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Improved Recursive Electromechanical Oscillations
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Abstract—This paper improves the existing Kalman-based technique
for detecting electromechanical oscillations using Synchrophasor measure-
ments. The novelty is the utilization of a distributed architecture to extract
maximum a-posteriori (MAP) estimations of oscillatory parameters. This
was achieved by an expectation maximization (EM) algorithm. To improve
initial condition estimation, initial correlation information through a for-
ward backward (FB) Kalman-like particle filter (KLPF) was integrated
into the proposed scheme. Performance evaluation was conducted using
IEEE New England 39 Bus system and Synchrophasor measurements col-
lected from New Zealand Grid. The proposed method accurately extracted
oscillatory parameters when the measurements were contaminated by con-
tinuous random small load fluctuations. The method also improved the
capability of detecting multiple oscillations with similar frequencies.

Index Terms—Distributed estimation, electromechanical oscillations, ex-
pectation maximization, forward-backward Kalman-like particle filter,
inter-area oscillation, maximum a-posteriori, power system stability, Syn-
chrophasor.

I. INTRODUCTION

ELECTROMECHANICAL oscillations are power transfers
between groups of interconnected synchronous generators

within the transmission system. Conservative power transfer
limits are set to prevent lightly damped inter-area oscillations,
which then lead to transmission bottlenecks [1, 2]. To increase
transmission margins, Wide-Area Monitoring System (WAMS)
was established [3]. WAMS allows real-time oscillatory param-
eters to be extracted using Synchrophasor measurements col-
lected from Phasor Measurement Units (PMUs) installed at sub-
stations.

Oscillatory parameters are traditionally extracted using
modal analysis [4–6]. Since linear state-space models cannot
guarantee accurate representation of non-linear system dynamic
characteristics, time-domain based techniques were introduced.
These methods are primarily based on analyzing Synchrophasor
measurements obtained from one location [7–14]. However, the
short-coming of computing modal parameters from one location
is that estimation errors may incur due to lack of observability.
Another challenge among published methods are tracking oscil-
lations having similar frequencies [15].

The contribution of this paper is to enhance the observabil-
ity of inter-area oscillation, and improve the detection capabil-
ity of electromechanical oscillations having similar frequencies.
This is accomplished by revamping the oscillation state estima-
tion, thus extracting MAP information using a proposed dis-
tributed detection scheme named as EM-based FB KLPF. The
Kalman like Particle filter is preferred over the basic Kalman
filter because it affords a better defined observation matrix [17].
The proposed scheme is based on extensions of the authors’
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earlier works from [2] and [16]. This is attained by utiliz-
ing a distributed architecture and fusing system dynamics con-
tained within multiple substation signals. An overview of the
EM-based FB KLPF is illustrated in Fig.1. Compared with its
Kalman predecessors of [2, 8], the proposed scheme is implied
to improve the estimation accuracy under continuous random
small load fluctuations. This is done by computing modal pa-
rameters at each PMU location. The proposed method is devel-
oped by considering an observation model for the state variables
(See Fig. 1), followed by transformation of electromechanical
oscillations into the frequency domain. MAP estimations are
then calculated using EM-based FB KLPF. Next, the distributed
filtering fusion is formulated. The processed parameters are sent
into a master filter, which compute the error covariance matrix,
Pt|t, and state estimate, α̂t|t, of each state. Subsequently, the
updated covariance matrix and state estimate values of the mas-
ter filter are fed back to all metering locations. The proposed
scheme provides a novel and convenient way to enhance the
modal estimations at locations that are dominated by noise and
system perturbations. It shall be noted that the oscillatory fre-
quencies and corresponding damping factors are computed us-
ing the state representation of [2].

The paper is organized as follows: The proposed oscillation
detection scheme is formulated in Section II. In Section III the
implementation and evaluation on two test-cases are discussed,
and finally conclusions are drawn in Section IV.
Notations: In this paper, a hat over a variable indicates an esti-
mate of the variable e.g. α̂ is an estimate of α. The individual
entries of a variable like α are denoted by α(l). When any of
these variables becomes a function of time, the time index t ap-
pears as a subscript (e.g. we write αt, Ct, Υt). The notation αT

0

is used to denote the sequence (α0, α1, ...., αT ).

II. THE PROPOSED OSCILLATION DETECTION SCHEME

A. State Formulation with Observation Model

Consider a distributed discrete-time dynamical system as:

αt+1 = ϕαt + υt, t= 0,1, ...., T (1)

where α0 ∈ IRr is the initial condition of the oscillation state, ϕ
∈ IRr×r is a modal matrix of the oscillation response, such that
it depends on covariates, υt ∈ IRr is the random small load fluc-
tuations based zero-mean white Gaussian noise, such that IE[υt]
= 0, t is the time instant and T is the number of time instants.
Let the system described in (1) be monitored by a network of
N sensors. It should be noted that the sensors are PMUs in-
stalled in high-voltage substations. Observations at i-th sensor
with time instant t can be stated as:

Υi
t = Ci

tαt +wi
t, i= 1, ..., N (2)

where Υi
t ∈ IRpi

is the local observation output of oscillations
at i-th sensor, pi is the number of local simultaneous observa-
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Fig. 1. Proposed Distributed Estimation Scheme for Monitoring Multiple Electromechanical Oscillations

tions for oscillations made by i-th sensor at time instant t, Ci
t

∈ IRpi × r is the local observation matrix for i-th sensor, αt is
the oscillation state matrix and wi

t ∈ IRpi

is the local observa-
tion with zero-mean white Gaussian noise, such that IE[wi

t] =
0, IE[wi

tw
i∗

t ] = Riδit, where Ri represents the local covariance
matrix and δit is a Kronecker delta function used for shifting in-
teger variable for the presence or absence of noise accordingly.
IE[wi

tw
j∗

t ] = 0, and IE[υi
tw

i∗

t ] = Q δit, where Q is the process
noise correlation factor. Observations from all N sensors in the
network are integrated synthetically to the master oscillations
observation output model Υmaster,t ∈ IRpmaster , subscript master, t
represents the global observations gathered from the local i-th
sensors at time instant t, pmaster is the master oscillations obser-
vation output collected from number of local i-th sensors. Sup-
pose the master observation matrix, Cmaster,t ∈ IRpmaster×r and the
master observation noise vector, wmaster,t ∈ IRpmaster be:

Υmaster,t=

 Υ1
t

...
ΥN

t

 ,Cmaster,t=

 C1
t
...

CN
t

 ,wmaster,t=

 w1
t
...

wN
t

 (3)

where N is the number of sensors. Then the master observation
model at time t is given by:

Υmaster,t = Cmaster,tαt +wmaster,t, (4)

where Υmaster,t is the master oscillations observation output vec-
tor, Cmaster,t is the master observation matrix, αt is the oscilla-
tion state matrix, and wmaster,t is the master observation noise
vector. From equation (1) and (2), it is assumed that the pair
(ϕ,Cmaster,t) is observable.

Once the observation model is extracted, the state represen-

tation of the oscillatory frequencies is followed.

B. Electromechanical Oscillation Model Formulation

As documented in [2], electromechanical oscillations can be
represented as a sum of K exponentially damped sinusoidal
waveforms with additive observation noise wt. Therefore, con-
sidering the domain transformation for frequency oscillations,
the local observation oscillation output signal Υi

t from an i-th
sensor at time t is modeled as:

Υi
t =

K∑
k=1

bke
λktTs +wi

t, for t= 1,2, ....., T (5)

where ak represents the complex amplitude of the k-th mode,
λk is the k-th eigenvalue of that particular oscillatory mode and
Ts is the sampling interval. By decomposing λk into its rectan-
gular complex form, the signal becomes:

Υi
t =

K∑
k=1

ake
(−σk+j2πfk)tTs +wi

t, for t= 1,2, ....., T (6)

where σk and fk are the damping factor and the oscillatory fre-
quency extracted from the oscillation at i-th substation, respec-
tively. Referring to [2], the k-th eigenvalue of a particular oscil-
latory mode is represented by two oscillation states denoted as
αt,k and αt,k+1, respectively. They can be expressed as:

αi
t,k=e(−σk+j2πfk)tTs , αi

t,k+1=ake
(−σk+j2πfk)tTs (7)

Thus, a signal consisting of K number of exponentially damped
sinusoids is modeled by 2K number of oscillation states.

To find the damping factor σk and oscillatory frequency fk,
the computation of individual oscillation state αt is required.
The direct computation of αt is not reasonable because Ct is
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an unobserved oscillation latent variable. Therefore, a regu-
larization method is required to solve this problem efficiently.
The idea is to use a−priori information of αt to maximize the
function of unknown variables. Maximization of a function is
followed by taking derivatives and equating them to zero. This
will result in having no solution to some first-order conditions.
The reason is due to the condition of solving for model param-
eters with a known distribution of unobserved data, where the
distribution of the unobserved data is itself a function of model
parameters. Expectation Maximization algorithm resolves such
issue by iteratively approximating a distribution for the unob-
served data. It estimates the model parameters by maximizing a
variable that is a lower bound on the actual likelihood function
of oscillation parameters, and repeats the procedure until con-
vergence. Furthermore, to achieve convergence, numerical op-
timization techniques like gradient descent or Newton-Raphson
could be used. However, EM algorithm comes with guarantees
only of convergence to a local maximum of the defined objec-
tive function. Moreover, it gives the luxury to initialize oscil-
lation parameters in a way that breaks symmetry in the mod-
els, thus making it a robust tool for modal parameter estimation
with incomplete data. In order to integrate EM algorithm into
the proposed method, a clear defnition of maximum likelihood
is required. This is achieved by regularlizing MAP estimations
for oscillations from each i-th sensor at time instant t.

C. MAP Estimations using EM-Based FB-KLPF

Consider MAP as a regularization of maximum-likelihood
(ML) estimation. The relation between the unknown parame-
ters and the observed modal measurements of oscillations will
be considered by the original ML problem as:1:

α̂ML
t = arg max

αt

pαt(Υ1, ....ΥT ) (8)

where α̂ML
t is the oscillation state estimate at time instant t

for posterior distribution. (Υ1, ....ΥT ) denotes the measure-
ment sequence ΥT

0 at time t, subindex αt indicates the corre-
sponding probability density function of pαt(Υ1, ....ΥT ) pa-
rameterized by the unknown modal parameter αt. Using con-
ditional probability, the joint density of the oscillation observa-
tions pαt(Υ1, ....ΥT ) can be written as:

pαt(Υ1, ....ΥT ) = pαt(Υ1)
T∏

t=2

pαt(Υt|ΥT−1
0 ) (9)

where ΥT−1
0 = (Υ0, .....ΥT−1). Thus (8) becomes:

α̂ML
t = arg max

αt

pαt(Υ1)
T∏

t=2

pαt(Υt|ΥT−1
0 ) (10)

Also, for ideal case, the log-likelihood function can be consid-
ered as (11) rather than the regular likelihood function.

Lα(Υt) =

T∑
t=2

log pαt(Υt|ΥT−1
0 )+ log pαt(Υ1) (11)

1 In general, a− posteriori probability distribution of αt is obtained by
the measurement sequence of ΥT

0 . Also, pα(ΥT
0 ) ∼ e−β J(ΥT

0 ), where J
represents a convex energy function and β is a positie parameter.

As log is a strictly increasing function, the following is equiva-
lent to (8):

α̂ML
t = arg max

αt

T∑
t=2

log pαt(Υt|ΥT−1
0 )+ log pαt(Υ1) (12)

Since observation matrix Ct for oscillation is not observable,
EM algorithm is employed and instead of maximizing (12), an
averaged form of the log-likelihood function is maximized.

1) Expectation Maximization Algorithm: The EM is derived
here to acquire maximum-likelihood estimates of nearby oscil-
latory frequencies of each local i-th sensor/substation. This
objective is achieved by computing the oscillation state esti-
mate αi

t from each local i-th substation given a measurement
sequence T +1 for input CiT

0 and output ΥiT

0 oscillation vari-
ables. The EM algorithm [16,18] has two steps. The E−step is
obtained with respect to the underlying unknown variables con-
ditioned on the observations, thus maximizing the likelihood
with respect to the oscillation states. The M − step maximizes
the function as in the fully observed case to get a new oscilla-
tion state estimate of the modal parameters, thus maximizing
with respect to the oscillation parameters. Note the EM model
depends upon unobserved latent variables. In this formulation,
the unobserved latent variable is Ct, and its realization follows
a distribution with the expected value btαt. Given the current
oscillation state αt, the E − step finds expectation of the log-
likelihood as:

logL(αt|αT+1
0 ) = IECt|αT

0 ,Υt
logp(αt,Ct|Υt) (13)

where IE is the expected value operator. The M − step
then chooses αT+1

0 to maximize the expected log-likelihood
log(αt|αT+1

0 ) found in the E− step:

αT+1
0 =arg max

αt

IECt|αT
0 ,Υt

logp(αt,Ct|Υt)

= arg max
αt

IECt|αT
0 ,Υt

log(p(Υt,Ct|αt)p(αt))

= arg max
αt

IECt|αT
0 ,Υt

∑
Ct∈Ω

(Υt log(btαt)− btαt)−βJ(αt)

= arg min
αt

∑
Ct∈Ω

(
btαt− IECt|αT

0 ,Υt
Ct log(btαt)

)
+βJ(αt) (14)

where Ω denotes the possible realization of αt, log L =
IE[logL(αT+1

0 )]. For the i-th substation, the expectation for lo-
cal oscillation observation Ci

t is performed given the output Υi
t

and the most recent voltage phase angle of oscillation estimate
α̂t.Calculating the first two moments of its individual elements
Ci

t(l), l = 1, ... N , the pdf is f(Ci
t(l)|Υi

t(l),α
i
t(l)). Applying

the Bayes rule gets:

f(Ci
t(l)|Υi

t(l),α
i
t(l)) =

f(Ci
t(l)|Υi

t(l),α
i
t(l))

f(Υi
t(l)|αi

t(l))

=
f(Ci

t ,Υ
i
t|αt)∑An

Ct=A1
f(Ci

t ,Υ
i
t|αt)

=
f(Υi

t|Ci
t ,α

i
t)f(C

i
t ,α

i
t)∑An

Ci
t=A1

f(Υi
t|Ci

t ,α
i
t)f(C

i
t ,α

i
t)

(15)

According to normal distribution, the pdf becomes:

f(Ci
t(l)|Υi

t(l),α
i
t(l)) =

e
−|Υi

t−αi
tC

i
t |

2

σ2
n∑n

χ=1 e
−|Υi

t−αi
tAχ|2

σ2
n

(16)
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where σ2
n is the noise variance. The dependency on l is elimi-

nated. It is assumed that Ci
t(l) is drawn from the alphabet Aχ

= A1, A2, ...., An. The calculation of moments is shown as:
First moment:

IE[Ci
t(l)|Υi

t(l),α
i
t(l)] =

∑n
χ=1Aχe

−|Υi
t(l)−αi

t(l)Aχ|2

σ2
n∑n

χ=1 e
−|Υi

t(l)−αi
t(l)Aχ|2

σ2
n

(17)

Second moment:

IE[|Ci
t(l)|2|Υi

t(l),α
i
t(l)]=

∑n
χ=1 |Aχ|2e

−|Υi
t(l)−αi

t(l)Aχ|2

σ2
n∑n

χ=1 e
−|Υi

t(l)−αi
t(l)Aχ|2

σ2
n

(18)

As shown in the previous section, to achieve an optimum oscil-
lation estimate, an initial estimation step is required.

2) Initial Correlation Information using FB-KLPF: Given the
measurement sequence t = 0, 1, ..., T of the input and output
measurements CiT

t and ΥiT

t for an i-th sensor, the optimum os-
cillation estimate of α̂i

t|T can be measured by applying a FB-
KLPF (See [19] for the general proof of a forward-backward
Kalman filter). The novelty of KLPF is its ability to deal with
the gain of the system, which is in the form of an observation
function [17]. Given the MAP (or equivalently MMSE) esti-
mate of oscillation sequence αT

0 is obtained by applying the
following FB-KLPF to the state-space model (1)-(2). For the
forward run, the initial condition starts from P0|−1 = var(Υ)
and α0|−1 = 0, showing the availability of the a− priori in-
formation at previous instant of time. The superscript (∗) repre-
sents the transpose operator. For t= 1, ....T , calculate as shown
in Eq. (19)–(24):

Ri
e,t = σ2

nIp+r +Ci
tP

i
t|t−1C

i∗

t (19)

eit =Υi
t −Ci

t α̂
i
t|t−1 (20)

α̂i
t|t = α̂i

t|t−1 +
P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

eit (21)

α̂i
t+1|t =Φtα̂

i
t|t (22)

P̂ i
t|t = P̂ i

t|t−1 −
P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

Ci
t P̂

i
t|t−1 (23)

Pt+1|t =Φt(P
i
t|t−1 −

P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

Ri
e,t

.(
P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

)∗)Φ∗
t +

1

σ2
n

Γi
tΓ

i∗

t (24)

For the backward run, the sequence of T observations from
KLPF is required. The iteration starts from λT+1|T = 0. For
t = T, T − 1, ...., 0, calculate as shown in Eq. (25)–(26):

P iB

t|T = FtP
i
t−1|tF

∗
t +

(
Ci

tP
i
t|t−1 +

P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

Ri
e,t

)
(

P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

Ci
tP

i
t|t−1 +

P i
tC

i∗

t

Ci
tP

i
tC

i∗
t +σ2

ν

Ri
e,t

)T

(25)

α̂i
t|T = α̂i

t|t−1 +P iB

t|T (26)

where Re,t denotes the local oscillation covariance matrix of es-
timation error et of the i-th sensor, Ip+r is the identity matrix
of length p+ r, P i

t|t−1 represents the local predicted a−priori

oscillation estimate covariance matrix, αi
t|t is the local updated

a− posteriori oscillation state estimate and αi
t|t−1 is the local

predicted a− priori oscillation state estimate. P i
t|t is the local

updated a− posteriori oscillation estimate covariance, and Qt

is the process noise correlation factor such that Qt = IE[wtw
∗
t ]

= 1
σ2
n
ΓtΓ

∗
t . Γt is the squared matrix for oscillation response.

Φt is the state transition model applied to previous oscillation
state αt−1, σν is the process noise variance. P iB

t|T is the local
backward-run updated a− posteriori oscillation estimate co-
variance. The desired oscillation estimate is α̂i

t|T . This gives
the initial oscillation estimate such that the time sequence T of
oscillation measurements is known. The FB scheme of KLPF
requires a considerable amount of storage and latency (latency
is the measure of time delay experienced in a system). As a re-
sult, the algorithm needs to wait for all T +1 symbols before it
can execute the backward run to obtain the state estimate. One
alternate option is to reduce the time size T . Else, the filter can
be ran in the forward direction only (i.e. run (19-24)) for both
the initial estimation and the EM iteration with no latency.
Proof of Backward Run: This is proved in the Appendix.

3) Convergence of EM Algorithm: The following theorem
proves that the negative log-likelihood of oscillations at i-th
substation is decreasing over time.

Theorem II.1: Minimize the following negative log-
likelihood function with αT

0 given by the following optimization
problem:

min
αt≥0

T∑
t=0

(
(Ctαt +wt)−Υi

t log(Ctαt +wt)
)
+βJ(αt) (27)

where J(αt) is a convex energy functional and β is a positive
parameter.

The MAP estimate from each local i-th sensor is then gath-
ered following the architecture of distributed fusion.
Proof: This is proved in the Appendix.
D. Distributed Filtering Fusion

The formulation of the proposed data-fusion scheme is out-
lined as follows. Define n-dimensional master observation os-
cillation variables as:

Imaster,t = C∗
master,tR

−1
master,tΥmaster,t,

Imaster,t =C∗
master,tR

−1
master,tCmaster,t (28)

and n-dimensional local observation oscillation variables at a
substation with sensor i as:

Iit = Ci∗

t Ri−1

t Υi
t, Ii = Ci∗

t Ri−1

t Ci
t (29)

where I stands for oscillation information matrix. When the
oscillation observations are distributed among the sensors in-
stalled at various substations, see Eq. (2), the master oscillation
information filter can be implemented by collecting all sensor
observations at a central location, or with observation fusion.
This is achieved by realizing that master observation oscillation
variables in (28) as [23]:

Imaster,t =

N∑
i=1

Iit , Imaster =

N∑
i=1

Ii (30)

Considering the same domain and ignoring the risk of in-
troducing additional process errors during the domain trans-
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Fig. 2. Model of the IEEE 39-Bus New England System

formation, let Pmaster,t|t be the updated a− posteriori oscilla-
tion estimate covariance matrix and Pmaster,t|t−1 be the predicted
a−priori oscillation estimate covariance matrix collected from
the master filter at t-th time instant. Also, Pmaster,0|0 is the initial
error covariance for the master filter. Then the master filtering
measurement updates can be given by this alternate form:

P−1
master,t|tα̂master,t|t = P−1

master,t|t−1α̂master,t|t−1

+ C∗
masterR

−1
masterΥmaster

P−1
master,t|t = P−1

master,t|t−1+C∗
masterR

−1
masterCmaster(31)

1) Convergence of the Distributed fusion:
Theorem II.2: The master error covariance matrix and the

oscillation estimate are given in terms of the local covariances
and estimates respectively as:

P−1
master,t|t = P−1

master,t|t−1 +

N∑
i=1

(P i−1

t|t−1 −P i−1

t|t )

P−1
master,t|tα̂master,t|t = P−1

master,t|t−1α̂master,t|t−1 +

N∑
i=1

(P i−1

t|t α̂i
t|t

−P i−1

t|t−1α̂
i
t|t−1) (32)

Proof: This is proved in the Appendix.

III. IMPLEMENTATION AND EVALUATION

The proposed method was exhaustively assessed under dif-
ferent network operating conditions. Among them, two of the
studies are presented in this paper. Test Case I analyzed Syn-
chrophasor measurements collected from IEEE 39-Bus New
England system simulated in DIgSILENT PowerFactory ver.15
[20]. Each generator is a 6th order model and are all equipped
with an Exciter (IEEET1). Apart from Gen 39, all units are in-
stalled with a Power System Stabilizer (STAB1), and a 1st order
governor from [21]. Test Case II examined actual Synchropha-
sor measurements gathered from the New Zealand grid. In ad-
dition, the proposed method is referenced with two mainstream
techniques; 1) Kalman Filter [8], and 2) Prony Analysis [22].
Damping ratios and oscillatory frequencies are computed from
the master oscillation estimate α̂i

master,t. All detections are com-
puted using voltage phase angles sampled at 50 Hz.

A. Test Case I: IEEE 39-Bus New England System

Referring to Fig. 2, the proposed method analyzed Syn-
chrophasor measurements collected from Bus 15, 16, 17, 29,
30, 35, 37, 38, and 39. The predecessor, Kalman Filter, was
applied to extract oscillatory information at Bus 16. By using
Welch power spectral density analysis, three electromechanical
oscillations were identified from measurements around Bus 16.
Their pre-disturbance values are: 1) Inter-area mode with a fre-
quency of 0.73 Hz and a damping ratio of 3.9 %, 2) Local mode
with a frequency of 1.12 Hz and a damping ratio of 5.7 %, and
3) Local mode with a frequency of 1.17 Hz and a damping ratio
of 5.6 %. In this study, the grid suffered from four events over
a period of 60 second. They are:

• At 5 second: Bus 24 experienced a three-phase-to-ground
fault, which was cleared after 0.1 second.

• At 20 second: The active power of the load connected at
Bus 21 was increased by 30 % and the reactive demand by
10 %. This was ramped over 10 second.

• At 25 second: Line 16-17 experienced an outage. The line
was later reconnected at 30 second.

• At 45 second: The load connected at Bus 4 increased its
active and reactive power demands by 20 % and 10 %, re-
spectively. This occurs over a 5 second ramp.

To imitate real-world dynamics, all loads were continuously
perturbed with random small-magnitude fluctuations of up of
10 MW over one second. Note that the modal parameters will
vary slightly due to events occurred in the system. The grid dy-
namics captured at Bus 16 is shown in Fig. 3(a). For this test
case, the detection capability of the proposed method is com-
pared with its Kalman Filter. The computed oscillatory parame-
ters, over a window size of 5 seconds, are listed in TABLE I. In
general, both techniques tracked the inter-area oscillation with
reasonable accuracy when it is the dominating mode within the
analyzed measurements. However, Kalman filter was not able
to separate the two local oscillations having similar frequencies.
Instead, it suffered from mode-mixing by treating the two local
modes as one. The reason is Kalman Filter is originally de-
signed to monitor the dominant mode in ringdown events [8]. Its
estimation accuracy decreases when detecting electromechan-
ical oscillations having similar frequencies or under ambient
conditions. In contrast, the distributed EM-based FB KLPF was
able to detect both local oscillations with reasonable precisions.
This is due to its architecture of employing local filters at every
metering location. The distributed architecture also provides an
updated feedback for the error covariance and state estimation
at each metering location.

Depending on the type of disturbance and its associated en-
ergy density, the inter-area oscillation may not be the dominant
electromechanical mode in all metered locations. This can oc-
cur if the measurements are dominated by transient or ambient
conditions. Consequently, the undistributed nature of Kalman
Filter made it become locational dependent. For example, the
local line outage event at 25 second caused the measurements
collected at Bus 16 to be overwhelmed by transient dynamics.
As a result, the accuracy of the estimated inter-area oscillation
decreased in the 25-30 second window while the local mode re-
mained similar to its previous estimated values. Of course, the
non-linearity of transient dynamics was also contributing to the
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TABLE I
TEST CASE I − NEW ENGLAND SYSTEM: DETECTING MULTIPLE OSCILLATIONS2

Measurements ζKF fKF ζD fD ζKF fKF ζD fD ζKF fKF ζD fD ζKF fKF ζD fD

Time 0 s–5 s 5 s–10 s 10 s–15 s 15 s–20 s

3.7 0.69 3.8 0.73 4.1 0.67 4.1 0.68 4.0 0.67 4.1 0.67 4.0 0.63 4.5 0.68
5.8 1.13 5.7 1.07 5.4 1.14 5.5 1.12 5.3 1.11 5.7 1.08 5.4 1.10 6.0 1.04
− − 5.6 1.17 − − 5.6 1.16 − − 5.8 1.10 − − 5.6 1.16

MSE 1.3× 10−1 2.2× 10−2 2.5× 10−1 1.9× 10−1 1.4× 10−1 2.5× 10−2 1.4× 10−1 2.3× 10−2

Time 20 s–25 s 25 s–30 s 30 s–35 s 35 s–40 s

4.1 0.68 4.2 0.69 3.2 0.68 4.0 0.69 3.7 0.71 3.8 0.71 3.2 0.69 3.9 0.72
5.7 1.13 5.8 1.08 5.7 1.13 5.9 1.07 5.5 1.14 5.8 1.08 5.5 1.15 5.8 1.08
− − 5.9 1.11 − − 5.6 1.14 − − 5.7 1.13 − − 5.6 1.14

MSE 1.3× 10−1 2.1× 10−2 4.5× 10−1 3.7× 10−2 1.4× 10−1 2.6× 10−2 3.0× 10−2 5.5× 10−2

Time 40 s–45 s 45 s–50 s 50 s–55 s 55 s–60 s

3.1 0.68 3.8 0.72 3.2 0.67 3.7 0.71 3.9 0.69 3.9 0.71 3.2 0.66 3.7 0.69
5.4 1.11 5.9 1.04 5.4 1.12 5.7 1.08 5.4 1.15 5.7 1.08 5.8 1.08 5.7 1.11
− − 6.1 1.05 − − 5.5 1.15 − − 5.4 1.15 − − 5.7 1.15

MSE 3.0× 10−2 5.7× 10−3 3.2× 10−2 1.8× 10−3 3.2× 10−2 5.7× 10−4 3.1× 10−2 1.5× 10−3

2In this table, ζ is the damping ratio i.e. ζ = −σ√
σ2+(2πf)2

× 100. f is the frequency in hertz, MSE is the mean-square error, subscript KF and D

are the acronymns of Kalman filter and Distributed EM-Based FB KLPF scheme respectively.

estimation inaccuracies. Another example is the ambient dom-
inated measurements collected from Bus 16 between 35 to 60
seconds. In this case, continuous load perturbations excited the
local modes. In contrast, the energy of the inter-area oscillation
was relatively similar to some of the load perturbations. Con-
sequently, the estimation accuracy of inter-area mode decreased
during this time. The improved accuracy in 50-55 second win-
dow may be due to the load ramp event that occurred nearby,
which excited the inter-area mode.

In the contrary, the monitoring capability of the distributed
EM-based FB KLPF was less impacted. By mixing with
measurements obtained from healthy locations, potential esti-
mation inaccuracies from analyzing non-linearity or ambient
dominated measurements can be compensated. Even under
highly ambient conditions at 55-60 second window, the pro-
posed method demonstrated adequate noise-resistant and ex-
tracted oscillatory parameters with reasonable precisions. This
can be achieved by using EM-based maximum likelihood tech-
nique to detect the incipient inter-area oscillation with the help
of the observation matrix of KLPF structure.

B. Test Case II: New Zealand Network

The backbone of the New Zealand transmission infrastructure
is based on 220 kV lines that are interconnected by HVDC links
between North and South Islands. Being a longitudinal network
with weak transmission lines, the New Zealand Grid is prone to
electromechanical oscillations like those experienced by West-
ern Systems Coordinating Council (WSCC). For this study, the
proposed method was applied to track a lightly-damped inter-
area oscillation occurred in the South Island between 11:12:32
am to 11:16:33 am on 30 July 2008. Synchrophasor measure-
ments collected from Twizel (TWZ), North Makarewa (NMA),
and Whakamaru (WKM) substations between 11:12:30 am to
11:13:29 am were used to further assess the detection capabil-
ity of the proposed method. The system dynamics over this 60
second period is illustrated in Fig. 3(b). Whakamaru is used
as the reference location for determining the phase angles. Us-
ing Welch power spectral density analysis and referring to the

.
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Fig. 3. a) Test Case I: Voltage Phase Angle Profile of BUS 16, b) Test Case
II: Voltage Phase Angle Profile of North Makarewa (NMA) between 11:12:30
am to 11:13:29 am

report of [24], three electromechanical oscillations modes were
identified. Instantaneous oscillatory parameters differ slightly
from these values due to continuous changing grid operations.
Their averaged values over this 60 seconds time-frame are:

• Mode 1: Inter-area oscillation with a frequency around
0.85 Hz and an averaged damping ratio of 2.0 %.

• Mode 2: Local oscillation with a frequency around 1.04 Hz
with an averaged damping ratio of 5.0 %.

• Mode 3: Local oscillation with a frequency around 1.20 Hz
with an averaged damping ratio of 4.9 %.

Referring to TABLE II, all three methods accurately tracked
the dominant inter-area oscillation in every monitoring window.
Since the two local modes have similar frequencies, Kalman Fil-
ter and Prony Analysis experienced mode-mixing problem. The
two local modes were averaged and treated as one. Even so,
Prony generated higher inaccuracies than Kalman Filter when
detecting the damping ratio of the mixed local mode. The rea-
son is local modes became ambient in later windows. Conse-
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TABLE II
TEST CASE II − NEW ZEALAND GRID DATA: ESTIMATION RESULTS OF MULTIPLE ELECTROMECHANICAL OSCILLATIONS3

ζPR fPR ζKF fKF ζD fD ζPR fPR ζKF fKF ζD fD ζPR fPR ζKF fKF ζD fD

Time 11:12:30 am–11:12:40 am 11:12:40 am–11:12:50 am 11:12:50 am–11:13:00 am

2.3 0.73 2.2 0.84 2.0 0.83 2.0 0.89 2.3 0.82 1.9 0.86 2.0 0.88 2.2 0.80 1.8 0.86
− − − − 4.9 1.02 − − − − 4.9 1.01 − − − − 5.0 1.01
4.5 1.02 4.8 1.14 4.9 1.15 4.2 1.16 4.7 1.18 4.9 1.16 3.2 1.01 4.9 1.14 4.9 1.16

MSE 1.5× 10−2 1.5× 10−3 1.1× 10−3 1.4× 10−2 2.3× 10−3 3.6× 10−3 1.4× 10−2 2.2× 10−3 1.4× 10−5

Time 11:13:00 am–11:13:10 am 11:13:10 am–11:13:20 am 11:13:20 am–11:13:30 am

2.0 0.85 1.8 0.81 2.1 0.86 2.1 0.79 2.1 0.85 2.1 0.80 1.8 0.81 2.2 0.85 2.0 0.85
− − − − 4.9 1.02 − − − − 5.2 0.95 − − − − 4.9 1.02
3.2 1.20 4.9 1.17 5.0 1.18 1.8 1.12 4.8 1.18 4.9 1.18 2.4 1.05 5.3 1.12 4.9 1.15

MSE 1.4× 10−2 2.8× 10−3 5.1× 10−5 1.4× 10−2 3.6× 10−3 6.7× 10−5 1.4× 10−2 4.0× 10−3 4.1× 10−5

3In this table, subscript PR is the acronym of Prony Analysis

quently, errors were incurred in modal solutions as Prony was
built to track ringdown dynamics. On the other hand, the recur-
sive nature of Kalman Filter and the proposed method allowed
both techniques to better detect local oscillatory parameters un-
der ambient-like conditions. Hence, both methods estimated the
local mode with reasonable accuracies. However, the proposed
method was more accurate than Kalman Filter as it did not suf-
fer from mode-mixing issue.

IV. CONCLUSIONS

In this paper, the estimation accuracy of existing KF is en-
hanced using a distributed structure of EM algorithm encapsu-
lated with initial correlation information from FB-KLPF. The
proposed algorithm is able to operate under noisy/ambient con-
ditions. It was also demonstrated to be capable of detecting
oscillations having similar frequencies. Monitoring comparison
of the scheme was made with existing Kalman filter and Prony
analysis, which are used by the power utilities. The limitation
of proposed method is the computational complexity. However,
this may be resolved by assigning indepedent functions for each
substation using parallel computing. In the future, studies to
quantitatively verify the effectiveness and robustness of the pro-
posed method to false measurements will be conducted.

APPENDIX

A. Proof of theorem II.1

For all sequences, the following contraint is satisfied:
T∑

t=0

CT
0 +wi

t =Υt (33)

To prove the convergence of EM algorithm, Υt is considered
to be a set of perturbed data, a convex constraint optimization
problem is considered using Karush-Kuhn-Tucker (KKT) con-
ditions which have equality and inequality constraints respec-
tively. J is a convex energy function. Assuming to satisfy (2)
with Jensen’s inequality, the following inequality shows:

Υi
t log(C

i
tα

T+1
0 +wi

t)−Υi
t log(Ctα

T
0 +wi

t)

= Υi
t log

(
Ctα

T+1
0 +wi

t

CtαT
0 +wi

t

)
=Υi

t log

(∑T
t=0 btα

T+1
0 +wi

t

CtαT
0 +wi

t

)

= Υi
t log

(
T∑

t=0

btα
T
0 α

T+1
0

(CtαT
0 +wi

t)α
T
0

+
wi

t

(CtαT
0 +wi

t)

)

= Υi
t log

(
T∑

t=0

Ct+1btα
T
0

Υi
tbtα

T
0

+
wi

t

Υi
t

)
≥Υi

t

T∑
t=0

Ct+1

Υi
t

log

(
btα̂t+1

btαT
0

)

=
T∑

t=0

Ci
t+1 log(btα

T+1
0 )−

T∑
t=0

Ci
t+1 log(btα

T
0 ) (34)

In general, Jensen’s inequality relates the value of a convex
function of an integral to the integral of the convex function.
In the context of probability theory, it is generally stated in the
following form: if X is a random variable and is a convex func-
tion, then φ(IE[X]) ≤ IE[φ(X)]. Thus inequality in (34) gives:

IE(αT+1
0 )− IE(αT

0 )=

T∑
t=0

(Ci
tα

T+1
0 +wi

t)−Υi
t log(Ctα

T+1
0 +wi

t)

+βJ(αT+1
0 )−

T∑
t=0

(Ci
tα

T
0+wi

t)−Υi
t log(C

i
tα

T
0+wi

t)−βJ(αT
0 )

≤
T∑

t=0

(btα
T+1
0 −Ci

t+1 log(btα
T+1
0 ))+βJ(αT+1

0 )

−
T∑

t=0

(btα
T
0 −Ci

t+1 log(btα
T
0 ))−βJ(αT

0 )≤ 0. (35)

When IE(αT+1
0 ) = IE(αT

0 ), (14) and (34) have to be satisfied.
The first equality is satisfied if and only if sequence αT+1

0 = αT
0

for all t, while the second one is satisfied if and only if sequence
αT
0 and αT+1

0 are minimizers of the M − step. The functional
to be minimized in M − step is strictly convex, which gives:

βαT
0 ∂J(α

T
0 )+

T∑
t=0

btα
T
0 −

T∑
t=0

Υi
t+1 = 0 (36)

After plugging the moments into these equations, it gives:

βαT
0 ∂J(α

T
0 )+

T∑
t=0

btα
T
0 −

T∑
t=0

e
−|Υi

t−αT
0 Ci

t |
2

σ2
n (37)

Therefore, oscillation state sequence αT
0 is one minimizer of the

original problem.

B. Proof of theorem II.2

The master oscillation estimate is given by

P−1
master,t|tα̂master,t|t=P−1

master,t|t−1α̂master,t|t−1+C∗
masterR

−1
masterΥmaster,t

P−1
master,t|t = P−1

master,t|t−1 +C∗
masterR

−1
masterCmaster (38)
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Since Rmaster is block diagonal, the terms C∗
masterR

−1
masterΥmaster,t

and C∗
masterR

−1
masterCmaster are decomposed into the sums

C∗
masterR

−1
masterΥmaster,t =

N∑
i=1

Hi∗Ri−1

Υi
t

C∗
masterR

−1
masterCmaster =

N∑
i=1

Ci∗Ri−1

Ci (39)

Noting for the i-th sensor, the oscillation estimate and the error
covariance are given by

P i−1

t|t α̂i
t|t = P i−1

t|t−1α̂
i
t|t−1 +Ci∗Ri−1

Υi
t

P−1
master,t|t = P−1

master,t|t−1 +Ci∗Ri−1

Ci (40)

which shows that the master filter is upgraded after sending the
feedback about oscillations and getting updated results from i-
th number of sensors.

C. Proof of Backward-run of KLPF

For calculating the local backward-run updated a −
posteriori oscillation estimate covariance P iB

t|T , take the differ-

ence between (21) and (1). Let P i
tC

i∗
t

Ci
tP

i
tC

i∗
t +σ2

ν

from (21) is equal

to Λt, and inserting the value of Υi
t from (2).

αi
t+1 − α̂i

t|t = FtP
i
t−1|t−1F

∗
t + IE[(Λt(Υ

i
t −Ctα

i
t|t−1)

−vt)(Λt(Υ
i
t −Ctα

i
t|t−1)− vt)

∗]

P iB

t|T = FtP
i
t−1|t−1F

∗
t + [(ΛtCtP

i
t|t−1 +ΛtR

i
e,t)

(ΛtC
i
tP

i
t|t−1 +ΛtR

i
e,t)]

∗

P iB

t|T = FtP
i
t−1|t−1F

T
t [(ΛtCtP

i
t|t−1 +ΛtR

i
e,t)

(ΛtC
i
tP

i
t|t−1 +ΛtR

i
e,t)

∗] (41)

The value of local bacward-run updated a−posteriori oscilla-
tion estimate covariance P iB

t|T will then be added to the updated
oscillation state estimate αi

t|T to give (26).
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