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Abstract

Li-ion battery pack is a complex system consisting of numerous cells connected in parallel and

series. The performance of the pack is highly dependent on the health of each individual in-pack

cell. An overcharged or discharged cell connected in a parallel string could change the total capacity

of the battery pack. In a pack, current-split estimation plays an important role to monitor the cell

functions. Therefore, a scheme is required to estimate current-split accurately, which can thereby

help to improve the overall pack performance. To what follows, a recursive weighted-covariance

based estimation method (RWEM) was proposed to estimate the current-split of each set of parallel

connected cells. RWEM assigns weights to the interconnected cell structure by using correlation

information between battery parameters in order to estimate the current-split. This was achieved by

first deriving the one-step prediction error method, where consistency for covariance was proved.

Furthermore, iterative recursion for sparse measurements was also considered. Performance eval-

uations were conducted by analyzing sets of real-time measurements collected from Li-ion battery

pack used in electric vehicles (EV). Results show that the proposed filter accurately estimated the

battery parameters even in the presence of faults and random noise variances.
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ACRONYMS AND ABBREVIATIONS
BMS Battery Management System

EKF Extended Kalman filter
EV Electric Vehicle
KF Kalman filter

Li-ion Lithium ion
MSE Mean Square Error
OSV Open source voltage
PF Particle filter

RWEM Recursive weighted covariance-based estimation method
SOC State-of-charge
UKF Unscented Kalman filter
UPF Unscented particle filter
c1 Cell 1
c2 Cell 2
C capacity of fused form of cells c1 and c2
IC0 initial condition of the state of current
Ft model matrix of the state response of current
αt temperature transition matrix of temperature
Γ c1
t temperature of Cell 1

Γ c2
t temperature of Cell 2
βt impedance transition matrix
zc1t impedance of Cell 1
zc2t impedance of Cell 2
Gt noise transition matrix
wt random process noise
t time instant
T number of time instants
yt observation output of state of current
p number of simultaneous observations for estimation
Ht observation matrix of current state
ICt current state matrix
νt observation noise.
Rt residual covariance
δgh Kronecker delta
Qt process noise correlation factor
Ic1t individual current of Cell c1
Ic2t individual current of Cell c2
V C
1,t individual voltage of Cell c1

V C
2,t individual voltage of Cell c2

Γ c1
t

0, Γ c2
t

0 room temperature for Cells c1 and c2

zc1t
0, zc2t

0 standard values of impedance
Re,t residual covariance matrix
yt observation output of current state

Ac2
t , Ac2

t weighted matrices of the current-split
P C
I,t|t correlation between the current estimates

I. INTRODUCTION

L
I-ION batteries have become one of the preferred energy storage options in the field of EV

applications. They have gained popularity because of their high energy density, light weight,

and longer performance life [1]. To meet the power capacity and voltage requirements of EVs, the

battery pack is composed of more than hundreds of Li-ion cells connected in-series or in-parallel.
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However, each cell may exhibit variations in terms of capacity, temperature, dynamics, and aging

characteristics. This may be due to adopted production technology, tolerances, material defects,

and contaminations. Moreover, in actual working conditions, the temperature distribution among

cells is also different due to the arrangement and position of cells. All these factors can eventually

result to a lapse in uniformity between the individual cells, which may be reflected by the SOC

divergence1 or internal resistance2 [2]. To keep the Li-ion battery system safe from these issues,

BMS has been proposed at component-level [4–6] and system-level [7].

Moreover, an accurate estimation of the parameters of each battery cell can protect the battery

pack from becoming overcharged or discharged, thereby extending the service life and minimizing

the effects of available energy and power of a battery pack [3]. The in-pack cell with the lowest

available capacity determines the overall rating of the entire pack, because it will be the first to

be completely depleted during the discharging stage. Similarly, the charging of the pack will stop

when the in-pack cell with the lowest available capacity is full, despite others are still not fully

charged. As a result, the power capacity of the entire battery pack will be affected [8–10].

To date, many papers have been published in the literature to address the battery estimation

problem in general [3, 11–24]. They can be classified into OCV-based and battery model-based

methods. OCV-based methods are developed considering the difference of electrical potential be-

tween two terminals of a battery cell or pack. Popular methods are the current integral method [3],

the neural network model method [11], the fuzzy logic method [12], and the support vector-based

estimators [13, 14]. In the battery model-based methods, an approximate battery model is first

developed using the physical laws and equations, and then an algorithm such as the KF [15, 16],

EKF [17–19], UKF [20–22], PF [23] and UPF [24], are proposed to estimate the battery parame-
1 SOC divergence determines the magnitude measure of the current state of the battery by analyzing the amount of sink of charge

at a given point.
2 Internal resistance of a particular source is the measure of the opposition that a circuit presents to a current when a voltage of

that particular source is applied. A battery may be modeled as a voltage source in series with an internal resistance. In practice, the
internal resistance of a battery is dependent on its size, chemical properties, age, temperature, and the discharge current.
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ters.

Among published papers, most of the estimation schemes are developed at cell-level. Limited

attention is given at pack-level. Moreover, the estimation schemes do not take into account the

current-split estimation between two parallel cells connected in a series string. This is because

most published methods are highly dependent on the model of the battery cell, where model equa-

tions may not consider the details about the dynamic differences between individual cells. The

incomplete problem analysis can result to oversight of material contamination, variations of tem-

perature, and conductance.

The contribution of this paper is towards enhancing the capacity estimation of the battery pack.

This is accomplished by improving the observability of system parameters of each individual cell.

In control theory, the observability is a measure for how well the internal states of a system can

be inferred by the knowledge of its external outputs [25]. In this paper, we are trying to infer the

current-split by the external outputs of total voltage and current. Also, the electromechanical dy-

namics of the cells are not considered here, instead, cells are considered as conducting bodies only.

The information about battery as conducting bodies parameters is then extracted using a proposed

filter approach named as RWEM. The proposed scheme provides a way to estimate the individual

cell parameters. It is achieved by computing modal parameters from the inputs of battery system

and calculating the current-split in a parallel connected cell structure. Firstly, an initial estimation

of state-prediction is calculated using the prediction error innovation process using (12)–(19). It is

followed by assigning weights to calculate covariance of current-split using (20)–(27). Once the

current-split weighted covariance matrices are achieved, a steady-state value of fused-covariance

matrix is derived for a case of ill-posed or sparse measurements in order to guarantee a feasible

estimation scheme using (28)–(38). The recursive process can also calculate the other dependent

battery parameters. This can be considered as a preventive maintenance strategy to replace the
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Fig. 1. Framework of RWEM for current-split estimation

effected cell in order to improve the battery pack total capacity. Note the main focus of this pa-

per is to propose a scheme for current-split estimation in battery cells. To achieve this, we have

demonstrated the effectiveness of the proposed algorithm at a constant operating environment tem-

perature of 200C with a single frequency. Moreover, the scheme has been tested on fresh pair of

cells that have minimum manufacturing variability and aging propagation.

The paper is organized as follows: The problem is formulated in Section II. In Section III, the

implementation and evaluation of the scheme are discussed, and finally conclusions are drawn in

Section IV.
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II. PROBLEM FORMULATION

The formulation begins with outlining the assumed system model, followed by the state rep-

resentation of battery parameters. The RWEM algorithm is then built on it for calculating the

current-split estimates. An overview of the formulation framework of this section is illustrated in

Fig. 1. It summarizes the formulation and equations involved at each step while estimating the

current-split and other parameters of the battery-pack. Note that only two parallel cells connected

in a thread of series are considered here. This is the standard structure used in Li-ion battery

packs [26].

A. State Formulation with Observation Model

Consider a discrete-time dynamical model of a battery-pack at a time t+1 evolved from its

prior state at time t. Two cells connected in parallel with a voltage supply in-series are expressed

as:

ICt+1 = FtI
C
t +

αt

2
(Γ c1

t +Γ c2
t )+ βt(z

c1
t + zc2t )

+ Gtwt, t= 0,1, ...., T (1)

where the superscripts c1 and c2 denote Cell 1 and Cell 2, respectively. The symbol C is used to

present the capacity of fused form of cells c1 and c2, i.e. C = c1 + c2, whereas C ′ presents the

transpose of this fused form. The IC0 ∈ IRr is the initial condition of the state of current, Ft ∈ IRr×r

is a model matrix of the state response of current, such that it depends on covariates, αt ∈ IRr×r

is the temperature transition matrix of temperature Γ c1
t ∈ IRr and Γ c2

t ∈ IRr of Cell 1 and Cell 2

respectively. Also, βt ∈ IRr×r is the impedance transition matrix of impedances zc1t ∈ IRr and zc2t

∈ IRr respectively. Gt ∈ IRr×r is the noise transition matrix, which can be defined as a probability

vector whose elements are non-negative real numbers and sum to 1. wt ∈ IRr is the random process

noise, t is the time instant, and T refers to the number of time instants. Let the battery-pack,
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described in (1), be observed at time-instant t as:

yt =HtFtI
C
t + νt (2)

where yt ∈ IRp is the observation output of state of current, p is the number of simultaneous obser-

vations for estimation made at time instant t, Ht ∈ IRp× r is the observation matrix of current state,

ICt is the current state matrix, and νt ∈ IRp is the observation noise.

It has been initially assumed that the noises wt and νt are uncorrelated, and are zero-mean

white noise sequences with Gaussian distribution:

IE[wt] = IE[νt] = IE[wgν
′

h] = 0, ∀ t (3)

IE[wgw
′

h] =Rtδgh, IE[νgν
′

h] =Qtδgh, ∀ t (4)

Note Rt represents the residual covariance, δgh is a Kronecker delta which is one when variables

g and h are the same. Qt is the process noise correlation factor, and superscript ′ represents the

transpose.

B. Relationship Between Battery Parameters

Once the observation model is extracted from the measurements of the battery pack, the re-

lation between different parameters of the battery are formulated. Note the known parameters of

parallel cells connected in a series string are the string voltages, temperatures and current.

At time instant t, Ic1t is the individual current of Cell c1, and can be represented as the differ-

ence between voltage V C
1,t and V C

2,t as:

Ic1t =
V C
1,t−V C

2,t

zc1t
(5)

Similarly, Ic2t is the individual current of Cell c2, and is defined as:

Ic2t =
V C
1,t−V C

2,t

zc2t
(6)
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Also, impedances zc1t and zc2t for cells c1 and c2 are:

zc1t = zc1
0

t +
[
1+αt(Γ

c1
t −Γ c10

t )
]
, (7)

zc2t = zc2
0

t +
[
1+αt(Γ

c2
t −Γ c20

t )
]

(8)

Note in (7)–(8), the standard relation between impedance and temperature is considered for Cell

c1 and c2 according to [27]. Here zc1t
0 and zc2t

0 are the standard values of impedance at room

temperature Γ c1
t

0 and Γ c2
t

0 respectively. αt is the transition matrix of temperature. (7) can be

expressed for temperature Γ c1
t of Cell 1 as:

Γ c1
t =

zc1t
αzc1

0

t

− 1

α
+Γ c10

t (9)

Similarly, temperature Γc2,t of Cell 2 is:

Γ c2
t =

zc2t
αzc2

0

t

− 1

α
+Γ c20

t (10)

Since Γ C
t =Γ c1

t +Γ c2
t

2
,

Γ C
t =

zc1t
2αtzc1

0

t

+
zc2t

2αtzc2
0

t

+
Γ c10

t

2
+

Γ c20

t

2
− 1

αt

=
zc1t zc2

0

t + zc2t zc1
0

t − 2zc1
0

t zc2
0

t

2αtzc1
0

t zc2
0

t

+
αtΓ

c10

t zc1
0

t zc2
0

t +αtΓ
c20

t zc1
0

t zc2
0

t

αtzc1
0

t zc2
0

t

(11)

Thus, the general relation between battery parameters is developed.

To find the current-split estimation, the individual state of current ICt needs to be determined.

Note that each Li-ion cell has a nominal voltage of 3.2 V. Hence, any variations will be occurring

in a bounded-capacity, which requires a good initial parameter value estimate. It is particularly

true for this paper as no battery-model is used. Good initial parameter values can provide a good

estimate and improve the ability to predict the dependent battery parameters expressed in (5) to

(11). To achieve this, an uncorrelated innovation process is used to develop confidence intervals

around the prediction profile of the current-split. It is to ensure the best possible approximation of
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the true system even when the battery model is not available.

C. Prediction of State Vector of Current using by Innovation Process

Given the uncorrelated innovation process, the recursive one-step prediction estimate of ICt

can be presented as:

ÎCt+1 = (IE[ICT ])R
C−1

e,t−1et−1

ÎCt+1 =
t+1∑
t−1

(ICt+1, et−1)R
C−1

e,t−1et−1 (12)

where Re,t is the residual covariance matrix of the difference between the observation output of

current state yt and its estimate ŷt, denoted by et = yt −HtÎ
C
t|t−1. Accordingly, the state of current

can be computed from the most recent past value ÎCt|t−1 and the new information in e. A more

indicative form of recursion of (12) is:

ÎCt+1|t=
[t+1∑
t=0

(ICt+1, et−1)R
c1−1

e,t−1et−1

]
+(ICt+1, et)R

c2−1

e,t et (13)

where
[∑t+1

t=0(I
C
t+1, et−1)R

c1−1

e,t−1et−1

]
is the estimate of the one-step prediction. Therefore,

ÎCt+1|t = ÎCt+1|t−1+(ICt+1, et−1)R
−1
e,t−1(yt−HtÎ

C
t|t−1) (14)

which completes the one-step prediction for the state of current, ICt . Considering the difference

between ICt and its estimate ÎCt as ĨCt|t, the initial condition of the state of current is:

ĨC0|0=IC0|0− ÎC0|0

=F0I
C
0|0+α0(Γ

c1
0|0+Γ c2

0|0)+ β0(z
c1
0|0+ zc20|0)+G1w1

−F0Î
C
0|0−(ICt+1, et)R

−1
e,t

[
Ht(F0I

C
0|0 +α0(Γ

c1
0|0

+Γ c2
0|0)+ β0(z

c1
0|0+ zc20|0)+G1w1)+ ν1−H1F0Î

C
0

]
(15)

Rearranging (15) gives,

ĨC0|0=
[
1−(IC0|0, e1)R−1

e,1H1

]
F0Ĩ

C
0|0+

[
1− (IC0 , e1)R

−1
e,1H1

]
G1w1 −

[
1− (IC0 , e1)R

−1
e,1H1

]
F0I

C
0|0+

[
1− (IC0 , e1)
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R−1
e,1H1

][
α0Γ

c1
0 +α0Γ

c2
0

]
+
[
1− (IC0 , e1)R

−1
e,1H1

]
[
βzc10|0+βz

c2
0|0

]
− (IC0|0, e1)R

−1
e,1ν1 (16)

Hence, the covariance matrix for current difference of Cell 1 and Cell 2 is:

P C
I,1|1=IE[Ĩc11|1Ĩ

c2
′

1|1 ]=
[
1− (Ic11|1, e1|1)R

c1−1

e,1|1

]
Q0

[
1−(Ic21|1, e1|1)

R−1
e,1|1

]′

+
[
1−(IC0|0, e,1|1)R−1

e,1|1

]
F0I

C
0+

[
1−(IC0 , e1)R−1

e,1H1

]
[
βzc10|0 + βzc20|0

]
− (IC0|0, e1)R

−1
e,1ν1 (17)

Similar to (17), the fused difference of ĨCt|t can be written as:

ĨCt|t =
[
1− (ICt|t, et−1)R

−1
e,t−1Ht

]
FtĨ

C
t|t+

[
1− (ICt ,

et−1)R
−1
e,t−1Ht

]
Gtwt−

[
1− (ICt , et)R

−1
e,tHt

]
Ft

ICt|t+
[
1−(ICt , et)R−1

e,tHt

][
αtΓ

c1
t +αtΓ

c2
t

]
+
[
1−

(ICt , et)z
c1
t|tR

−1
e,tHt

][
β+βzc2t|t

]
− (ICt|t, et)R

−1
e,t νt (18)

which yields the covariance matrix for the fused difference of current ĨCt|t as:

P C
I,t|t=

[
1−(Ic1t+1, et)R

c1−1

e,t−1H
c1
t

]
Ft−1P

C
t−1|t−1F

′

t−1[
1−(Ic2t+1, et)R

c2−1

e,t−1H
c2
t

]
F

′

t−1+
[
1− (Ic2t+1, et)

Rc2−1

e,t−1H
c2
t

]′

+
[
1−(ICt , et)R−1

e,t−1Ht

][
αΓ c1

t

+αΓ c2
t

]
+
[
1−(ICt , et)R−1

e,t−1Ht

][
βzc1t|t+βz

c2
t|t

]
(19)

The initialization of the current states Ic1t and Ic2t was made using the innovation process. How-

ever, the derived covariance matrix assumes that both cells have the same impedance, operating

temperature, and other cell dynamics. This leads to the motivation to consider the problem for

battery pack with dynamic in-cell variations. Variations in the individual cells are primarily due

to cell total capacity, internal resistance, and the initial value of SOC, which gives the reason to

derive a covariance matrix that can represent the dynamical situation of current-split estimation.
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The proposed solution is to assign weights to the states of current, Ic1t and Ic2t , and calculate a

weighted covariance of current-split with recursion.

D. Weighted Covariance for Estimation of Current-Split

The recursive estimate of the current-split can be represented as a sum of weights:

ÎCt|t = Ac1
t Î

c1
t +Ac2

t Î
c2
t (20)

where Ac2
t and Ac2

t are the weighted matrices of the current-split. Therefore, the difference between

Îc1t and Îc2t can be expressed by δCt as follows:

δCt = Îc1t|t − Îc2t|t (21)

The expression (21) can be normalized further as:

IE[δCt δ
C′

t ] = IE[Îc1t|t − ICt|t− (Îc2t|t − ICt|t)][Î
c1
t|t

− ICt|t− (Îc2t|t − ICt|t)]
′

(22)

and is equivalent to:

IE[δCt δ
C′

t ] = P c1
I,t|t+P

c2
I,t|t−P C

I,t|t−P C′

I,t|t (23)

The term P C
I,t|t refers to the associated covariance of fused current with its estimate ÎCt|t. Also,

P C
I,t|t=IE[(Îc1t|t−ICt )(Îc2t|t−ICt )

′
]=IE[Ĩc1t|t Ĩ

c2
t|t]=P C′

I,t|t (24)

where P C
I,t|t is the correlation between the two current estimates Îc1t and Îc2t , respectively. Using

the calculation from (12)–(19), the weighted matrix of the current-split for Ic1t can be expressed

as:

Ac1
t =

(
P c2
I,t|t−P C′

I,t|t

)(
P c1
I,t|t+P c2

I,t|t−P C
I,t|t−P C′

I,t|t

)−1

(25)

Similarly, the weighted matrix for current-split of Ic2t is:

Ac2
t =

(
P c1
I,t|t−P C

t|t

)(
P c1
I,t|t+P c2

I,t|t−P C
I,t|t−P C′

I,t|t

)−1

(26)
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Considering (25) and (26), the covariance matrix for the fused current-split is:

P C
I,t|t = P C

I,t|t−1−
(
P c2
I,t|t−P C′

I,t|t

)(
P c1
I,t|t+P c2

I,t|t

− P C
I,t|t−P C′

I,t|t

)−1(
P c2
I,t|t−P C′

I,t|t

)′

(27)

The weights have also been defined in a closed-form in (25) and (26). Note, the covariance matrices

of temperature and voltage can also be calculated by using (5)–(11). In order to satisfy convergence

for the estimator, the fused covariance matrix for the current-split requires a proof of consistency,

which is shown in the Appendix.

However, the current-split information from each individual cell and its respective covariance

matrix are highly dependent on the difference of in-series voltages and the relation between tem-

perature and impedance as noted in (5)–(11). There can be a condition where the current-split

estimation is an ill-posed or sparse problem. This is the case when one of the cells is generating

random zero values, which will make the solution of (25) and (26) infeasible because of the inverse

matrix and closed-form solution. In order to guarantee a feasible estimation, an iterative method is

required to develop which can generate a feasible solution for an ill-posed or sparse data condition.

E. Current-Split Estimation during an Ill-Posed Condition

In this section, a recursive loop is built on top of (20)–(27) to give feedback to the updated

current estimate and its associated covariance at each time-instant. The implicit fused current

estimate can be expressed as:

ÎCt|t = P C
I,t|t

[
P c2
I,t|tFtÎ

C
t|t−1+(P c2

I,t|t−P C′

I,t|t)(P
c1
I,t|t

+ P c2
I,t|t−P C

I,t|t−P C′

I,t|t)
−1(P c2

I,t|t−P C′

I,t|t)
′
]−1

P C′

I,t|t(A
c1
t FtÎ

c1
t|t +Ac2

t|tFtÎ
c2
t|t) (28)

It can be simplified as:

ÎCt|t=Ac1
T P

C
I,t|tA

c1
t FtI

c1
t|t+A

c2
T P

C
I,t|tA

c2
t FtI

c2
t|t (29)
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where, Ac1
T and Ac2

T are the identity matrices, Ac1
t =Ac1

t−1P
C
I,t|t

[
P c2
I,t|tFtÎ

C
t|t−1+(P c2

I,t|t−P C′

I,t|t)(P
c1
I,t|t+

P c2
I,t|t−P C

I,t|t−P C′

I,t|t)
−1(P c2

I,t|t−P C′

I,t|t)
′
]−1

. Also, Ac2
t =Ac2

t−1P
C
t|t

[
P c1
I,t|tFtÎ

C
t|t−1+(P c1

I,t|t−P C′

I,t|t)(P
c2
I,t|t+

P c1
I,t|t−P C

I,t|t−P C′

I,t|t)
−1(P c1

I,t|t−P C′

I,t|t)
′
]−1

. Considering the feedback of the estimate, and comput-

ing with the inverse of the covariance matrix gives:

P C−1

I,t|t Î
C
t|t=−(N − 1)P C−1

I,t|t−1Î
C
t|t−1+

[
P c2
I,t|t−(P c2

I,t|t

−P C′

I,t|t)(P
c1
I,t|t+P

c2
I,t|t−P C

I,t|t−P C′

I,t|t)
−1(P c2

I,t|t

−P C′

I,t|t)
′
]−1

(Ac1
t Î

c1
t|t +Ac2

t Î
c2
t|t) (30)

where N is the number of cells, which is 2 for this formulation. To compute the steady state

error covariance of fused current state estimate ICt|t, subtracting P C−1

t|t from both sides of (30) and

substituting (29) yields:

P C−1

I,t|t (Î
C
t|t− ICt ) =

−P C−1

I,t|t I
C
t − (N − 1)P C−1

I,t|t−1Î
C
t|t−1 − (N − 1)P C−1

I,t|t−1

ÎCt|t−1+
[
P c2
I,t|t−(P c2

t|t −P C′

I,t|t)(P
c1
I,t|t+P c2

t|t−P C
I,t|t−P C′

I,t|t)
−1

(P c2
I,t|t−ΣC′

t|t)
T
]−1

(Ac1
t Î

c1
t|t +Ac2

t Î
c2
t|t) (31)

Rearranging (31) gives:

= −(N − 1)P C−1

I,t|t−1Ft−1(Î
C
t−1|t−1−ICt−1)−P C−1

I,t|t I
C
t

−(N − 1)P C−1

I,t|t−1Ft−1I
C
t−1+P

C−1

I,t|t

[
At−1P

C
I,t|tA

c1
t FtI

c1
t|t

+ At−1P
C
I,t|tA

c2
t FtÎ

c2
t|t

]
(32)

Through simple algebra manipulations and substituting (2), we can re-write (31) as

P C−1

I,t|t (Î
C
t|t− ICt ) =[

− (N − 1)P C−1

I,t|t−1Ft+P C−1

t|t At−1P
C
I,t|tA

c1
t Ft+P C−1

I,t|t

AtP
C
I,t|tA

c2
t Ft

]
(ÎCt−1|t−1−Îc1t|t−Îc2t|t)+P C−1

I,t|tAt−1P
C
I,t|tA

c1
t
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FtÎ
c1
t−1+P C−1

I,t|tAt−1P
C
I,t|tA

c2
t FtÎ

c2
t|t−1−P C−1

I,t|t I
C
t

− (N − 1)P C−1

I,t|t−1Ft−1I
C
t−1 (33)

which develops a recursive loop in order to guarantee feasible solution for the estimator. Further-

more, in order to verify stability, (33) can be written in the form of a discrete Lyapunov equation.

This can be seen in the Appendix.

III. IMPLEMENTATION AND EVALUATION

The proposed estimation scheme was exhaustively assessed on Li-ion battery-pack under dif-

ferent operating conditions. The experiments were carried out at the battery laboratory in the

Center for Automotive Research (CAR) [28] according to the guidelines issued by United States

Department of Energy battery test manual [29,30]. Three of the studies are presented in this paper.

Each study presents a structure of cells connected in parallel in a series thread as shown in Fig.

2. Test Case I analyzed the nominal values collected from the parallel structure of cells in Fig.

2(a). The proposed method is referenced with two main stream techniques: 1) Extended Kalman

filter [31,32], and 2) Unscented Kalman filter [33]. Test Case II examined the cell structure shown

in Fig. 2(b) with random noise variance. This was followed by Test Case III, which considered a

current-split estimation in the presence of injected fault. Note the implementation was preferred to

test offline because of two main reasons: Firstly, a fault injection can be detected by a BMS. This

detection may result in system shut-off or a compensation of the fault. Secondly, if the BMS is un-

available to detect the fault, the injected fault may result in potential damage to battery. Therefore,

to be able to cover the whole set of considered faults in a consistent way, the off-line approach has

been chosen. In all three test cases, the characterized battery cell is a cylindrical A123 ANR26650

Li-ion iron-phosphate (LiFePO4) cell with a nominal capacity of 2.3 Ah and a nominal voltage

of 3.2 V. The experimental setup is composed of 800W programmable electronic load, 1.2 kW

programmable power supply, a data acquisition unit for collecting measurement signals, a thermal
14



Fig. 2. Cells setup of Li-ion battery pack for current-split estimation: (a) nominal case, (b) with random-noise
variance, and (c) with fault-injection

chamber to provide a controlled thermal environment, and a computer used for controlling the cur-

rent load and supply and data storage through a Labview interface. The noise in the measurements

is eliminated with the help of a low-pass filter. The characterization tests and driving cycle test

were conducted with a frequency of 10 Hz at 20 0C, and the current is considered to be positive

at discharge and negative at charge. Note in each test case, Li-ion battery cell measurements of all

parameters are given, which can be readily measured by the proposed scheme. However, in this

paper, the focus is to estimate the current-split and followed by the voltage.

15



A. Test Case I: Nominal Current-Split Estimation

The purpose of this study is to examine the estimation capability of the proposed scheme for

the current-split of two cells in parallel. The online values of all the parameters of the battery for

the two cells are plotted in Fig. 3. It comprises of the sampled current given to two cells, individual

current of each cell for testing and verifying our estimation scheme, corresponding voltage profile

and temperature during battery charging/discharging operation.

The proposed estimation scheme was implemented to estimate the current-split from the real

time measurements of the Li-ion battery cells. This was followed by the calculation of voltage

values based on the estimated current-split. Referring to Fig. 4 and 5, the proposed recursive

weighted covariance-based filter is used to estimate the respective profiles of current from Cell 1

and Cell 2, respectively. In addition, comparisons with the mainstream Unscented Kalman filter

of [33] were made. Referring to Fig. 4 and 5, there is a huge over-shoot spike at the beginning

of the measured current in each cell. The proposed filter captured such dynamics more clearly

than the regular Unscented Kalman filter. Furthermore, a comparison of MSE and error percentage

between the main stream UKF [33], and EKF [31, 32] and the proposed filter is shown in Fig. 6.

All the techniques performed reasonably well. However, because of the initialization procedure,

the EKF started with a slow time tracking response, causing it to have a higher MSE value in the

initial time windows. This is due to the lack in updating the covariance matrix at every iteration,

which is not the case for UKF. It performed better than EKF. However, the initial overshoot was

not well-captured by the UKF. In contrast, the recursive-based weighted filter was fast enough to

capture the dynamics well from the start. Therefore, the proposed method gives more accurate

results than EKF UKF as it was able to estimate the deviations of the profile with precision. This

is due to its estimating nature using the innovation process used for the initialization.

Referring to Fig.7, the voltage of the circuit has been estimated. This voltage was calculated
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Fig. 3. Test Case I: Li-ion battery cell measurements of the experimental battery pack
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Fig. 4. Test Case I: Comparison of the current estimates of Cell 1

based on the estimation of current-split. The estimation performance with sharp undershoot and

overshoots can be seen. The initial dynamics of voltage were being captured well by the regular

Unscented Kalman filter. However, UKF was not able to estimate the sharp ramp-down in the

voltage profile. This may due to its behavior of tackling singular covariances where trail sets of

data are not sufficient in such situations of sharp profiles.
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Fig. 5. Test Case I: Comparison of the current estimates of Cell 2
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Fig. 6. Test Case I: MSE performance of estimated current for a) Cell 1, and b) Cell 2
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Fig. 7. Test Case I: Estimated voltage of battery cell
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B. Test Case II: Current-split Estimation with Random Noise Variance

The objective of this test case is to examine the estimation capacity of the proposed scheme

in the presence of random noise variance. The sampled current profile of the parallel circuit and

each individual cell, temperature variations, and the corresponding voltage trajectory are shown in

Fig. 8. Random noise with a variance between 0.1 and 0.9 was added in the current measurements.

Referring to Fig. 9 and 10, the noise variance has introduced some spikes in the current profile. A

comparison of the corresponding MSE and percentage error between the main-stream EKF, UKF,

and the proposed filter is shown in Fig. 11. In Fig.7, the voltage was estimated. Because of the

random noise variance, the voltage dynamics for this case are showing a signature of sinusoid

kind of fluctuation. The dynamics of voltage were being captured well by the regular Unscented

Kalman filter. Furthermore, a comparison of MSE is shown in Fig. 11. All the schemes performed

reasonably well. However, EKF and UKF were not able to estimate the fault thoroughly. EKF may

have suffered due to its property of using predefined model for finite difference approximation by

calculating Jacobians. Whereas, UKF considers a Gaussian-noise uniformity in the model profile,

which was not the case here.

C. Test Case III: Current-split Estimation with Fault-Injection

This test case has been generated to evaluate the performance of the proposed filter in the

presence of injected fault. The sampled individual and cumulative current profile can be seen in

Fig. 13, followed by profile for temperature variations and voltage. Random faults were injected in

the current profile at 6.25–7.5 hours and 10.8–11.75 hours. Fig. 14 and 15 show the current-split

profile with fault injection scenarios. The corresponding MSE and percentage error between the

main stream EKF, UKF, and the proposed filter is shown in Fig. 16. From these figures, EKF and

UKF are not able to estimate the kinks and outliers accurately in the current profiles. Meanwhile,

the estimated cumulative voltage outputs are shown in Fig. 17. The same pattern of kinks and
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Fig. 8. Test Case II: Li-ion battery cell measurements with random-noise variance

outliers like in Fig. 14 and 15 can also be seen in this profile followed by the estimation analysis.

IV. CONCLUSIONS

The proposed RWEM-based current-split estimation has been effectively demonstrated to es-

timate current-split against random noise conditions and fault injections. The weighted covariance

property of the proposed scheme was incorporated in the initialization of the filter with the inno-

vation process. These enhancements provide more strength to the filter. In the future, an adaptive

scheme to estimate the current-split of cells will be proposed to benefit the cell-balancing control

of each individual cell to improve the service life of the battery-pack. Moreover, the testing of

battery pack cells at different temperatures, varying frequencies and aged cells is one of our high

priority agenda for future work.

20



0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12

14

16

18

Time window (h)

C
ur

re
nt

 (
A

)

 

 

Test Case II: Cell 1 current measurement
proposed scheme
Extended Kalman filter [29,30]
Unscented Kalman filter [31]

Fig. 9. Test Case II: Comparison of current estimates of Cell 1
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Fig. 10. Test Case II: Comparison of current estimates of Cell 2

APPENDIX

A. Proof of Consistency for (27)

Given the estimate (ÎCt|t, P
C
t|t), where ÎCt|t denotes the estimated current state at time instant

t. P refers to the estimated covariance matrix at the respective time instant. For the current-

split estimation, let P̃ C
t|t = (ÎCt|t − ICt|t)(Î

C
t|t − ICt|t)

′ . Then consistency of the covariance is defined

as a property that the estimated covariance matrix is no smaller than the true covariance of the
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Fig. 11. Test Case II: MSE performance of estimated current of a) Cell 1, and b) Cell 2
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Fig. 12. Test Case II: Voltage estimates of battery cell

estimated state of current.

P C
0|0− P̃ C

0|0 ≥ 0 (34)

Considering the definition of (27), the P̃ C
t|t for the current-split is given by:

P̃ C
0|0 = P C

t|t

T∑
t=0

Ac1
t A

c2
t P

c1−1

t|t P̃ C
t|tP

c2−1

t|t ≥ 0 (35)

From (34), the lower bound is as follows:

P̃ C
0|0 =

T∑
t=0

Ac1
t P

c2−1

t|t ≥
T∑
t=0

Ac1
t P

c2−1

t|t P̃ c1
t|tP

c2−1

t|t (36)
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As Ac2
t A

c1
t ≥ 0, this follows that:

P c2−1

t|t P̃ c2
t|tP

c2−1

t|t +P c1−1

t|t P̃ c1
t|tP

c1−1

t|t −P c2−1

t|t P̃ C′

t|tP
c1−1

t|t −P c1−1

t|t

P̃ C
t|tP

c2−1

t|t = IE[(P c2−1

t|t Ĩc2t|t −P c1−1

t|t Ĩc1t|t)(P
c2−1

t|t Ĩc2t|t −P c1−1

t|t

Ĩc1t|t)
′
]≥ 0 (37)

B. Proof of Stability for (33)

Using (33), the discrete Lyapunov equation can be expressed as:

MΩM
′
+Ω = 0 (38)

where M ′ is the conjugate transpose of M . Given that Ω > 0, satisfying (38), if and only if the

linear system ICt+1 = FtI
C
t is asymptotically stable. (33) can be represented in the form of (38),

where:

M = lim
t→∞

P C
I,t|t

[
− (N − 1)P C−1

I,t|t−1Ft+P C−1

I,t|tAt−1

P C
I,t|tA

c1
t Ft+P C−1

I,t|tAt−1P
C
I,t|tA

c2
t Ft

]
,Ω =WtRtW

′

t ,

Wt = lim
t→∞

[
P C
I,t|tP

C−1

I,t|tAt−1P
C
I,t|t

]
(Ac1

t +Ac2
t )
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