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Expectation Maximization Approach to Data-Based
Fault Diagnostics

Magdi S. Mahmoud and Haris M. Khalid

Abstract—The data-based fault detection and isolation (DBFDI) process
becomes more potentially challenging if the faulty component of the system
causes partial loss of data. In this paper, we present an iterative approach
to DBFDI that is capable of recovering the model and detecting the fault
pertaining to that particular cause of the model loss. The developed method
is an expectation-maximization (EM) based on forward-backward Kalman
filtering. We test the method on a rotational drive-based electro-hydraulic
system using various fault scenarios. It is established that the developed
method retrieves the critical information about presence or absence of a
fault from partial data-model with minimum time-delay and provides ac-
curate unfolding-in-time of the finer details of the fault, thereby completing
the picture of fault detection and estimation of the system under test. This
in turn is completed by the fault diagnostic model for fault isolation. The
obtained experimental results indicate that the developed method is capa-
ble to correctly identify various faults, and then estimating the lost infor-
mation.

Keyword: Fault detection; Fault isolation; Kalman filter; Ex-
pectation maximization; Fault diagnostic model; Rotational hy-
draulic drive-based electro-hydraulic system.

The following variables are used in the paper table I.

TABLE I
NOMENCLATURE

Symbols Function
I(t) input current
τv servo-valve time constant
Av(t) servo-valve opening area
Kx servo-valve area constant
Kv servo-valve torque motor constant
Q1(t) flow from the servo-valve
Q2(t) flow to the servo-valve
PL(t) load pressure difference
Ps source pressure
Cd flow discharge coefficient
ρ fluid mass density
P1(t), P2(t) rotational drive chambers pressure
β fluid bulk modulus
Dm actuator: volumetric disp. parameter
CL leakage coefficient
θ(t) angular displacement
sign change in direction of actuator motion
J moment of inertia
B viscous damping coefficient
TL load torque
C0i latent variable
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I. INTRODUCTION

Data-based fault detection and isolation (DBFDI) has always
been the subject of considerable interest in the process indus-
try where the whole model structure for the plant is usually not
available. The intensity of importance for this subject is the ever
increasing requirements on the reliable operation of control sys-
tems, which are, in most cases, subject to a number of faults
either in the internal closed loops or from environmental fac-
tors. The data generated from the assumed model are compared
with measured data from the physical system to create residuals
that relate to specific faults. Faults encountered can be of many
types starting from a faulty sensor in the production line to a
broken transducer or a burnt out coil not transforming the as-
signed accurate information. Once system faults have occurred,
they can cause unrecoverable losses and result in unacceptable
environmental pollution, etc. Occasionally, the occurrence of a
minor fault has resulted in disastrous effects. With an accurate
process model and under appropriate assumptions, it is possible
to accomplish fault detection and isolation (FDI) for specific
fault structures.

Generally, fault diagnostic methods can generally be divided
into two categories:

• Model-based fault diagnostics, and
• Data-based fault diagnostics including knowledge-based

Fault diagnostics.
Model-based Fault diagnostic methods are generally depen-

dent on the mathematical models of the process developed ei-
ther from first principles or from identification of the system.
The data extracted from the model is then compared with mea-
sured data from the physical system to create residuals that re-
late to specific faults. With an accurate process model and under
appropriate assumptions, it is possible to accomplish Fault di-
agnostics for specific fault structures (see, for example, [4], [6],
[9], [12]). Data-based methods, on the other hand, rely on pro-
cess measurements in order to perform fault diagnostics. Ana-
lyzing process measurements gives the location and direction of
the system trajectory in the state space. The databases contain
a great amount of redundant information and must be processed
by means of suitable algorithms, most of which belong to the
great area of data mining. The strategy presented in this work
is an alternative methodology to process large databases and to
design appropriate monitoring systems integrated to fault treat-
ment approaches. Tools such as adaptive principle component
analysis, fuzzy logic and neural networks have also demon-
strated their capability on treating important data-based sys-
tems. It is then possible, particularly for linear process sys-
tems, to extract information about the fault by comparing the
location and/or direction of the system trajectory in the state
space with past faulty behavior (for example, [16], [23]). Sev-
eral methods have been developed that manipulate the measured
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data to reduce their dimension and extract information from the
data with respect to actuator/sensor faults using principle com-
ponent analysis (PCA) or partial least squares(PLS)techniques
(for example, [11], [20], [15], [14]. These methods reduce
the dimensionality of the data by eliminating directions in the
state space with low common-cause variance. Other methods
have been developed that consider the contribution of particu-
lar states to the overall shift from normal operation [11]. Some
data-based methods take advantage of PCA to find correlations
within the data [5]. Work has also been done to group data-
based on process structure or process distinct time scales as in
multi-block or multi-scale PCA ([19], [3], [2]). While many
of these methods have been successful in achieving fault detec-
tion, fault isolation remains a difficult task, particularly for non-
linear processes where historical data under faulty operation are
in-sufficient to discriminate between faults.For a comprehensive
review of model-based and data-based FDI methods,the reader
may refer to [18], [17]. Considering other applications, sev-
eral results involving FDI-FTC based on linearized models of
aircraft dynamics have been reported [24], [25], [26]. An ap-
plication of multi-variable adaptive control techniques to flight
control reconfiguration was considered in [24]. The objective
was to redesign automatically flight control laws to compensate
for actuator failures or surface damage. [27] and [28] focus on
the robust control problems and their applications on aerospace
engineering.

In [21], fuzzy logic techniques have been applied to classify
frequency spectra representing various rolling element bearing
faults. The application of basic fuzzy logic techniques has al-
lowed fuzzy numbers to be generated which represent the sim-
ilarity between frequency spectra. Correct classification of dif-
ferent bearing fault spectra was observed when the correct com-
bination of fuzzy set shapes and range of membership domains
were used. In my opinion, handling a critical issue of fault diag-
nosis with fuzzy logic alone is taking the case very easy, and not
understanding the criticality of the fault diagnosis issue, where
an overlooked detection might cost a serious happening. More-
over, the classification of the faults are being observed using a
combination of fuzzy sets, this might if well done, will work
properly, but in case of noise, it will result in false alarms. Also,
a data analysis of different faults, pertaining to original fault
scenarios and signatures, and training them through neural net-
work with the help of fuzzy logic inference system could have
given a much better and reliable approach towards fault detec-
tion and classification.

In [22], a fault tree is used to analyze the system by evalu-
ating the basic events (elementary causes), which can lead to a
root event (a particular fault). Then, a multiple-model adaptive
estimation algorithm is used to detect and identify the model-
known faults. Finally, based on the system states of the robot
and the results of the estimation, the model-unknown faults are
also identified using logical reasoning. In my opinion, data-
based methods can diagnose the fault incipiently. Therefore,
the fault can be detected rapidly. The main issue in data-based
method is to obtain the data. The fault can then be diagnosed
from this data accurately, as done in our case of Expectation
Maximization-Based FDI where we are also able to recover the
loss data. Whereas in case of [22], the technique is relying heav-

ily on the model, for which the model should be strictly accurate
to give correct results. But in case of large scale systems and
plants, where the model is often not available, we may face dif-
ficulties by either capturing the noise and disturbances as faults,
or overlooking the faults as noise. The technique proposed in
[22] is model dependent and might be restricted to only partic-
ular plant models.

In this paper, a data-based fault diagnostics scheme is de-
veloped using expectation maximization boiled on data-driven
Kalman filter. The salient feature is that it does not rely on
prior knowledge and mathematical information about the sys-
tem under consideration. We construct an iterative approach
to data-based fault detection and isolation (DBFDI) that is ca-
pable of recovering the model and detecting the fault pertain-
ing to that particular cause of the model loss. It is essentially
an expectation-maximization (EM) based on forward-backward
Kalman filtering. We test the method on a rotational drive-based
electro-hydraulic system using various fault scenarios. It is
shown that the developed method retrieves the critical informa-
tion about presence or absence of a fault from partial data-model
with minimum time-delay and provides accurate unfolding-in-
time of the finer details of the fault, thereby completing the pic-
ture of fault detection and estimation of the system under test.
In turn, this is completed by the fault diagnostic model for fault
isolation. The obtained experimental results indicate that the
developed method is capable to correctly identify various faults,
and then estimating the lost information.

The paper is organized as follows: the problem statement per-
taining to fault diagnostics and the proposed solution formula-
tion is presented in Section 2. Then, follows the evaluation of
the proposed scheme in Section 3. The results of simulating
the techniques implemented are presented in Section 4. Finally,
some concluding remarks are given in Section 5.

II. DATA-BASED FAULT DIAGNOSTICS SCHEME

To construct an effective fault diagnostics scheme, we have
assumed various faults in the system have been successfully
monitored, estimated and protected through tolerance by the
encapsulation of the expectation maximization algorithm and
diagnostic model scheme. Fig. 1 shows the proposed imple-
mentation plan. Fault tolerant control systems are designed to
achieve high reliability and survivability of the dynamic sys-
tems and processes. The fault tolerant scheme can work in var-
ious steps. The fault tolerant scheme has the following general
possible steps [13], [7]:
• Fault modeling of the system comprising of sensor and ac-

tuator faults.
• Fault detection and estimation using forward-backward

Kalman filter-based expectation maximization.
• Fault isolation using diagnostics model.
Consider a linear-time discrete model of the system:

x(k+1) = Adx(k)+Bdu(k)

y(k) = Cdx(k)+Ddu(k) (1)

where Ad, Bd, Cd, and Dd are the matrices of the discrete-time
system of appropriate dimensions.
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Fig. 1. Implementation plan- This figure has been adjusted and is clear now

A. System modeling with sensor and actuator faults

During the system operation, faults or failures may affect the
sensors, the actuators, or the system components. These faults
can occur as additive or multiplicative faults due to a malfunc-
tion or equipment aging. For fault detection and identification
(FDI), a distinction is usually made between additive and mul-
tiplicative faults. The faults affecting a system are often repre-
sented by a variation of system parameters. Thus, in the pres-
ence of a fault, the system model can be written as:

xf (k+1) = Afxf (k)+Bfuf (k)

yf (k+1) = Cfxf (k) (2)

where the new matrices of the faulty system are defined by:

Af = A+ δA;Bf = B + δB;Cf = C + δC; (3)

δA, δB, and δC correspond to the deviation of the system
parameters with respect to the nominal values. However, when
a fault occurs on the system, it is very difficult to get these new

matrices on-line. Process monitoring is necessary to ensure ef-
fectiveness of process control and consequently a safe and a
profitable plant operation. As presented in the next paragraph,
the effect of actuator and sensor faults can also be represented
as an additional unknown input vector acting on the dynamics
of the system or on the measurements. The effect of actuator
and sensor faults can also be represented using an unknown in-
put vector fj ϵ Rl, j = a (for actuators), s (for sensors) acting
on the dynamics of the system or on the measurements.

A.1 Actuator faults

It is important to note that an actuator fault corresponds to the
variation of the global control inputU applied to the system, and
not only to u:

Uf = ΓU + Uf0 (4)

where
• U is the global control input applied to the system.
• Uf is the global faulty control input.
• u is the variation of the control input around the operating

point U0, (u = U - U0, uf = Uf - U0.
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• Uf0 corresponds to the effect of an additive actuator fault.
• Γ U represents the effect of a multiplicative actuator fault

with Γ = diag(α).

α = [α1....αi....αm]T (5)
Uf0 = [Uf01....Uf0i....Uf0m]T (6)

The ith actuator is faulty if ai ̸= 1 or ufo ̸= 0. In the presence
of an actuator fault, the linearized system 1 can be given by:

x(k+1) = Ax(k)+B(ΓU(k)+Uf0 −U0) (7)
y(k) = Cx(k) (8)

The previous equation can be re-written as follows:

x(k+1) = Ax(k)+B(Γ− 1)U(k)+Uf0

y(k) = Cx(k) (9)

By defining fa(k) as an unknown input vector corresponding
to actuator faults 2, equation can be represented as follows:

x(k+1) = Ax(k)+Bu(k)+Fafak

y(k) = Cx(k) (10)

where Fa=B, and fa= (Γ− 1) U + Uf0. If the ith actuator
is declared to be faulty, then Fa corresponds to the ith column
of matrix B and fa corresponds to the magnitude of the fault
affecting this actuator.

A.2 Sensor faults

In the similar way, considering fs as an unknown input illus-
trating the presence of a sensor fault, the linear faulty system
will be represented by:

x(k+1) = Ax(k)+Bu(k)+Fsfsk

y(k) = Cx(k) (11)

The state-space representation of a system that may be af-
fected by actuator and/or sensor fault:

x(k+1) = Ax(k)+Bu(k)+Fafak

y(k) = Cx(k)+Fsfsk (12)

where matrices Fa and Fs are assumed to be known and fa
and fs correspond to the magnitude of the actuator and the sen-
sor faults, respectively. The magnitude and time occurrence of
the faults are assumed to be completely unknown. In the pres-
ence of sensor and actuator faults, system can also be repre-
sented by the unified general formulation:

x(k+1) = Ax(k)+Bu(k)+Fxf(k)

y(k) = Cx(k)+Fyf(k) (13)

where f=[fTa fTs ]T ϵ Rv (v = m+ q) is a common rep-
resentation of sensor and actuator faults. Fx ϵ Rn×v and Fy

ϵ Rq×v are respectively the actuator and sensor faults matrices
with Fx = [B 0n×q] and Fy = [B 0q]. The objective is
to isolate faults. This is achieved by generating residuals sensi-
tive to certain faults and insensitive to others, commonly called

structured residuals . The fault vector f in 13 can be split into
two parts. The first part contains the ′d′ faults to be isolated f0
ϵ Rd. In the second part, the other ”v− d” faults are gathered
in a vector f∗ϵRv−d . Then, the system can be written by the
following equations:

x(k+1) = Ax(k)+Bu(k)+F 0
xf

0(k)+F ∗
xf

∗(k)

y(k) = Cx(k)+Fyf(k)+F 0
y f

0(k)+F ∗
y f

∗(k) (14)

Matrices F 0
x , F ∗

x , F 0
y , and F ∗

y , assumed to be known, char-
acterize the distribution matrices of f∗ and f0 acting directly
on the system dynamics and on the measurements respectively.

In case of an ith actuator fault, the system can be represented
according to 14 by:

x(k+1) = Ax(k)+Bu(k)+Bif
0(k)+ [B̄i 0n×q]f

∗(k)

y(k) = Cx(k)+ [0q×(p−1) Iq ]f
∗(k) (15)

where Bi is the ith column of matrix B and B̄i is matrix B
without the ith column. Similarly, for a jth sensor fault, the
system is described as follows:

x(k+1) = Ax(k)+Bu(k)+ [B 0n×(q−1)]f
∗(k)

y(k) = Cx(k)+Ejf
0(k)+ [0q×p Ēj ]f

∗(k) (16)

where Ej = [0...1...0]t represents the jth sensor fault effect
on the output vector and Ēj is the identity matrix without the
jth column.

III. THE EXPECTED MAXIMIZATION ALGORITHM

In what follows, we look at the situation where joint fault
detection and data estimation is considered. By and large, the
expected maximization (EM) algorithm is a method for find-
ing maximum likelihood estimates of parameters in statistical
models, where the model depends upon unobserved latent vari-
ables. In our case, the latent variable is C0i . The EM has two
steps. The E − step is obtained with respect to the underly-
ing unknown variables conditioned on the observations and the
M−step provides a new estimation of the parameters (or when
some of the data are missing).

With reference to [1], the formulation has been applied for
the fault diagnosis case, where the EM is being used for fault
detection and data estimation. In the ideal case, we will be esti-
mating fault αi using the measurement equation, for maximiz-
ing the corresponding log likelihood function:

Υehi = C0iαi−1 + υi (17)

Where Υehi presents the electro-hydraulic profile, C0i rep-
resents the measurement matrix perturbed by the fault which
cause some data loss which is to be recovered/estimated, αi−1

represents the leakage profile (a type of fault), and Υi repre-
sents the noise assumed to be Gaussian. For example, when
the system is obeying the input output relation (so that in ℓ n
p(Υehi/C0i , αi) = −∥Υi−C0iαi∥2σ−2

n
up to some additive con-

stant), (so that ℓn p(αi) =−∥αi∥2Π−1
in this case, the maximum

a posteriori MAP estimate is given by:

α̂MAP
i = argminαi [∥Υi −C0iαi∥2σ−2

n
+ ∥αi∥2Π−1 ] (18)
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Considering the case of monitoring the fault detection, how-
ever, the inputC0i is not observable as we have different scenar-
ios for the profiles of faults depending upon the potency of the
fault considered. Thus, we use the expectation-maximization
algorithm and maximize instead an average form of the log-
likelihood function. Thus, the E-step for the expected maxi-
mization Algorithm for the example given above when starting
from an initial estimate, α̂0

i to estimate α̂i is calculated itera-
tively, with the estimate at the j− th iteration given by:

α̂MAP
i = argmax

αi

[Eαi/Υ
j−1
ehi

ℓn p(Υehi
/C0i

,αi)+lnp(αi)
] (19)

Likewise, the M-step for the example given above will be as
follows:

α̂j
i = argminαi [∥Υi −E[C0i ]αi∥2σ−2

n

+ ∥αi∥2cov[i∗]+∥αi∥2

Π−1
] (20)

Where the two moments of C0i are taken given the output
Υi and the most recent flow/height of water estimate α̂j−1

i . We
now derive the EM algorithm for the time variant case.

A. The EM-based forward-backward Kalman filter

Consider the system expressed in Section IV, essentially de-
scribed by the state-space model:

αi+1 = Fαi +Gui (21)

Υehi = C0iαi−1 + νi (22)

We can obtain the maximum a posteriori estimate by maxi-
mizing the log-likelihood as:

L= ℓn (Υt
eh0
/Ct

0,α
t
0)+ ℓn p(αt

0) (23)

Where T is the sampling time. Now, for describing the terms of
likelihood, consider the two equations of the state space model
(16) and (17). Considering the equation 22, we can express the
first term of likelihood as:

ℓn p(Υt
eh0
/Ct

0,α
T
0 ) =

T∑
i=0

ℓn p(Υehi/Ci,αi)

= −
T∑

i=0

∥Υehi −Ciαi∥21/σ2
n

(24)

Similarly, considering the equation 21, we can express the sec-
ond term of likelihood as:

ℓn p(αt
0) =

T∑
i=1

ℓn p(αi,αi−1)+ ℓn p(α0)

= −
T∑

k=1

∥αk −Fαk−1∥21/σ2
nGG∗ −∥α0∥2π−1

0

(25)

Considering these two expressions 24 and 25, we get:

L = −
T∑

i=0

∥Υehi −Ciαi∥21/σ2
n

−
T∑

k=1

∥αk −Fαk−1∥21/σ2
nGG∗ −∥α0∥2π−1

0

(26)

Now, the forward-backward Kalman is implemented to get the
input and output sequences. Forward run: Starting from the
initial condition P01−1 = var(Υeh) and α01−1 and for i =
1, ....,T , calculate

Re,i = σ2
nIN+P +C0leak

Pi/i−1C0leak
(27)

Kf,i = Pi/i−1C0leak

∗R−1
e,i (28)

α̂i = (IN+P −Kf,i,C0leak
)α̂i−1 +Kf,i ∗Yi (29)

α̂i+1/i = Fαi (30)

Pi+1,i = Fi(Pi/i−1 −Kf,iRe,i,K
∗
f,i)F

∗ +
1

σ2
n

GG∗ (31)

Backward run: Starting from λT+1/T = 0 and for i = T,T −
1, ....,0, calculate

λi/T = IP+N −C∗
0leak

K∗
f,iF

∗
i λT+1/T

+ C0leak
R−1

e,i (yi −C0leak
α̂i−1) (32)

α̂i/T = α̂i/i−1 +Pi/i−1λi/T (33)

The desired estimate is αi/T : The forward-backward Kalman
derives the MAP estimate of the system impulse response. In
the forward step, the filer obtains the MAP estimate of given .
Our aim, however, is to obtain the MAP estimate of αi given the
whole sequence C0

i . The backward step adds the contribution
of Ct

i+1 to the MAP estimate of αi.

B. Initial system estimation

The purpose is to get the observation C0 from α, in order to
get Υ.

We can obtain the initial system estimation from the mea-
surement equation of (12). We can do this by implementing the
Forward Backward Kalman Filter to the state-space model with
substitution of C0i → C0iIP and Υi → Υehi,IP :

αi+1 = Fαi +Gui (34)

Υheight,IP = C0iIPαi−1 + νi/p (35)

C. Calculating the input moments:

Input moments can be calculated the application of Bayes
rules for evaluating the pdf of the function of the system: Ap-
plying Bayes rule

f(C0i(l)/Yi(l),αi(l)) =
f(C0i(l)/Y i(l),αi(l))

f(Y (l)i/αi(l))

=
f(C0i ,Y i/αi)∑AM

C0I=A1 f(C0i ,Y i/αi)

=
f(Y i/C0i ,αl)f(C0l,αl)∑AM

C0I=A1 f(Y i/C0i ,αl)f(C0l,αl)

=
e

−|Yi−αC0i
|2

σ2
n∑M

j=1 e
−|Yi−αAj |2

σ2
n

(36)
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Where we have dropped the dependence on l. We have
used the fact here that C0l is drawn from the alphabet A =
A1,A2,A3,A4 . A is not fixed here. There are fours As con-
sidered for the expectation of the fault scenarios where each A
is showing a particular fault scenario. that is for finding the ex-
pected value at each instant, the expectation of four As will be
taken. We can use this to show that: First moment:

E[C0fault
(l)/Yi(l), αi(l)] =

∑M
j=1Aje

−|Yi−αC0i
|2

σ2
n∑M

j=1 e
−|Yi(l)−αi(l)Aj |2

σ2
n

(37)

Second moment:

E[C0fault
(l)/Yi(l), αi(l)] =

∑M
j=1 |Aj |2e

−|Yi−αC0i
|2

σ2
n∑M

j=1 e
−|Yi(l)−αi(l)Aj |2

σ2
n

(38)

Thus, the EM-Based FB Kalman algorithm has been shown for
implementation of fault detection and estimation.

IV. FAULT ISOLATION USING DIAGNOSTICS MODEL

The approach employed for the fault isolation is based on a
diagnostic model, which directly relates the diagnostic param-
eters to the input and output. The diagnostic parameters are
identified off line by performing a number of experiments. The
diagnostic model relating the reference input r the diagnostic
parameter γ and the residual e(k), is given by:

e(k) = y(k)− y0(k) =

q∑
i=1

ψT (k− 1)θ
(1)
i ∆γi + ν(k) (39)

where, ∆γi = γ − γ0i is the perturbation in γ ; y0(k) and γ0i
are the fault-free (nominal) output and parameter, respectively,
θ
(1)
i = δθ

δγi
, and ψ is the data vector formed of the past outputs

and past reference inputs. The gradient θ(1)i is estimated by
performing a number of off line experiments which consist of
perturbing the diagnostic parameters, one at a time. The input-
output data from all the perturbed parameter experiments is then
used to identify the gradients θ(1)i . The outcome can be seen in
the form of the cross-spectral density between the faulty data
and fault-free data.

Remark IV.1: Power spectral density function shows the
strength of the variations(energy) as a function of frequency. In
other words, it shows at which frequencies variations are strong
and at which frequencies variations are weak. It is a very useful
tool if you want to identify oscillatory signals in our time series
data and want to know their amplitude. For example, we have a
chemical plant, and we have hydraulic drives operating to drive
the fluid in the pipe network, and some of them have motors in-
side to pull the fluid with pressure. You detect unwanted vibra-
tions from somewhere. You might be able to get a clue to locate
offending machines by looking at power spectral density which
would give you frequencies of vibrations. When we have two
sets of time series data at hand and we want to know the relation-
ships between them, we compute coherency function and some
other functions computed from cross spectral density function

of two time series data and power spectral density functions of
both time series data. In this paper, we have two time series data
of fault and fault-free case respectively. This property of power
spectral density helps to treat the isolation case in a better way.

Remark IV.2: Cross-correlation is a measure of similarity of
two waveforms as a function of a time-lag applied to one of
them, whereas in autocorrelation, there will always be a peak
at a lag of zero, unless the signal is a trivial zero signal. This
property of cross-correlation helps to capture the fault signa-
tures more coherently.

V. SYSTEM DESCRIPTION

The electro-hydraulic system for this study is a rotational hy-
draulic drive at the LITP (Laboratoire dinteǵration des tech-
nologies de production) of the University of Québec École de
technologie supérieure (ÉTS). The set-up is generic and allows
for simple extension of the results herewith to other electro-
hydraulic systems, for example, double-acting cylinders. Re-
ferring to the functional diagram in Fig. 2, a DC electric motor
drives a pump, which delivers oil at a constant supply pressure
from the oil tank to each component of the system. The oil
is used for the operation of the hydraulic actuator and is re-
turned through the servo-valve to the oil tank at atmospheric
pressure. An accumulator and a relief valve are used to maintain
a constant supply pressure from the output of the pump. The
electro-hydraulic system includes two Moog Series 73 servo-
valves which control the movement of the rotary actuator and
the load torque of the system. These servo-valves are operated
by voltage signals generated by an Opal-RT real-time digital
control system. The actuator and load are both hydraulic motors
connected by a common shaft. One servo-valve regulates the
flow of hydraulic fluid to the actuator and the other regulates the
flow to the load. The actuator operates in a closed-loop while
the load operates open-loop, with the load torque being propor-
tional to the command voltage to the load servo-valve. While
the actuator and load chosen for this study are rotary drives,
the exact same set-up could be used with a linear actuator and
load, and thus, they are represented as generic components in
Fig. 2. The test set-up includes three sensors, two Noshok Se-
ries 200 pressure sensors with a 010V output corresponding to
a range of 20.7MPa (3000 PSI) that measure the pressure in the
two chambers of the rotational drive, as well as a tachometer to
measure the angular velocity of the drive. In order to reduce the
number of sensors used (a common preference for commercial
application), angular displacement is obtained by numerically
integrating the angular velocity measurement.

Fig. 3 shows the layout of the system and the Opal-RT RT-
LAB digital control system. The RT-LAB system consists of a
real-time target and a host PC. The real-time target runs a dedi-
cated commercial real-time operating system (QNX), reads sen-
sor signals using an analog-to-digital (A/D) conversion board
and generates output voltage signals for the servo-valves us-
ing a digital-to-analog (D/A) conversion board. The host PC is
used to generate code for the target using MATLAB/Simulink
and Opal-RTs RT-LAB software and also to monitor the system.
Controller parameters can also be adjusted on-the-fly from the
host in RT-LAB.
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Fig. 2. Functional diagram -This figure has been adjusted and is clear now

Fig. 3. Physical layout

A. Fault model for rotational hydraulic drive

In general, rotational hydraulic drive system is a drive or
transmission system that uses pressurized hydraulic fluid to
drive hydraulic machinery. The rotational hydraulic drive may
experience various faults that reduce the performance and relia-
bility. These can occur in components such as the pipe system,
sensors, actuators, controllers, communication system elements
and the actual platform. Since, in the rotational hydraulic drive,
achieving good driving control is essential. This also requires
the flow system of the hydraulic fluid should be working appro-
priately. Also, an excessive torque load can result in effecting
the control of hydraulic drive. With these factors in mind, the
faults considered in this study are those that cause leakage fault
and controller fault.

A mathematical model of the system described is now devel-
oped based on the approach in [8] and [10]. First, the servo-
valves are modeled with following assumptions:

1. The servo-valves are matched and symmetric.
2. The internal leakage inside the servo-valve can be ne-

glected.
The dynamic equation for the servo-valve spool movement is

given as [8] and [10].

τv(
dAv(t)

dt
) +Av(t) = Kx.Kv.I(t), (40)

where t denotes time, I(t) is the command input current, τv
is the servo-valve time constant, Av(t) is the servo-valve open-
ing area with sign dependent on flow direction, Kx is the servo-
valve area constant, andKv is the servo-valve torque motor con-
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stant. Av(t) is said to have a positive sign when the servo-valve
directs the flow such that the supply drives P1(t) and P2(t)
drives the fluid to the tank. The reverse configuration is rep-
resented using a negative sign for Av(t), although the actual
servo-valve opening area is always a positive number.

Let Q1(t) represent the flow from the servo-valve and Q2(t)
represent the flow to the servo-valve. Then,

Q1(t) = Q2(t) = CdAv(t)

√
Ps − PL(t)

ρ
(41)

where PL(t) is the load pressure difference, Ps is the source
pressure, Cd is the flow discharge coefficient and ρ is the fluid
mass density. PL(t) and Ps are given by PL(t) = P1(t) - P2(t)
and Ps = P1(t) + P2(t) with P1(t) and P2(t) denoting the pres-
sure in the two chambers of the rotational drive.

The fluid dynamic equation of the actuator, considering the
compressibility of oil and internal leakage is given by:

V

2β
˙PL(t) = CdAv(t)

√
Ps −PL(t)sign(Avt

ρ

− Dmθ̇(t)−CLPL(t), (42)

where V is the oil volume under compression in one chamber
of the actuator, β is the fluid bulk modulus, Dm is the volumet-
ric displacement parameter of the actuator,CL is the leakage co-
efficient, θ(t) is the angular displacement, and sign is the sign
function, which accounts for the change in direction of motion
of the actuator.

Neglecting friction, the torque-acceleration equation of the
actuator is given by:

Jθ̈(t) = Dm(P1(t)− P2(t))−Bθ̇(t)− TL (43)

where J is the moment of inertia, B is the viscous damping
coefficient, and TL is the load torque. The variables θ̇(t), PL(t),
Av(t) are now normalized by dividing them by their respective
maximum values denoted by ωmax; Ps and Amax

v = Kx.Kv .
Imax to reduce numerical errors while performing simulation
and real-time computations. The sign function is approximated
by the sigmoid function defined as:

sigm(x) =
1− e−ax

1 + e−ax
(44)

where a > 0, to address the non-differentiable nature of the
sign function.

B. Fault Scenarios

Fault scenarios are created by using the rotational hydraulic
drive in the simulation program. In these scenarios leakage fault
and controller fault are being considered.

B.0.a Scenario I: Leakage Fault. In this scenario, while the
system is working in real time, leakage faults is being intro-
duced in the hydraulic fluid flow linked to the servo-valve of the
system. The leakage fault is considered as ωhCLleakage

x3(t) in
state 3.

B.0.b Scenario II: Controller Fault. In this scenario, while the
system is working in real time and getting the input for driv-
ing the dynamics of the system, a fault has been introduced by
increasing the torque load in the hydraulic drive, then effecting
the controller, −ωh

α tLfault
is considered in state 2 of the system.

Using equations (40)-(43) and the fault scenarios, the fault
model of the system can be represented in state space form as:

ẋ1(t) = ωmaxx2(t) (45)

ẋ2(t) = −γ ωh

α
x2(t)+

ωh

α
x3(t)−

ωh

α
tL − ωh

α
tLfault

(46)

ẋ3(t) = −αωhx2(t)−ωhCLx3(t)

+ αωhx4(t)
√
1−x3(t)sigm(x4(t))

− ωhCLleakage
x3(t) (47)

ẋ4(t) = − 1

τv
x4(t)+

i(t)

τv
(48)

where

x1(t) = θ(t), x2(t) =
θ̇(t)

ωmax
,

x3(t) =
PL(t)

Ps
, x4(t) =

Av(t)

Amax
v

,

u1(t) = i(t) =
I(t)

Imax
, u2 = tL =

TL
PsDm

,

γ =
Bωmax

PsDm
,

ωh =

√
2βD2

m

JV
,

α =
(CdA

max
v

√
Psρ)Jωh

PsD2
m

,

cL =
JCLωh

D2
m

and CLleakage
is the leakage fault considered in state 3, tLfault

is the controller fault in the form of torque load in state 2.
Using the sign convention for Av(t) and the definition of

x3(t), it follows that 0 ≤ x3(t)sigm(x4(t)) ≤ 1 . It is also
noted here that 0 ≤ x3(t)sigm(x4(t)) ≤ 1, because P1(t) and
P2(t) are both positive and the condition x3(t)sigm(x4(t)) = 1
implies that P1(t) = Ps and P2(t) = 0 or P2(t) = Ps and
P1(t) = 0, indicating zero pressure drop across the open ports
of the servo-valve and thus, no flow to or from the actuator, a
situation that would occur if the rotational motion of the drive
is impeded.

VI. EVALUATION OF THE PROPOSED SCHEME

The evaluation of the proposed scheme has been made on
the the electro-hydraulic system. The following sections show
the detailed implementation and simulation of the proposed
scheme.

A. Simulation Results

In what follows, we present simulation results for the pro-
posed fault diagnostics scheme covering the fault detection and



EXPECTATION MAXIMIZATION APPROACH TO DATA-BASED FAULT DIAGNOSTICS 9

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

number of data points

Fault 1: Expectation Maximization, 1st iteration

 

 
Expected Maximization
no leak
small leak
medium leak
large leak

Fig. 4. Fault 1: Implementation results on the leakage profile at iteration 1
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Fig. 5. Fault 1: Implementation results on the leakage profile at iteration 2

estimation. The tasks of our EM-Based Forward Backward
Kalman scheme have been executed here with an increasing
precision accompanied with a more detailed fault picture by in-
creasing the number of iterations. Two sets of faults have been
considered here i.e. the leakage fault in state 3 and controller
fault. Firstly, the data collected from the plant has been ini-
tialized and the parameters have been being optimized which
comprises of the pre-processing and normalization of the data.
Then, the EM Based Forward Backward Kalman is imple-
mented with an iterative process giving not only the recovery
of the correct data, but also detecting the correct fault profile.

A.1 Fault 1 (Leakage): EM algorithm implementation

The EM Based FB Kalman scheme has been followed and
employed here for the leakage fault to get a final profile of the
lost data and the fault detection. It has been shown that the
estimated profile at iteration 3 (Fig. 6) and Iteration 4(Fig. 7) is
performing better in following the Original output as compared
to the initial iterations 1 and 2 respectively (See Fig. 4 and Fig.
5), thus pointing clearly to the fault detection and recovery of
the correct data.
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Fault 1: Expectation Maximization, 3rd iteration

 

 
Expected Maximization
no leak
large leak
medium leak
small leak

Fig. 6. Fault 1: Implementation results on the leakage profile at iteration 3
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Fig. 7. Fault 1: Implementation results on the leakage profile at iteration 4

A.2 Fault 2 (Controller Fault): EM algorithm implementation

The EM Based FB Kalman scheme has been followed and
employed here for the controller torque fault to get a final pro-
file of the lost data and the fault detection. It has been shown
that the estimated profile at iteration 3 (Fig. 10) and Iteration
4(Fig 11) is performing better in following the Original output
as compared to the initial iterations 1 and 2 respectively (See
Fig. 8 and Fig. 9), thus pointing clearly to the fault detection
and recovery of the correct data.

B. Simulation results: isolation using fault diagnostic model

B.1 Fault 1 (Leakage): isolation using fault diagnostic model

Further, for the leakage type fault 1, the information is fused
in the fault-diagnostic model, and the results show that on the
scale of number of observations for the leakage fault, we can
judge the isolation of the fault by cross spectral density. as can
be seen in Fig. 12, Fig. 13 and Fig. 14 for small, medium and
large intensity of leakage faults respectively.
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Fig. 8. Fault 2: Implementation results on the controller fault at iteration 1
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Fig. 9. Fault 2: Implementation results on the controller fault at iteration 2
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Fig. 10. Fault 2: Implementation results on the controller fault at iteration 3
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Fig. 11. Fault 2: Implementation results on the controller fault at iteration 4
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Fig. 12. Fault 1: Cross-power spectral density between small fault and no fault
data
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Fig. 13. Fault 1: Cross-power spectral density between medium fault and no
fault data
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Fig. 14. Fault 1: Cross-power spectral density between large fault and no fault
data
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Fig. 15. Fault 2: Cross-power spectral density between small fault and no fault
data

B.2 Fault 2 (Controller Fault): isolation using fault diagnostic
model

Further, for the controller type fault 2, the information is
fused in the fault-diagnostic model, and the results show that
on the scale of number of observations for the controller fault,
we can judge the isolation of the fault by cross spectral density.
as can be seen in Fig. 15, Fig. 16, and Fig. 17 for for small,
medium and large intensity of controller faults respectively.

VII. CONCLUSIONS

This work has presented a general approach to integrating
data-based fault detection and estimation with fault isolation
scheme. The proposed scheme has been developed based on ex-
pectation maximization (EM) algorithm and diagnostics model.
The proposed scheme can function when information about the
system faults, and structure and dynamics of the underlying data
generation mechanism is inaccessible, incomplete or partially
missing. The EM Approach has been motivated by its articu-
lation on forward-backward Kalman filter thereby initiating the
picture of fault detection and estimation. This picture is then
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Fig. 16. Fault 2: Cross-power spectral density between medium fault and no
fault data
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Fig. 17. Fault 2: Cross-power spectral density between large fault and no fault
data

completed by fault diagnostic isolation scheme. The proposed
scheme has been evaluated on electro-hydraulic system thus en-
suring the effectiveness of the approach.The major contribution
of the paper is the integration of iterative expectation maximiza-
tion-based approach boiled on forward-backward kalman filter
for loss data-recovery with fault detection and fault diagnostic
model for fault isolation to achieve both accuracy and reliability
of data-based FDI scheme.
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