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Abstract—The operations of Li-ion Battery Management System (BMS)
are highly dependent on installed sensors. Malfunctions in sensors could
lead to a deterioration in battery performance. This paper proposed an
effective health monitoring scheme using a median expectation-based diag-
nosis approach (MEDA). MEDA calculates the median of a possible set of
values, rather than taking their weighted average as in the case of a stan-
dard expected mean operator. Furthermore, a smoother was developed to
capture important patterns in the estimation. The resulting filter was first
derived using a one-dimensional system example, where the iterative con-
vergence of median-based proposed filter was proved. Performance evalu-
ations were subsequently conducted by analyzing real-time measurements
collected from Li-ion battery cells used in Hybrid Electric Vehicles (HEV)
and Plug-in HEVs (PHEV) duty cycles. Results showed the proposed filter
was more effective and less sensitive to small sample size and curves with
outliers.

Index Terms—Battery diagnosis, Battery Management System (BMS),
expected value, Kalman filter, lithium-ion batteries, mean, median.

ACRONYMS AND ABBREVIATIONS
BMS Battery Management System

MEDA Median expectation-based diagnosis approach
HEV Hybrid Electric Vehicle

PHEV Parallel Hybrid Electric Vehicle
SoC State-of-charge
TMS Thermal Management System
VMS Voltage Management System
SMS Safety Management System
BCU Battery Control Unit

ME-based KS Median expectation-based Kalman smoother
MKF Median Kalman filter
MKS Median Kalman smoother
DT Detection time

MDR Missed Detection Rate
FDR False Detection Rate

IT Isolation time
MIR Missed Isolation Rate
EKF Extended Kalman filter
MSE Mean Square Error
DST Dynamic Stress rate

I. INTRODUCTION

LITHIUM-ION batteries are popular in HEV market due to
their high energy density and low maintenance cost [1–4].

However, their high capacity and large serial-parallel numbers
of automotive lithium-ion batteries raised issues such as safety,
reliability, cost, and uniformity. Lithium-ion batteries must op-
erate in a reliable and safe operational range to prevent a de-
crease in lifetime, capacity, and safety related problems [5, 6].
For example, an extremely low-voltage or over-discharged bat-
tery may result in the collapse of the lattice and reduction of
the electrolyte. High temperature operation can also cause the
battery electrolyte to decompose, and produce combustible gas,
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which exothermically reacts with the oxygen generated from the
decomposition of the positive electrode. This may result in fire
and thermal runaway [7–9]. On the other hand, low temperature
operations can cause the breakdown of the cathode, and result
in short-circuit [5, 10, 11]. Meanwhile, the imprecise calcula-
tion of SoC can easily trigger the overcharge or over-discharge
situation, which may result in poor HEV efficiency [12, 13].

To keep the Li-ion battery system safe from these known is-
sues, BMS is required to continuously track the battery perfor-
mance with the help of on-board sensors. A battery pack is
generally composed of several modules consisting of cells con-
nected in-series to provide the desired voltage and in parallel
to satisfy the capacity requirements. BMS includes the follow-
ing subsystems and functions: 1) a TMS to keep the battery
at optimal average temperature while minimizing temperature
differences among cells, 2) a VMS to reduce cell-to-cell im-
balances in voltage and SoC, 3) a SMS to electrically discon-
nect the battery in case of adverse conditions, and 4) a BCU.
BCU controls all three subsystems, estimates battery parame-
ters, and provides diagnostic and prognostic functions. This is
done using a set of current, voltage, and temperature sensors
connected to the BCU. It can be observed that BMS operations
are highly dependent on healthy sensors. Any fault in these sen-
sors, which are often neglected, can result in fatal consequences
[5]. Some works were proposed for component-level analysis of
faults [14–18]. However, limited attentions were given to sen-
sor fault diagnosis for lithium-ion battery system at the system-
level. This may lead to a false assumption that measurements
collected from sensors are always accurate within subsystems.
Therefore, this paper focuses on diagnosing system-level faults.
This could provide access to have traceability against the sys-
tem requirements established at each component-level. It could
also provide the dynamic aspects of component interactions, en-
suring component-level compatibility with the main system.

The contribution of this paper is to enhance the reliability of
lithium-ion batteries at system-level by improving the estima-
tion and detection capabilities of instant nonlinear faults in the
forms of spikes and outliers. This was accomplished by first
extracting the correlation information of the estimates. Sub-
sequently, fault detection and isolation were performed using
a proposed fault diagnosis scheme. The proposed scheme is
named as MEDA approach. It is based on the principles of
Kalman filter, which is widely applied for monitoring and es-
timating applications [19–25]. However, estimators developed
from classic Kalman filter take the weighted average between
the noisy observations and the prior measurements. This min-
imizes the expected value of the sample to be estimated, but
does not guarantee a better measure of the central tendency if
the sample size is small or contain outliers. To overcome this
limitation, a novel nonlinear filter was derived using the median
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expected value. The proposed enhancement was incorporated
into the estimation step and integrated with a fault diagnosis
scheme to monitor lithium-ion battery system.

An overview of the proposed MEDA scheme is illustrated in
Fig. 1. Compared with its Kalman predecessors of [16] and [17]
used in the same field, the proposed scheme improved the esti-
mation and detection accuracy under random fault fluctuations.
This was done by computing modal parameters from the input
of a variable battery system, which is the current. Subsequently,
estimation of voltage and temperature outputs of the battery sys-
tem was computed using a ME-based KS estimator using (25)–
(28), where derivations of the equations will be shown in the
following sections. At this stage, random faults were injected
in both outputs. The proposed filter was applied to detect these
faults, thereby doing a residual generation using (29)–(37). The
residual is a measure used to quantify the existence of a fault. To
make residual evaluation of the signal, a fault threshold selec-
tion was also formulated using a coherence function (38)–(42).
Once an accurate threshold was selected, faults could be iso-
lated using a recognition model from (43). The isolation signal
was represented on a binary scale.

The paper is organized as follows: The problem was formu-
lated in Section II. The implementation and evaluation of the
scheme were discussed in Section III. Conclusions and future
work were drawn in Section IV.

II. PROBLEM FORMULATION

A. Median Expectation-Based Kalman filter with Gaussian
Distributions

The derivation of the median expectation-based Kalman filter
model assumed the state x of the battery system at a time t+1
evolved from its prior state at time t as:

xt+1 = Ftxt +Btut +Gtwt, t= 0,1, ...., T (1)

where x0 ∈ IRr is the initial condition of the state, and Ft ∈
IRr×r is a model matrix of the state response. Note each state
depends on its covariates. The variableBt is the input transition
matrix, ut is the input vector, Gt is the noise transition matrix,
and wt ∈ IRr is the random process noise. Finally, t is the time
instant, and T refers to the number of time instants. Let the
battery system described in (1) to be observed at time-instant t
as:

zt =Htxt + νt (2)

where zt ∈ IRp is the observation output of state, p is the num-
ber of simultaneous observations for estimation made at time
instant t, Ht ∈ IRp× r is the observation matrix, xt is the state
matrix, and νt ∈ IRp is the observation noise. The relationship
of (1) and (2) was based on the following assumption.

Assumption II.1: The noises wt and νt are all initially un-
correlated zero-median white Gaussian such that IEµ1/2

[wt] =
IEµ1/2

[νt] = 0, ∀ t. Note IEµ1/2
denotes the median expectation

operator, where IEµ1/2
[wiν

T
j ] = 0. Meanwhile, IEµ1/2

[wiw
T
j ] =

Rtδij when considering the noise process to be a serially uncor-
related, zero-mean, constant, and finite variance process. The
variable Rt represents the covariance matrix, and δij is a Kro-
necker delta function used for shifting the integer variable af-
ter the presence or absence of noise. Similarly, IEµ1/2

[νiν
T
j ] =

Fig. 1. Proposed MEDA based health monitoring scheme to detect and isolate
sensor faults in Li-ion battery

Qtδij with Qt being the process noise correlation factor. Based
on the formulated system and observation models, the median-
based Kalman filter could then be derived to enhance the estima-
tion in the presence of outliers and small sample size. This re-
quired some additional properties of median expectation, which
would be derived in the next subsection.

A.1 Properties of Median Expectation

The median-based expectation operator IEµ1/2
was developed

from the following definitions II.1, II.2 and II.4 as well as theo-
rem II.1.

Definition II.1: Let X be a random variable. It admits a
probability density function f(x), where the standard expected
value [26] is an infinite sum:

IE[X] = Σ∞
−∞xf(x) (3)

In the same manner, the median-based expected value of the
random variable X is defined as:

P (X ≤ µ1/2)=P (X ≥ µ1/2)=IEµ1/2
[X]=Σ

µ1/2

−∞ xf(x)=
1

2
(4)

The term µ1/2 is the calculated median for the random variable
X . It is defined in a separable Hilbert space H over IRd as:

µ1/2 = IEµ1/2
(x1, .... xN ) = arg min

s∈H
ΣN

i=1(∥Xi − s ∥) (5)

where ∥ . ∥ is its associated norm, and s is a real variable. When
observing the sample values x1, x2, .... xN , a median µ1/2 is
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defined by the gradient equation from [27] as:

IEµ1/2
(X) = ΣN

i=1

Xi −µ1/2

∥Xi −µ1/2 ∥
= 0 (6)

The median µ1/2 always belongs to the convex hull of sample
values x1,x2, .... xN . It could be evaluated iteratively as:

µ1/2,t+1 = µ1/2,t + γt
Xt+1 −µ1/2,t

∥Xt+1 −µ1/2,t ∥
(7)

Note the sequence of steps γt satisfies, γt > 0 for all time-
instants t ≥ 1. The properties to calculate (7) were outlined in
theorem II.1.
Proof: This is shown in the Appendix.

Theorem II.1: Let X and Y be two random variables while
c is a constant value. The following properties can be subse-
quently stated.

Property 1: If c ∈ IR, then IEµ1/2
[cX] = c IEµ1/2

(X).
Proof: This is proved in the Appendix.

Property 2: If a,b ∈ IR:

IEµ1/2
[aX + bY ]≃ a IEµ1/2

X + b IEµ1/2
Y (8)

Proof: This is proved in the Appendix.
Property 3: If X and Y are independent:

IEµ1/2
[XY ] ≈ IEµ1/2

(X)IEµ1/2
(Y ) (9)

Proof: It follows the proof of Property 2.
Property 4: If X is an independent variable, then for the

higher moments of X , i.e. IEµ1/2
[X2],

IEµ1/2
[X2] = IEµ1/2

[(X − IEµ1/2
[X])2]

= argmin
θ1

{|[X − argmin
θ2

{|X − θ2|}]2 − θ1|}

= argmin
θ1

{|X2 − 2X(argmin
θ2

|X − θ2|)

+ (argmin
θ2

|X − θ2|)2 − θ1|} (10)

where θ1 and θ2 represents the expectation IEµ1/2,1 and IEµ1/2,2

respectively.
Definition II.2: According to [28], if the distribution has a fi-

nite variance, then the distance between the mean and the vari-
ance is bounded by one standard deviation:

|µ−µ1/2| ≤ σ (11)

where σ is the standard deviation. Using the property of equal-
ity gives:

µ1/2 −µ ≤ σ

µ1/2 −µ−σ ≤ 0

µ1/2 −µ−σ+ f(µ1/2) = 0

µ1/2 = µ+σ − f(µ1/2) (12)

where f(µ1/2) is calculated using definition II.3.
Definition II.3: f(µ1/2) could be computed according to the

procedure illustrated in Fig. 2. To find the median function in
the first iteration, a minimum of three sample data points are
required. The standard deviation of this data set as well as the
ramp robustness calculation for data points with an increasing
order could be determined. From these values, the distance be-
tween the median and the mean could be computed. Similarly,
the distance between the present data sample and the median
could be found using a Chebychev window. Such approach

Fig. 2. Overview of the median function calculation

minimizes the Chebyshev norm of side-lobes for a given main
lobe width for which the distance needs to be calculated. The
computed distance gives the median of state x. In parallel, the
histogram of the data sample from the state x is calculated as
shown in Fig. 2. A normalization function is applied to adjust
the values according to the sum of data samples. The normal-
ization function and the median calculated from the Chebychev
bounds are then used to interpolate for function of median. This
could be achieved by the gradient method outlined by the fol-
lowing definition.

Definition II.4: Referring to [29], the distribution of the sam-
ple median from a sample size with a density function f(µ1/2)
is asymptotically normal with a mean µ, and a variance σ2:

1

4nf(µ1/2)2
(13)

Note n is the sample size. Hence, the normal distribution could
be defined as f(x,µ,σ) = 1√

2πσ2
e− (x−µ)2

2σ2 . Using the defini-
tion of [29], let the sample to be of the size m = 2n+1. The
median-based normal distribution could then be expressed as:

f(x,µ1/2,σ) =
1√
2πσ2

e−8f(µ1/2)
2m(x−µ1/2)

2

(14)

1) Formulation of ME-Based KS based on Median Operator and
First Principles

Once the definitions and theorem were derived, a system
model for Kalman filter using the median-based expectation
operator was formulated. Suppose the estimated state at time-
instant t for the time-sequence T is x̂t|t. Given the information
of (2) and time sequence T − 1, the state prediction can be de-
fined linearly with a conditional probability as:

x̂t|t−1 = IEµ1/2
[xt|ZT−1]

= Ft argmin
x

[xt−1 −µ1/2,t−1] +Btut (15)

Note the process noise is assumed to have a zero median. Taking
the difference between (1) and (15) gives:

xt − x̂t|t−1 = Ftxt−1 +Btut +Gtwt −Ft argmin
x

[xt−1 −

µ1/2,t−1]−Btut (16)

Here xt− x̂t|t−1 is equal to the covariance matrix matrix Pt|t−1

as followed by standard KF.

Pt|t−1 = Ft(xt−1 − argmin
x

[xt−1 −µ1/2,t−1])+Gtwt

= IEµ1/2
[Ft(xt−1 − argmin

x
[xt−1 −µ1/2,t−1])

+ Gtwt)(Ft(xt−1 − argmin
x

[xt−1 −µ1/2,t−1])

+ Gtwt)
T ]

= FtIEµ1/2
[(xt−1 − argmin

x
[xt−1 −µ1/2,t−1])(xt−1
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− argmin
x

[xt−1 −µ1/2,t−1])
T ]FT

t +FtIEµ1/2
[(xt−1

− argmin
x

[xt−1 −µ1/2,t−1])Gtw
T
t ] + IEµ1/2

[Gtwt

(xt−1 − argmin
x

[xt−1 −µ1/2,t−1])
T ]FT

t

+ GtIEµ1/2
[wtw

T
t ]G

T
t

= FtPµ1/2,t−1|t−1F
T
t +GtQtG

T
t (17)

The measurement updated equations for the estimated state
x̂t and the covariance matrix Pt were derived from first prin-
ciples based on (15) to (17). It followed the concepts outlined
in [30]. Here, the estimation was determined using a probabil-
ity density function (pdf) with normal distributions. A simple
one-dimension system example based on vehicular motion was
used to formulate the calculations of information gathered from
the pdfs.

Assume an electric vehicle is constantly tracking to see if it is
following a straight line. At each time instant, it seeks to know
the position of the vehicle. This could be achieved by knowing
the last known position of the vehicle and measurements gath-
ered as the vehicle starts its motion at time-instant t0 while fol-
lowing the whole time-sequence tT0 . At a new time-instant, e.g.
t1, the new position of the vehicle could be calculated by know-
ing the limitation such as velocity, acceleration, and decelera-
tion. Now, suppose a position of the vehicle could be modeled
by a Gaussian pdf with a known median and variance. When the
vehicle moves, each new position is represented by a different
Gaussian pdf. Similarly, the new position could again be esti-
mated by the prediction from the last known position and the
measurements of past observations. This is equivalent to multi-
plying two Gaussian pdfs assumed at different time-instants.

To consider multiplication of pdfs, let the median-based
Gaussian distribution function for the prediction from the last
known position to be:

f1(x,µ1/2,1,σ) =
1√
2πσ2

e−8f(µ1/2,1)
2m(x−µ1/2,1)

2

(18)

Next the median-based pdf for measurement could be assumed
as:

f2(x,µ1/2,2,σ) =
1√
2πσ2

e−8f(µ1/2,2)
2m(x−µ1/2,2)

2

(19)

The best estimate could then be calculated by multiplying the
information from the prediction (18), and the measurement of
(19) such that:

[ f1(x,µ1/2,1,σ1) ][ f2(x,µ1/2,2,σ2) ]

=
1√
2πσ2

1

e
−(x−µ 1

2
,1
)28f(µ 1

2
,1
)2m× 1√

2πσ2
2

e
−(x−µ 1

2
,2
)28f(µ 1

2
,2
)2m

=
1

2π
√
σ2
1σ

2
2

e
−(x−µ 1

2
,1
)28f(µ 1

2
,1
)2m+(x−µ 1

2
,2
)28f(µ 1

2
,2
)2m

(20)

This resulted to a newly fused distribution function:

ffused(x,µ 1
2 ,fused,σfused)

=
1√

2πσ2
fused

e
−
(
x
√

8f(µ 1
2
,fused)m−µ 1

2
,fused

√
8f(µ 1

2
,fused)m

)2

(21)

where

σ2
fused =

σ2
1σ

2
2

σ2
1 +σ2

2

=
(8f(µ 1

2 ,1
)2m)−1σ2

2

σ2
1 +σ2

2

=
1

(8f(µ 1
2 ,1

)2m)
.

σ2
2

σ2
1 +σ2

2

(22)

and

µ 1
2 ,fused =

µ 1
2 ,1
σ2
2 +µ 1

2 ,2
σ2
1

σ2
1 +σ2

2

= µ 1
2 ,1

+
σ2
1(µ 1

2 ,2
−µ 1

2 ,1
)

σ2
1 +σ2

2

=
µ 1

2 ,1

g
+

(σ1

g )2(µ 1
2 ,2

−
µ 1

2
,1

g )

(σ1

g )2 +σ2
2

= µ 1
2 ,1

+ [

σ2
1

g

(σ1

g )2 +σ2
2

][µ 1
2 ,2

−
µ 1

2 ,1

g
] (23)

Note the information from the prediction could be scaled by a
parameter g. According to the definition II.4 and (12), substi-
tuting µ̃= µ+σ−f(µ 1

2
), H = 1/g andK = (Hσ2

1)/(H
2σ2

1+

σ2
2) in (23) gives,

µ 1
2 ,fused = µ1 +

σ1
g

− f(µ 1
2 ,1

)+ [

σ2
1

g

(σ1

g )2 +σ2
2

][µ2 +σ2

−f(µ 1
2 ,2

)−µ1 −
σ1
g

+ f(µ 1
2 ,1

)]

= µ1 +
√
σ2
1 − f(µ 1

2 ,1
)+K(µ2 +σ2 − f(µ 1

2 ,1
)

−Htµ1 −H2
t σ1 +Htf(µ 1

2 ,1
)) (24)

Comparing the terms derived from (22) to (24) to the standard
vectors and matrices used in the Kalman filter algorithm gener-
ated the following relationships:
• The state prediction µ1/2,1 ≈ x̂t|t−1,
• The measurement vector µ1/2,2 ≈ zt,
• The state estimate generated from data fusion µ1/2,fused ≈ x̂t|t,
• The a− priori estimate covariance matrix σ2

1 ≈ Pt|t−1,
• Covariance matrix of estimation error σ2

2 ≈ Rt,
• The a− posteriori estimate covariance matrix σ2

fused ≈ Pt|t,
• The transformation observation matrix H ≈ Ht, and
• The Kalman gain K ≈Kt.

This led to the formulation of (25) from (24), and (26) from
(22) as shown below:

x̂t|t = x̂t|t−1 +Ht

√
Pt|t−1 − f(x̃t|t−1)+Kt[zt +

√
Rt

−f(z̃t)−Htx̂t|t−1 −H2
t

√
Pt|t−1 +Htf(x̃t|t−1)] (25)

Pt|t = Kt

(
64f(x̃t|t−1)

2f(x̃t)
2Pt|t−1Rt

)−1
(26)

They represented the updated measurement equations of the fil-
tering step. To improve the initialization procedure, a smoother
process was introduced. It analyzes a sequence of T observa-
tions from the previous filter measurements. Here, the time se-
quence was turned backwards such that t = T, T − 1, . . . , 0.
This sequence updated the smoothed a− posteriori estimate
covariance, PS

t|T . The subscript S denotes the smooth operator.
Taking the difference between (25) and (1), and then its update
with respect to the state estimate of the forward run gives:

xt−x̂t|t−1=FtP
S
t+1|TF

T
t +H

√
PS
t+1|T−f(x̃t|t−1)+IEµ1/2
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[(KtHtxt +Ktνt +Kt

√
Rt −Ktf(z̃t)−KtHt

x̂t|t−1−KtH
2
t

√
PS
t+1|T +KtHtf(x̃t|t−1)−wt)

(KtHtxt+Ktνt +Kt

√
Rt −Ktf(z̃t)−KtHt

x̂t|t−1−KtH
2
t

√
PS
t+1|T +KtHtf(x̃t|t−1)−wt)

T ]

PS
t|T = FtP

S
t+1|TF

T
t +Ht

√
PS
t+1|T − f(x̃t|t−1)+

[(KtHtf(P̃
S
t+1|T )−KtH

2
t

√
PS
t+1|T+Kt

√
Rt

− KtHtx̂t|t−1 +Ktf(R̃t)+wt(Kt − 1))(KtHt

f(P̃S
t+1|T )−KtH

2
t

√
PS
t+1|T +Kt

√
Rt −Kt

f(z̃t)−KtHtx̂t|t−1 +Ktf(R̃t)+wt

(Kt − 1))T ] (27)
x̂t|T = x̂t|t−1 +PS

t|T (28)

where using definition II.1, IEµ1/2
(xt − x̂t|t−1) = f(P̃B

t+1|T ).
Rt denotes the covariance matrix of the difference between zt
and Htxt. Ft is the state transition model applied to previous
state xt−1. The desired measurement update for the state esti-
mate is x̂t|T .

Up to now, a one-dimensional example was used to derive
the scalar mathematics. This could now help us to generate the
residuals from the estimated temperature and voltage of the bat-
tery system.

B. Residual Generation
The residual generation of the estimated parameters depends

on the following two assumptions. They are summarized as fol-
lows:

Assumption II.2: For each measurement, there exists L0

such that for any norm bounded x1,t,x2,t ∈ Rn, the following
inequality holds:

∥(ut,zt,x1,t)− (ut,zt,x2,t)∥ ≤ L0∥x1,t −x2,t∥ (29)
Assumption II.3: Considering the simplified form of (1), the

transfer function matrix Ht[sI − (At −KtHt)]
−1Bt is strictly

positive real, where Kt ∈Rn×r is chosen such that At−KtHt

is stable.
Assume a given positive definite matrix Qt > 0 ∈ Rn×n at

time instant t. There should exist a covariance matrix, Pt =
P ∗
t > 0 ∈Rn×n, and a scalar covariance error Rt such that:

(At −KtHt)
∗Pt(At −KtHt) = −Qt (30)

PtBt = H∗
t Rt (31)

To detect a fault from a residual generation for each measure-
ment, the following expression was constructed:

x̂t = Ax̂t +(ut,zt)+ ξf,t(ut,zt, x̂t)+Kt(zt − ẑt) (32)
ẑt = Htx̂t (33)
rt = V (zt − ẑt) (34)

where the pair (At,Ht) is assumed. The ξt ∈ R is a parameter
that changes unexpectedly when a fault occurs. The variable
V is the residual weighting matrix. Since the pair (At,Ht) is
assumed observable, Kt could be selected to ensure At−KtHt

is a stable matrix. This could be defined as:

ex,t = xt − x̂t, ez,t = zt − ẑt (35)

Error equations became:

ex,t+1 = (At −KtHt)ex,t + [ξt(ut,zt,xt)

− ξf,t(ut,zt, x̂t)], (36)
ez,t = Htex,t (37)

The convergence of the above filter was guaranteed by the fol-
lowing theorem II.2:

Theorem II.2: Based on Assumption II.3, the filter is asymp-
totically convergent when no fault occurs (ξt = ξf,t), i.e.
limt→∞ez,t = 0.
Proof of Theorem II.2: This is shown in the Appendix.

Once the residual was found, evaluations were required to
determine the threshold selection for identifying a fault.

C. Residual Evaluation

The residual evaluation was performed by a coherence func-
tion. Such approach is widely used in system identification or
in determining the cause-effect relationship of a system with its
applications [32, 33]. In this work, a function based on magni-
tude of squared coherence spectrum was employed to determine
the fault status of a battery system at its outputs. Let Ĝ(ω) and
Ĝf (ω) be the estimates of the frequency response of the bat-
tery system under normal fault-free and faulty operating output
regimes respectively. Here ω is the frequency in rad/sec. The
magnitude-squared coherence spectrum of the two signals could
be defined as:

c(Ĝ(ω), Ĝf (ω)) =
|Ĝ(ω)Ĝf (ω)|2

|Ĝ(ω)|2|Ĝf (ω)|2
(38)

where c(Ĝ(ω), Ĝf (ω)) is the magnitude-squared coherence
spectrum, and Ĝ∗(ω) is the complex conjugate of Ĝ(ω) . The
coherence spectrum would be less than or equal to unity due to
the normalization terms in the denominator

c(Ĝ(ω), Ĝf (ω))≤ 1 (39)

In the presence of noise, a threshold value was estimated to
give a high probability of detection and a low probability of
false alarms. The test statistic teststat was chosen to be the
median value of the coherence spectrum

teststat = µ1/2(c(Ĝ(ω), Ĝf (ω))) (40)

teststat =

{
≤ th ∀ω ∈ Ω fault
> th ∀ω ∈ Ω no fault

(41)

where 0≤ th≤ 1 is a threshold value, Ω is the relevant spectral
region, e.g. bandwidth. The evaluation output can be treated as
a detection signal for fault isolation.

Note that in cases of incipient residual evaluation, noise
is considered as an inherent component of system measure-
ment. Therefore, it is likely that a single input-single out-
put system is insufficient to capture the complete system
dynamics due to insufficient ideal system assumptions. A
CauchySchwarz inequality is then considered to guarantee a
value of c(Ĝ(ω), Ĝf (ω)) ≤ 1. To achieve precise threshold se-
lection for a particular signal, only a fractional part of the output
signal will be considered by the input of that frequency. This
leads to the definition of the coherent output spectrum as:

G0(ω) = (c(Ĝ(ω), Ĝf (ω)))(Ĝf (ω)) (42)
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where G0(ω) provides a spectral quantification of the output
power that is uncorrelated with noise or other inputs.

D. Fault Isolation using the Recognition Model

The fault isolation was based on a recognition model, which
directly relates the recognition parameters to the input and out-
put of the battery system. The recognition model linking to the
reference input r, the recognition parameter γ, and the residual
error et is:

et = yt − y0t =Σq
i=1ψ

T
t−1θ

(1)
i ∆γi + νt (43)

where, ∆γi = γ− γ0i is the perturbation in γ ; yt and y0t are the
fault-free (nominal) and faulty outputs, respectively. θ(1)i = δθ

δγi
,

and ψ is the data vector formed of the past outputs and past
reference inputs. The gradient θ(1)i was estimated by performing
a number of offline experiments, which consisted of perturbing
the recognition parameters one at a time. The input-output data
from all the perturbed parameter experiments were then used to
identify the gradients θ(1)i . The outcome could be represented
in the form of the cross-spectral density between the faulty data
and fault-free data.

E. Summary of MEDA Approach

1. ME-based KS: Define the properties of Median expecta-
tion operator from (3) to (14). Deriving the state and co-
variance matrices for filter from (25) to (26), following by
a smoother from (27) to (28).

2. Residual Generation: Generate the residual of the esti-
mated parameters outlined from (29) to (37).

3. Residual Evaluation: Evaluate the residual using coher-
ence function from (38) to (42).

4. Fault Isolation: Fault isolation is calculated using the
recognition model outlined in (43).

III. IMPLEMENTATION AND EVALUATION

The proposed FDI scheme was exhaustively assessed on
Lithium-ion battery under different operating conditions. Two
case studies were presented in this paper. Test Case I analyzed
the HEV duty cycle data and Test Case II evaluated the PHEV
duty cycle measurements obtained from experiments conducted
at the Center of Automotive Research [15]. Experiments fol-
lowed the guidelines issued by United States Department of En-
ergy battery test manual [18, 34]. In both test cases, the charac-
terized battery cell is a cylindrical A123 ANR26650 lithium-ion
iron-phosphate cell with nominal capacity of 2.3 Ah and nomi-
nal voltage of 3.2 V. The experimental setup is composed of 800
W programmable electronic load, 1.2 kW programmable power
supply, a data acquisition unit for collecting measurement sig-
nals, a thermal chamber to provide a controlled thermal envi-
ronment, and a computer used for controlling the current load
and supply and data storage through a Labview interface. The
noise in the measurements is eliminated with the help of a low
pass filter. The characterization tests and driving cycle test were
conducted with a frequency of 10 Hz at 20 0C, and the cur-
rent is considered to be positive at discharge and negative at
charge. In this paper, FDI was tested under offline environment
because of two main reasons. One was the fault injection typi-
cally resulted in a detection by BMS. This detection could result
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Fig. 3. Li-ion battery cell measurements with HEV duty cycle

in system shut-off or a compensation of the fault. Alternatively,
if the BMS was unavailable, it could not detect the fault. In this
case, the injected fault may result in potential damage to bat-
tery. Therefore, while the scheme was designed to operate in
real-time, the off-line approach was chosen as the whole set of
considered faults were covered in a consistent way.

In this paper, frozen and biased sensor faults were consid-
ered for voltage and temperature sensor measurements, respec-
tively. They were applied at random timings in both cases. The
following performance metrics were formulated to evaluate the
effectiveness of the proposed MEDA based health monitoring
scheme:

• DT: Time from the fault occurrence to first sensitive detec-
tion of fault.

• MDR: The ratio of test runs for which the fault occurrence
was not detected.

• FDR: The ratio of of test runs for which the fault occur-
rence was detected under no-fault condition

• IT: Time from fault occurrence to first correct isolation of
fault.

• MIR: The ratio of test runs for which the correct fault iso-
lation was not obtained.

A. Test Case I: Li-ion Battery Cell under HEV Duty Cycle

The HEV charge-sustaining operations were performed at
each 10 % SoC intervals. The hybrid pulse test data was com-
posed of constant charge and discharge current pulses of magni-
tudes ranging from 1A to 10A to identify the battery model pa-
rameters. Each discharge pulse was followed by a correspond-
ing charge pulse such that the overall profile was a charge neu-
tral at a given SoC. This discharge and charge current pulses
could improve the applicability of model under a more broad
current ranges [15]. After several charge neutral around a given
SoC, a 1A current was conducted to set SoC for the next set
of current demands followed by a half-hour rest period to en-
sure the system reaches electrochemical and thermal equilib-
rium. The entire test was based on the charging and discharg-
ing operations. The sampled current, corresponding voltage and
temperature profiles, and SoC trajectory during the charging op-
eration are shown in Fig. 3.

The proposed FDI scheme was implemented to first estimate
the voltage and temperature dynamics from the real-time cur-
rent measurements of the Li-ion battery cell under HEV duty
cycle as shown in Fig. 3. Referring to Fig. 4, the proposed
median-based Kalman filter and its derived smoother were used
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TABLE I
PERFORMANCE EVALUATION OF FAULTS IN HEV1

Metric DTEKF DTMKF DTMKS MDREKF MDRMKF MDRMKS FDREKF FDRMKF FDRMKS IT MIR

∆VHEV 28.403 19.036 19.247 0 0 0 0.046 0.069 0.024 19.330 0.304

∆THEV 24.536 16.229 20.132 0 0 0 0.045 0.027 0.022 10.527 0.114

1In this table, ∆V and ∆T are the voltage and temperature faults respectively. DT is the detection time, MDR is the missed detection rate, FDR is the false
detection rate, IT is the isolation time and MIR is the missed isolation rate. Subscript EKF, MKF and MKS are the acronymns of extended Kalman filter,
median-based Kalman filter and median-based Kalman smoother respectively.
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Fig. 5. Comparison of battery cell temperature estimates for HEV duty cycle

to estimate the respective output profile of the voltage. In addi-
tion, comparisons with the mainstream Extended Kalman filter
of [16, 17] were made. The proposed filter and its smoothed
version were observed to capture the system dynamics more
clearly than the regular extended Kalman filter. Furthermore,
a comparison of MSE between the main stream EKF [16, 17]
and the proposed filter is shown in Fig. 6. Because of the ini-
tialization procedure, the EKF started with a slow time tracking
response, causing EKF to have a higher MSE value in the ini-
tial time windows. In contrast, the median-based Kalman filter
and its smoother were fast enough to capture the dynamics well
from the start. Therefore, the proposed method gave more ac-
curate results than EKF as it was able to estimate the deviations
of outliers with precision. This was due to its estimating nature
using the calculated median of the sample size.

The estimated temperature output profile of battery cell in
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Fig. 6. MSE performance of estimated battery parameters

HEV duty cycle is illustrated in Fig. 5. Since the temperature
dynamics were not varying significantly, all estimation schemes
performed reasonably well. The dynamics of temperature were
being captured well by the regular Extended Kalman filter. Fur-
thermore, a comparison of MSE is shown in Fig. 6. All schemes
performed reasonably well. However, EKF was not able to esti-
mate the fault thoroughly. This may be due to its linear nature.

Once the estimation accuracy has been achieved, the resid-
uals were generated. Random fault was then introduced into
each output profile. This occurred at 13.0-14.0 hours and 9.8-
10.9 hours for voltage and temperature profiles, respectively.
Referring to Fig. 7, both faults were detected using the thresh-
old selection by coherence function. The threshold selected for
voltage and temperature residuals were ±1 and ±10, respec-
tively. As observed in Fig. 7(a), some wiggles in the resid-
ual correspond to the dynamics of real-time data. However,
they could also be mistaken as faults if inappropriate thresh-
old was selected. In this case, the threshold selection algorithm
was good enough to detect the faults while avoiding the false
alarms. Subsequently, accurate detection signal was generated
for fault isolation. Referring to Fig. 8, fault isolation was made
by cross spectral density analysis. It was observed that the fault
was isolated accurately in both cases. Finally the performance
evaluation of BMS was evaluated.

Table I summarizes the DT, MDR, FDR, IT and MIR for
all considered faults. Note the DT and IT are given in sec-
onds. It could be seen that both voltage and temperature sen-
sor faults were detected within reasonable time. The MKF and
MKS were significantly faster when comparing to the slower
battery cell dynamics. They were also accurate to report any
missed detections. In addition, MKS offered a more accurate
estimation of voltage and temperature profiles while having a
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Fig. 8. a) Battery cell voltage sensor fault detection in HEV duty cycle, and
b) Battery cell temperature sensor fault detection in HEV duty cycle

slightly longer time than MKF. Although the isolation ratio was
quiet low for both proposed methods, there were some missed
isolations. Overall, the proposed MKS took less time than the
standard EKF. Moreover, the FDR of MKS was comparatively
smaller than EKF.

B. Test Case II: Li-ion Battery Cell under PHEV Duty Cycle

The transient battery power test cycle was a variant of the
standard DST cycle, which was used to simulate the actual driv-
ing cycles of electric vehicles. The profile was extracted from
the United States Department of Energy battery test manual for
PHEVs [18,34]. The sampled current profile, temperature varia-
tions and corresponding SoC trajectory are shown in Fig. 9. Re-
ferring to Fig. 10, the estimation comparison of different meth-
ods were made tracking the reference signal of voltage sensor
output. The corresponding MSE between the main stream EKF
and the proposed filter is shown in Fig. 6. All the schemes per-
formed reasonably well. However, EKF was not able to estimate
the temperature measurement thoroughly. This could be due to
its linear nature. Meanwhile, the estimated temperature sensor
output are shown in Fig. 11. The regular extended Kalman filter
demonstrated decent estimation of the temperature variations.
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Fig. 9. Li-ion battery cell measurements for PHEV duty cycle
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Fig. 11. Comparison of battery cell temperature estimates for PHEV duty
cycle

After the state estimation, random faults were introduced in
the voltage and temperature outputs at 8.1-9.0 hours and 14.3-
16.0 hours, respectively. The residual fault detection using the
coherence function-based threshold is made. This could be ob-
served in Fig. 12. The threshold selected for voltage and tem-
perature residuals were ±1.5 and ±1, respectively. Fault isola-
tion of PHEV could be seen for voltage and temperature using
Fig. 13. Referring to Table II, the performance evaluation of
FDI scheme was made for PHEV duty cycles. Similar to HEV
test case, PHEV performed equally well to detect and isolate
faults.
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TABLE II
PERFORMANCE EVALUATION OF FAULTS IN PHEV

Metric DTEKF DTMKF DTMKS MDREKF MDRMKF MDRMKS FDREKF FDRMKF FDRMKS IT MIR

∆VPHEV 25.793 16.672 16.921 0 0 0 0.030 0.059 0.019 18.319 0.296

∆TPHEV 20.729 16.619 16.275 0 0 0 0.040 0.025 0.021 12.168 0.256
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Fig. 12. a) Battery cell voltage sensor residual in PHEV duty cycle, and b)
Battery cell temperature sensor residual in PHEV duty cycle
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Fig. 13. a) Battery cell voltage sensor fault detection in PHEV duty cycle,
and b) Battery cell temperature sensor fault detection in PHEV duty cycle

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the proposed MEDA based health monitoring
scheme was demonstrated to estimate the output states of HEV
and PHEV duty cycles. The proposed scheme was able to esti-
mate the outliers and abrupt changes accurately. Furthermore,
the detection of the injected faults were effective to report any
likely false alarms. The fault diagnosis based on the proposed
algorithm was able to give better results than its predecessors
when random faults were generated.

In the future, studies to quantitatively verify the effectiveness
and robustness of the proposed method to false measurements
would be conducted. Moreover, its implementation to quan-
tify the boundaries of the proposed method in real-time simula-
tion would be verified. To achieve this, practical implementa-
tion of estimation and diagnostics schemes are only significant
when they are part of the control strategy. Since, the diagnos-

Fig. 14. Median Convergence Diagram

tic decisions may not be required for time-sensitive controller
actions, an offline implementation would give more credible re-
sults. The proposed scheme could also be incorporated as a tool
for on-board diagnostics (OBD), where it could give accurate
diagnostic information about various vehicle subsystems. Due
to its better convergence rate and estimation capability than its
variants, it would allow to identify and detect malfunctions ac-
curately and in lesser time.
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APPENDIX

A. Proof of (7)

Following [31], let x1, x2, ...., xN ∈ H , and let µ1/2,x be
their median. Assumed that z ∈ H , r was the radius such that
∥µ1/2 − z∥ > βr and r > 0 as shown in Fig. 14. There should
exist a subset J ⊆ (1, ...., N) such that for all j ∈ J , ∥xj−z∥>
r. Considering the directional derivative at the point µ1/2 in the
direction z−µ1/2.

∇f(µ1/2,z−µ1/2)=lim
t→0

f(µ1/2 + t(z−µ1/2))− f(µ1/2)

t
(44)

Since µ1/2 minimizes the function f , this indicated that
∇f(µ1/2,z−µ1/2)≥ 0. From (44), this also gave:

∇f(µ1/2,z−µ1/2)

∥z−µ1/2∥
= −Σxj ̸=µ1/2

xj −µ1/2,z−µ1/2

∥xj −µ1/2∥∥z−µ1/2∥
+ΣN

j=1I(xj = µ1/2) (45)

Based on (45) that ΣN
j=1

xj−µ1/2

∥xj−µ1/2∥
= 0. This helped us to show

the convergence of (6) and (7).
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B. Proof of Properties of Theorem II.1

Proof of Property 1:
argmin

s∈H
ΣN

i=1 ∥ xi − s ∥= IEµ1/2
(X)

argmin
s∈H

ΣN
i=1 ∥ cxi − s ∥= argmin

s̃
c

ΣN
i=1 ∥ cxi −

s̃

c
∥

= min
s̃∈cH

ΣN
i=1 ∥ cxi − s̃ ∥, cH : {ch : h ∈H}

ΣN
i=1 ∥ cxi − cIEµ1/2

(x) ∥= |c|ΣN
i=1 ∥ xi − IEµ1/2

(x) ∥
= |c|argmin

s∈H
ΣN

i=1 ∥ xi − s ∥= argmin
s∈H

ΣN
i=1 ∥ cxi − cs ∥

= arg min
s̃
c∈H

ΣN
i=1 ∥ cxi − s̃ ∥,wheres=

s̃

c

= min
s̃∈cH

ΣN
i=1 ∥ cxi − s̃ ∥=ΣN

i=1 ∥ cxi − IEµ1/2
(x) ∥

= min
s̃∈H

ΣN
i=1 ∥ cxi − s̃ ∥ (46)

where cH =H since H is a linear operator..
Proof of Property 2:
= argmin

s∈H
ΣN

i=1 ∥ axi + byi − s ∥

≤ ΣN
i=1 ∥ axi + byi + aIEµ1/2

(x)+ bIEµ1/2
(y) ∥

≤ ΣN
i=1(∥ axi + aIEµ1/2

(x) ∥+ ∥ byi + bIEµ1/2
(y) ∥)

= ΣN
i=1 ∥ axi + aIEµ1/2

(x) ∥+ΣN
i=1 ∥ byi + bIEµ1/2

(y) ∥
= min

s∈H
ΣN

i=1 ∥ axi − s ∥+min
s∈H

ΣN
i=1 ∥ byi − s ∥

≤ min
s∈H

ΣN
i=1(∥ axi − s ∥∥ byi − s ∥) (47)

Proof of Property 3: It follows the proof of Property 2.
Property 4: If X was an independent variable, then for the

higher moments of X , i.e. IEµ1/2
[X2],

IEµ1/2
[X2] = IEµ1/2

[(X − IEµ1/2
[X])2]

= argmin
θ1

{|[X − argmin
θ2

{|X − θ2|}]2 − θ1|}

= argmin
θ1

{|X2 − 2X(argmin
θ2

|X − θ2|)

+ (argmin
θ2

|X − θ2|)2 − θ1|} (48)

where θ1 and θ2 represents the expectation IEµ1/2,1 and IEµ1/2,2

respectively.

C. Proof of theorem II.2:

Consider the following Lyapunov function,

V (et) = e∗x,tPtex,t (49)

where Pt was defined as the solution of (30), Qt was chosen
such that ρ1 = λmin(Qt)− 2∥Ht∥.|Rt|ξf,tL0 > 0. Along the
trajectory of the fault-free system, the corresponding Lyapunov
difference along the trajectory et could be expressed as:

∆V = IE{V (et+1|et,Pt)}−V (et)

= IE{e∗t+1Ptet+1}− e∗tPtet

= (Ae,tex,t +BL0,tue,t)
∗Pt(Ae,tex,t +BL0,tue,t)

−e∗x,tPtex,t

= e∗t [(Pt(At −KtHt)+ (At −KtHt)
∗Pt)

+PtBtξf,t[(ut,zt,xt)− (ut,zt, x̂t)]]et (50)

From Assumption II.2 and system described by (30), one could
further claim:

∆V ≤ −eTx,tQtex,t +2∥ez,t∥.|Ri
t|ξf,tL0∥ex,t∥

≤ −ρ1∥ex,t∥2 < 0 (51)

Thus, limt→∞ ex,t = 0 and limt→∞ez,t = 0. This completed
the proof.
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