian inputs, approxi-
mations are accurate to at least the second order, with the accu-
racy of the third- and higher order moments being determined
by the choice of α and β.

A.2 Extension to UT: The UKF

In view of the foregoing, the UKF is an extension of the UT
to the following recursive estimation:

x̂k = xkprediction
+ κk [yk − ykprediction

] (20)

where the state random variables (RV) is redefined as the
concentration of the original state and noise variables: xa

k =
[xT

k vtk nt
k]

T . The UT sigma point selection scheme is then
applied to this new augmented state RV to calculate the corre-
sponding sigma matrix, X a

k . The UKF equations are given be-
low. Note that no explicit calculations of Jacobian or Hessians
are necessary to implement this algorithm. Initialize with 21:

x̂0 = E[x0],

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ],

x̂a
0 = E[xa] = [x̂T

0 0 0]T . (21)

For k ∈ [1, ....,∞], calculate the sigma points:

X a
k−1 = [x̂a

k−1 x̂a
k−1 + γ

√
P a
k−1 x̂a

k−1 − γ
√
P a
k−1] (22)

The UKF time-update equations are:

X x
k|k−1 = F(X x

k−1, uk−1, X ν
k−1),

x̂−
k =

2L∑
i=0

Wm
i X x

i,k|k−1,

P−
k =

2L∑
i=0

W c
i (X x

i,k|k−1 − x̂−
k )(X

x
i,k|k−1 − x̂−

k )
T ,

Yk|k−1 = H(X x
k|k−1,X

n
k−1),

ŷ−k =

2L∑
i=0

Wm
i Yi,k|k−1 (23)

The UKF measurement-update equations are:

Pȳkȳk
=

2L∑
i=0

W c
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )

T ,

Pxkyk
=

2L∑
i=0

W c
i (Xi,k|k−1 − x̂−

k )(Yi,k|k−1 − ŷ−k )
T ,

κk = Pxkyk
Pȳ−1

k
ȳk
,

x̂k = x̂−
k +κk(yk − ŷ−k ),

Pk = P−
k −κkPȳkȳk

κT
k (24)

where

xa = [xT vT nT ]T ,

X a = [(X x)T (X υ)T (Xn)T ]T ,and

γ =
√
L+λ (25)

In addition, λ is the composite scaling parameter, L is the di-
mension of the augmented state, Rv is the process-noise covari-
ance, Rn is the measurement-noise covariance, and Wi are the
weights.

B. Controller reconfiguration

Controller re-design can be considered by model matching.
As the nominal closed-loop system is known, the model of this
system can be used as a description of the dynamical properties
that the new controller should produce in connected with the
faulty plant. That is, the closed loop system should match with
the model of nominal loop. The nominal closed loop system is
composed of the linear nominal plant.

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k) (26)

and a state-feedback controller u(k) = −Kx(k) both of which
yield the model of the closed-loop system

ẋ(k) = (A−BK)x(k)

y(k) = Cx(k) (27)

If the controller does not use all the inputs uf of the input
vector u, the matrix K has zero rows. When the fault f occurs,
the faulty plant is given by:

x(k+1) = Afx(k)+Bfu(k)

y(k) = Cfx(k) (28)

where the fault f has changed the system properties, which are
now described by the matrices Af , Bf and Cf . If the set of
available inputs and outputs have changed, the matrices Bf and
Cf having vanishing columns or rows, respectively. A new state
feedback controller, u(k) = −Kfx(k) should be found such
that the closed-loop system

x(k+1) = (Af −BfKf )x(k)

y(k) = Cfx(k) (29)

behaves like the nominal loop. That is, the relation, A−
BK = Af −BfKf has to hold, which means that both closed
loop system have the similar dynamics. It cannot be satisfied,
unless B and Bf have the same image, (like in the case of a re-
dundant actuator). Therefore, the new controller Kf is chosen
so as to minimize the difference:

∥(A−BK)− (Af −BfKf )∥ (30)

The solution to this problem is given by:

Kf = B+
f (Af −A+BK)

= (B
′

fBf )
−1B

′

f (Af −A+BK) (31)
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where B+
f denotes the pseudo-inverse of Bf . The new con-

troller is adapted to the faulty system and minimizes the dif-
ference between the dynamical properties of the nominal loop
and the closed loop system with the faulty plant. In the pro-
posed scheme, this has been done with the help of overlapping
decomposition information set and model predictive control.

B.1 Model predictive control

Model predictive control (MPC) is a multi-variable control
algorithm that solves, at each sampling instant, a finite horizon
optimal control problem, and this involves an internal dynamic
model of the process using receding horizon control, model as-
sumptions and an optimization cost function J over the receding
prediction horizon to calculate the optimum control moves.
• Receding horizon control: The MPC scheme makes use of

the receding horizon principle. At each sample, a finite horizon
optimal control problem is solved over a fixed interval of time,
the prediction horizon. We assume that the controlled variables,
z(k), is to follow some set point trajectory, r(k). A common
choice is to use a quadratic cost function, which in combina-
tion with a linear system model yields a finite horizon linear
quadratic problem. We assume that a model on the form:

x(k+1) = Ax(k)+Bu(k),

y(k) = Cyx(k),

z(k) = Czx(k)+Dzu(k),

zc(k) = Ccx(k)+Dcu(k) (32)

is available. Here y(k) ϵ Rpy is the measured output, z(k) ϵ
Rpy the controlled output and u(k)ϵ Rm the input vector. The
state vector is x(k)ϵ Rn. The MPC controller should also re-
spect constraints on control variables as well as the constrained
outputs, zc(k) ϵ Rpc .

△umin ≤ △u(k)≤△umax,

umin ≤ u(k)≤ umax, zmin ≤ zc(k)≤ zmax (33)

where △u(k) = u(k) - u(k−1) are the control increments. The
distinction between controlled and constrained variables is nat-
ural, since only the controlled variables have specified reference
values.
• An optimal control problem: The optimal control problem

that is the core element of the MPC algorithm. Consider the
following quadratic cost function:

J(k) =

Hp+Hw+1∑
i=Hw

∥ ẑ(k+ i|k)− r(k+ i|k)

∥2Q +

Hu−1∑
i=0

∥ △û(k+ i|k),

−r(k+ i|k) ∥2R (34)

where ẑ(k + i|k) are the predicted controlled outputs at time
k and △ û(k+ i|k) are the predicted control increments. The
matrices Q≥ 0 and R> 0 are weighting matrices, which are as-
sumed to be constant over the prediction horizon. The length of
the prediction horizon is Hp, and the first sample to be included

in the horizon is Hw. Hw may be used to shift the control hori-
zon, but in the following presentation we will assume that Hw

= 0. The control horizon is given by Hu. The cost function (34)
may be rewritten as:

J(k) =∥ Z(k)− τ(k) ∥2Q + ∥ △U ∥2R (35)

where

Z(k) =

 ẑ(k|k)
...

ẑ(k+Hp − 1|k)

 , τ(k) =

 r(k|k)
...

r(k+Hp − 1|k)

 ,

△U(k) =

 △u(k|k)
...

△u(k+Hu − 1|k)

 ,

Q= diag
[
Q Q .. . Q

]
,R= diag

[
R R .. . R

]
By deriving the prediction expressions, we can write

Z(k) = Ψx(k) + Γu(k − 1) + Θ△U(k) (36)

where

Ψ=


Cz

CzA
CzA

2

...
CzA

Hp−1

 ,Γ =


Dz

CzB+Dz

CzAB+CzB+Dz

...
Cz

∑Hp−2
i=0 AiB+Dz



Θ=



Dz 0 . . .
CzB+Dz Dz 0

CzAB+CzB+Dz
. . .

...
...

. . . 0

Cz

∑Hp−2
i=0 AiB+Dz . . . Dz

...
. . .

...
Cz

∑Hp−2
i=0 AiB+Dz . . . . . .


Also, let

E(k) = τ(k)−Ψx(k)− Γu(k − 1) (37)

This quantity could be interpreted as the free response of the
system, if all the decision variables at t = k, △U(k), were set to
zero.

Remark II.3: An efficient technique for interconnected sys-
tems is the overlapping decomposition [10]. The model predic-
tive control has been derived here by subsystems from decen-
tralized overlapping decomposition using the following steps.
Consider the two systems.

S : ẋ = Ax, S̃ = ˙̃x = Āx̃ (38)

where x(t) ϵ Rn is the state of S and x̃ (t) ϵ Rñ. According to
the expansion-contraction or Inclusion Principle, S̃ includes
S, or that S is included by S̃ iff

x̃ = V x, Ã = V AU +M, UV = In (39)

It is obvious that the stability of S̃ implies the stability of S
and further details about computing matrices U,V,M and other
related issues can be found in.
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Remark II.4: The problem of minimizing the cost function is
a quadratic programming (QP) problem. The algorithm for ob-
taining the optimal control signal at each sample assumes that
the present state vector is available. Since this is often not the
case, state estimation is required. The celebrated separation
principle, stating that the optimal control and optimal estima-
tion problems solved independently, yields a globally optimal
controller for linear systems, suggests an attractive approach.
We let the solution of the optimization problem be based on an
estimate of the state vector, x̂(k) instead of the true state vector
x(k). For this purpose, a Kalman filter can be used. Apart from
estimating the state of the system, an estimator could be used
to estimate disturbances, assuming that a disturbance model is
available. For example, error-free tracking may be achieved by
including a particular disturbance model in the observer.

Remark II.5: In our case of UKF-based fault detection (com-
prising of drift detection and parameter estimation), the follow-
ing is constructed:

x̂(k) = Ax̂(k)+ g(u(k),y(k))+Bξ̂(k)f(u(k),y(k), x̂(k))

+ K(y(k)− ŷ(k)) (40)
ŷ(k) = Cx̂(k) (41)

where x̂(k) ∈Rn is the estimated vector and ξ̂(k) is an estimate
of ξ(k). The value of ξ̂(k) is set to ξH until a fault is detected.
It is assumed that after a fault occurs, ξ(k) = ξf = constant ̸=
ξH , |ξf | ≤ ξ0. We introduce:

ex(k) = x(k)− x̂(k),

ey(k) = y(k)− ŷ(k),

e0(k) = ξf − ξ̂(k) (42)

Then, the reconfigurable fault control can be obtained that:

ex(k+1) = (A−KC)ex(k)+B[ξff(u(k),y(k),x(k))

−ξ̂(k)f(u(k),y(k), x̂(k))], (43)
ey(k) = Cex(k) (44)

The convergence of the above adaptive reconfiguration is guar-
anteed by the following theorem:

Theorem II.2: Under the assumption (II.1) and (II.2), the
system (43) and following diagnostic algorithm.

∆ξ = ΓfT (u(k),y(k), x̂(k))Rey(k) (45)

can realize limt→∞ex(k) = 0 and a bounded e0(k) ∈ L2.
Furthermore, limk→∞eξ(k) = 0 under a persistent excitation,
where R is given by (9), Γ > 0 is a weighting scalar.

Proof: Consider the following Lyapunov function

V (e(k)) = eTx (k)Pex(k)+Γ−1e2ξ(t) (46)

From (43) and (45), its first forward difference is:

∆V = E{V (e(k+1)|ek,pk)}−V (e(k))

= E{eT (k+1)Pie(k+1)}− eT (k)Pie(k)

= (Aeex +BLue)
TP (Aeex +BLue)− eTx (k)Pex(k)

= eT (k)[(P (A−KC)+ (A−KC)TP )

+ PB[ξff(u(k),y(k),x(k))

− ξ̂(k)f(uξ(k),y(k), x̂(k))]e(k)

− 2eξ(k)f
T (u(k),y(k), x̂(k))Rey(k) (47)

According to (II.1) and (II.2), one can further obtain that

∆V ≤ −eTx (k)Qex(k)− 2eξ(k)f
T (u(k),y(k), x̂(k))Rey(k)

2eTx (k)C
TR{eξf(u(k),y(k),x(k))−

ξ̂(k)f(u(k),y(k), x̂(k))} (48)

where ρ2 = λmin(Q)−2∥C∥.|R|ξ0L0,|ξf | ≤ ξ0, Q> 0 is cho-
sen such that ρ2 > 0. Inequality (48) implies the stability of the
origin ex = 0, eξ = 0 and the uniform boundedness of ex and
eξ with ex ∈ L2. On the other hand, from (43), ėx is uniformly
bounded as well. According to Barbalat’s Lemma, one can get

lim
k→∞

ex(k) = 0 (49)

The persistent excitation condition means that there exist two
positive constants σ and t0 such that for all t the following in-
equality holds:

k+k0∑
m=k

fT (y(m),u(m),x(m))BTBfT (y(m),u(m),x(m))

≥ σI. (50)

Then from (43), (45), (49) and (50), one can conclude that
limt→∞ eξ(k) = 0. This completes the proof.

III. EVALUATION OF THE PROPOSED SCHEME

The evaluation of the proposed scheme has been made on the
following systems:

• Interconnected CSTR units, and
• A quadruple tank system

The following sections show the detailed implementation and
simulation of the proposed scheme.

A. Illustrative Example: Two Interconnected CSTR units

In this section, we introduce a benchmark example of a plant
composed of interconnected units with recycle which has been
used from [21]. A plant composed of two well-mixed, non-
isothermal continuous stirred-tank reactors (CSTRs) with inter-
connections is considered, where three parallel irreversible el-
ementary exothermic reactions of the form A

k1→ B, A k2→ U ,
A

k3→ R take place. As shown in Fig. 2, the feed to CSTR 1
consists of two streams, one containing fresh A at flow rate F0,
molar concentration CA0 and temperature T0, and another con-
taining recycled A from the second reactor at flow rate FR, mo-
lar concentration CA2 and temperature T2. The feed to CSTR 2
consists of the output of CSTR 1, and an additional fresh stream
feeding pure A at flow rate F3, molar concentration CA03 , and
temperature T03 . The output of CSTR 2 is passed through a
separator that removes the products and recycles unreacted A to
CSTR 1. Due to the non-isothermal nature of the reactions, a
jacket is used to remove/provide heat to both reactors. A leak
in both flux may be simulated by means of the new coefficients
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Fig. 2. Process flow diagram of two interconnected CSTR units.

α1 and α2 whose values are 0 < α1 ≤ 1 and 1 < α2 ≤ 1. The
mathematical model of the faulty interconnected CSTR can be
given as:

Ṫ1 =
α1 ×F0

V1
(T0 −T1)+

α1 ×FR

V1
(T2 −T1)

+

3∑
i=1

Gi(Ti)CA1 +
Q1

ρCpV1
(51)

˙CA1 =
α1 ×FR

V1
(CA0 −CA1)+

FR

V1
(CA2 −CA1)

−
3∑

i=1

Ri(Ti)CA1V1 (52)

Ṫ2 =
α2 ×F1

V2
(T1 −T2)+

α2 ×F3

V2
(T03 −T2)

+

3∑
i=1

Gi(T2)CA2 +
Q2

ρCpV2
(53)

˙CA2 =
α2 ×F1

V2
(CA1 −CA2)+

α2 ×F3

V2
(CA03 −CA2)

−
3∑

i=1

Ri(T2)CA2 (54)

where Ri(Tj) = ki0 exp(−Ei/RTj), Gi(Tj) =
((−∆Hi/ρCP ) for j = 1, 2. △Hi, ki, Ei, i = 1, 2, 3,
denote the enthalpy, pre-exponential constants and activation
energies of the three reactions, respectively. The control
objective is to stabilize the plant at the (open-loop) unstable
steady-state using the heat input rate Q1 and the inlet reactant
concentration CA0 as manipulated inputs for the first reactor,
and using the heat input rate Q2 and the inlet reactant con-
centration CA03 as manipulated inputs for the second reactor.
Operation at the unstable point is typically sought to avoid
high temperatures, while simultaneously achieving reasonable
conversion. Under nominal conditions αi = 1, the performance
may change suddenly or gradually when αi is a function
of time. The fault is modeled as a step function. The heat
exchange surface has normally a transient degradation caused
by the dirt on both sides of the wall.

B. Modeling of the quadruple tank system

The process is called quadruple-tank system and consists of
four interconnected water tanks and two pumps. Its manipulated
variables are voltages to the pumps and the controlled variables
are the water levels in the two lower tanks. The quadruple-tank
process is being built by considering the concept of two double-
tank processes. The quadruple tank system presents a multi-
input-multi-output (MIMO) system. This system is a real-life
control problem prototyped to experiment on, and try to solve
in the most efficient way, since it deals with multiple variables,
thus it gives a reflection for the large systems in industry. The
schematic description of the four tank system can be visualized
by Figure 3. The system has two control inputs (pump through-
puts) which can be manipulated to control the water level in the
tanks. The two pumps are used to transfer water from a sump
into four overhead tanks. By adjusting the bypass valves of the
system, the proportion of the water pumped into different tanks
can be changed to adjust the degree of interaction between the
pump throughputs and the water levels. Thus each pump output
goes to two tanks, one lower and another upper, diagonally op-
posite and the ratio of the split up is controlled by the position
of the valve. Because of the large water distribution load, the
pumps have been supplied 12 V each. The mathematical mod-
eling of the quadruple tank process can be obtained by using
Bernoulli’s law. The constants are denoted in Table I. Com-
bining all the equations for the interconnected four-tank system
we obtain the physical system. A fault model can then be con-
structed by adding extra holes to each tank. The mathematical
model of the faulty quadruple tank system can be given as (See
equations (55)-(60)):

dh1

dt
= − a1

A1

√
2gh1 +

a3
A1

√
2gh3

+
γ1k1
A1

ν1 +
d

A1
− aleak1

A1

√
2gh1 (55)

dh2

dt
= − a2

A2

√
2gh2 +

a4
A2

√
2gh4

+
γ2k2
A2

ν2 −
d

A2
− aleak2

A2

√
2gh2 (56)

dh3

dt
= − a3

A3

√
2gh3 +

(1− γ2)k2
A3

ν2

− aleak3
A3

√
2gh3 (57)

dh4

dt
= − a4

A4

√
2gh4 +

(1− γ1)k1
A4

ν1

− aleak4
A4

√
2gh4 (58)

dν1
dt

= −ν1
τ1

+
1

τ1
u1 (59)

dν2
dt

= −ν2
τ2

+
2

τ2
u2 (60)

IV. SIMULATION RESULTS

In what follows, we present simulation results for the pro-
posed fault tolerant scheme on two dynamical systems:
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Fig. 3. Schematic diagram of a Quadruple tank system

• Interconnected CSTR units,
• Quadruple tank system.

A. Interconnected CSTR units

In what follows, we present simulation results for UKF
for fault detection and then the fault tolerance with model
predictive-based decentralized control. A series of simulation
runs was conducted on the interconnected CSTR units to eval-
uate and the effectiveness of the proposed scheme based on the
UKF fault detection and model-predictive-based decentralized
fault control. To perform different set of experiment same fault
scenarios have been used as defined. The details of the algo-
rithm can be seen in [24].

A.1 Drift detection

A fault may occur in any phase or in any part of the plant.
Critical faults not detected on time, can lead to adverse effects.
In the sequel, the drift detection of the faults using UKF is clari-
fied. It is seen from Fig. 4 that despite of an offset, the signature
of fault is same to the nominal case. This is due to the closed-
loop which is performing the job with a feedback, which may
be also intrinsic in the physical mechanism of a real-time sys-
tem generating the data, thus making the life difficult for fault
detection, and suppressing the deviation and drifts. Thus, here,
the UKF-based drift detection can give us a better picture for the
fault scenario as shown in Fig. 5. The kinks seen in the middle
of the flux leak profile of state 1 can alarm the engineer about
some unusual practice going on in the process.

A.2 Information Fusion from UKF to Overlapping Decentral-
ized Decomposition and MPC

Once, the parametric estimation is being done by the UKF,
we are able to get system states for the leakage. For example, if
we have flux leak in state 1, from UKF, the faulty state matrix
can be extracted and fed into the MPC for appropriate control of
faults. The results are being compared for the expanded version
of the system control and the overlapping control, and it can
be seen that the overlapping control is also performing its job
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Fig. 4. Interconnected CSTR units: Leak Estimate and Fault Estimate of state
1
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Fig. 5. Interconnected CSTR units: drift detection for the leak in state 1

by control the faults as can be seen in Figs. (6)-(9), which are
giving a better response time towards the control of the system
states, with less over-shoots and excitation. Further, the
information is fused in the model-predictive control, and the
results show that the system somehow recovers itself from the
faults rather than completely resulting in a breakdown of the
system as can be seen in Fig. 10. This explains how with the
help of unscented filter, the fault detection part is performed
resulting in measuring the drift and parameter potency of fault
in each state of CSTR, which then fed into in the information
fusion, where with the help of overlapping decomposition and
MPC, we are able to control the fault, given bounds of fault
uncertainties.

B. Quadruple tank system

In what follows, we present simulation results for UKF
for fault detection and then the fault tolerance with model
predictive-based decentralized control. A series of simulation
runs was conducted on the quadruple tank system to evaluate
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Fig. 7. Interconnected CSTR units State 2: Overlapping Decentralized Control
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and the effectiveness of the proposed scheme based on the UKF
fault detection and model-predictive-based decentralized fault
control. To perform different set of experiment same fault sce-
narios have been used as defined.

B.1 Drift detection

A fault may occur in any phase or in any part of the plant.
Critical faults not detected on time, can lead to adverse effects.
In the sequel, the drift detection of the faults using UKF is clari-
fied. It is seen from Fig. 11 that the fault is so incipient that apart
from in the beginning, the level of water is achieving the same
height. This is mainly due to the closed-loop system, where
the controller is performing its job of achieving the desired set-
point of water level in the tanks, thus suppressing any kind of
deviations and drifts created due to leakage faults in particular.
Considering this situation, UKF-based drift detection can give
us a better picture for the fault scenario as shown in Fig. 12. The
kinks shown in the middle of the height achievement of water in
tank 1 can alarm the engineer about some unusual practice go-
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Fig. 11. Quadruple tank system: Leak Estimate and Fault Estimate of tank 1

ing on in the process, thus preparing for some necessary action
or constant monitoring.

B.2 Information Fusion from UKF to Overlapping Decentral-
ized Decomposition and MPC

Once, the parametric estimation is being done by the UKF,
we are able to get system states for the leakage fault. For ex-
ample, if we have leakage in state 1, from UKF, the A matrix
shown in (61) for the leakage is as follows:

Aleak =


1.0806 0.0034 0.0009 −0.0877

1 0 0 0
0 1 0 0
0 0 1 0

 (61)

This matrix is being fed into the model-predictive control al-
gorithm in-order to upgrade it according to the fault at hand.
The results are being compared for the expanded version of the
system control and the overlapping control, and it can be seen
that the overlapping control is also performing its job by con-
trolling the faults as can be seen in Figs. (13)-(16) which are
giving a better response time towards the control of the system
states, with less over-shoots and excitation i.e. making it stable
in less time. Further, the information is fused in the model-
predictive control, and the results show that the system some-
how recovers itself from the faults rather than completely result
in a breakdown of the system as can be seen in Fig. 17. This ex-
plains how with the help of unscented filter, the fault detection
part is performed resulting in measuring the drift and parameter
potency of leakage fault in each tank state of QTS, which then
fed into in the information fusion in the form of leakage matrix,
where with the help of overlapping decomposition and MPC,
we are able to achieve the desired set-point water-level of tank
despite of leakage fault, given bounds of leakage fault.

V. CONCLUSION

In this paper, an effective integrated fault detection and fault
tolerant control technique is developed for a class of intercon-
nected process systems actuated by actuators and sensors that
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Fig. 12. Quadruple tank system: drift detection for the leak in tank 1
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may undergo several different types of failures. Typical faults
in interconnected process systems are considered next, and UKF
based approach is being employed for fault detection and pa-
rameter estimation. The Fault detection system is then de-
centralized in that using overlapping decomposition technique.
Model Prediction-based fault-tolerant controllers using the pa-
rameter estimates from the fault detection decentralized subsys-
tem is designed next. It is demonstrated that all the signals in
the system are bounded and that the tracking error converges to
zero asymptotically despite multiple actuator and sensor faults.
The proposed scheme has been successfully evaluated on inter-
connected CSTR units with recycle and quadruple tank system,
thus underpinning the proposed scheme with its practical imple-
mentation.
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