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Abstract—Lightly damped electromechanical oscillations are major op-
erating concerns if failed to be detected at an early stage. This paper
improved the existing extended complex Kalman filter (ECKF) technique
of tracking electromechanical oscillations using synchrophasor measure-
ments. The proposed algorithm adopted a distributed architecture for es-
timating oscillatory parameters from local substations. The novelty lies in
handling maximum likelihood (ML) to enhance the convergence property
in tracking multiple modes using an expectation maximization (EM) ap-
proach. This was achieved by encapsulating the augmented Lagrangian
(AL) in the maximization step of the EM algorithm, which utilized a novel
ECKF-based smoother (ECKS). Performance evaluations were conducted
using IEEE 68 Bus system and recorded synchrophasor measurements col-
lected from the New Zealand grid. Random noise variance test cases were
generated to examine the performance of the proposed algorithm. To en-
sure the robustness to random noisy conditions, the algorithm was tested
based on exhaustive Monte Carlo simulations. Comparisons were made
with the existing Prony Analysis (PA), Kalman filter (KF), and distributed
EM-based FB-KLPF.

Index Terms—Augmented Lagrangian, distributed estimation,
maximum-likelihood, oscillations, power system stability, phasor
measurement unit (PMU), smoother, synchrophasor.

I. INTRODUCTION

DETECTING electromechanical oscillations in power
transmission networks is critical to ensure the reliability

of power transfer between regions [1,2]. Oscillatory modes like
inter-area oscillations are prone in stressed systems that lack re-
active support. They exhibit a low frequency range of less than
1 Hz, and are difficult to be promptly detected. Consequently,
conservative power transfer margins are set in tie-lines to miti-
gate the occurrences of lightly-damped inter-area oscillations.
To better optimize the transmission assets, real-time detection
schemes using synchrophasor measurements were proposed.

To date, many oscillation detection schemes were published.
They can be classified into recursive and block-processing
methods. Recursive methods update the mode estimates at
every sampling time instant based on the previous estimates [3].
The first recursive method applied to process ambient data is
presented in [4], followed by Kalman filter (KF) approach pre-
sented in [5]. On the other hand, block-processing techniques
are based on simultaneously processing a set of data within a
single sliding window. Each new estimation and its respective
calculation is independent to the previous data window. In
published block-processing methods, Prony analysis is one
of the most widely used technique [6]. A literature review
of other monitoring schemes are outlined in [7–12]. Despite
many oscillation monitoring methods were published, most
of them extract system dynamics based on a single metering
location. Moreover, they face a common challenge of tracking
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oscillations having similar frequencies under noisy conditions.
The contribution of this paper is to minimize the detection

inaccuracies caused by the lack of oscillatory observability,
and network perturbations in metering locations. This is
accomplished by revamping the state estimation in a distributed
architecture. The information of likelihood is then extracted
using a proposed scheme named as expected augmented
Lagrangian maximization-based on extended complex Kalman
smoother (EALM-based ECKS). Compared with its expec-
tation maximization (EM) predecessor [13], the proposed
method improves the estimation accuracy under continuous
random noise fluctuations. This is done by firstly computing
modal parameters collected from local locations in a dynamical
system. Subsequently, by considering an observation model
for the state variables, maximum-likelihood (ML) estimations
are calculated using EALM at maximization step and tackles
the random noisy conditions as asymptotic matrix. In addition,
extended complex Kalman filter-based smoother (ECKS) is
applied at the initial correlation step due to its property of
giving an estimated sequence of the unobserved oscillation
variable. As a result, the proposed scheme provides a novel and
convenient way to enhance the modal estimations at locations
that are contaminated by noise and system perturbations.

The paper is organized as follows; a proposed oscillation
detection scheme is shown in Section II, followed by the
implementation and evaluation of the proposed scheme in
Section III, and finally conclusions are drawn in Section IV.
Notations: In this paper, IE is the expectation operator. A
symbol ̂ over a variable indicates an estimate of that variable
e.g. x̂ is an estimate of x. The individual entries of a variable
like x are denoted by x(l). When any of these variables become
a function of time, the time index t appears as a subscript
(e.g. xt, Ht, zt). The notation xT0 is used to denote the time
sequence (e.g. x0, x1, ...., xT ).

II. THE PROPOSED OSCILLATION DETECTION SCHEME

This section begins with outlining the assumed system model,
followed by the state representation of electromechanical oscil-
lations. The EALM-based ECKS algorithm is then built on it
for calculating the maximum likelihood. An overview of this
section is illustrated in Fig. 1. It summarizes the formulation
and equations involved at each step.

A. State Representation Observation Model

Consider a dynamical system, where all sensors are time syn-
chronized and have the same measurement rate in a distributed
environment, followed by observations at i-th sensor as:

xt+1 = f(xt,υt), t= 0,1, ...., T (1)

zit =Hi
t xt+wit, i= 1, ..., N (2)
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Fig. 1. Framework of the proposed oscillation detection scheme

where f(.) is the known nonlinear function representing the
state transition model, x0 ∈ IRr is the initial condition of the
oscillation state, r is the oscillation state vector size in the sub-
space IR. In addition, υt ∈ IRr is the random load fluctuations
based on process noise, t is the discrete-time instant, and T is
the number of time instants.

Now let the system described in (1) be monitored by a net-
work of N number of sensors, which are basically PMUs in-
stalled in high-voltage substations. Therefore, referring to (2),
zit ∈ IRp

i

is the observation output of oscillations at i-th sensor,
pi is the number of local simultaneous oscillatory observations
made by i-th sensor, Hi

t ∈ IRp
i × r is the local observation ma-

trix of i-th sensor, xt is the state matrix for oscillations, and wit
∈ IRp

i

is the local observation noise.
To integrate a distributed architecture, all local observations

from N sensors in the network are integrated synthetically into
the master observation output model zMt ∈ IRpM . The symbol
M denotes the master, and pM is the dimension of master ob-
servation output collected from N number of local i-th sensors.
Similar to (2), the master observation model at time-instant t is
represented as,

zM,t =HM,txt+wM,t, (3)

The state matrix is xt, the master observation output vector is
zM,t, the master observation matrix is HM,t, and the master ob-
servation noise vector is wM,t. They can also be represented

as:

zM,t=

z
1
t
...
zNt

,HM,t=

H
1
t

...
HN
t

,wM,t=

w
1
t
...
wNt

 (4)

where N is the number of sensors.
Assumption II.1: It has been initially assumed that the noises

wt and νt are uncorrelated, and are zero-mean white noise se-
quence with Gaussian distribution:

IE[wt] = IE[νt] = IE[wgνTh ] = 0, ∀ t (5)
IE[wgwTh ] =Rtδgh, IE[νgνTh ] =Qtδgh, ∀ t (6)

Note Rt represents the residual covariance, δgh is a Kronecker
delta which is one when variables g and h are the same. Qt is
the process noise correlation factor.

Once the observation model is extracted from the syn-
chrophasor measurements, the corresponding state representa-
tion can be formulated in the frequency domain.

B. Electromechanical Oscillation Model Formulation

Assume a signal containsK number of electromechanical os-
cillations. The observation output signal zit from an i-th sensor
at time t can be modeled in the frequency domain as:

zit =
K∑
k=1

bke
(−σk+j2πfk)tTs +wit, t= 1,2, ....., T (7)

where bk is the complex amplitude of k-th mode [14]. σk is
the damping factor, fk is the oscillatory frequency, and Ts is
the sampling time. For convenience, the term −σk + j2πfk
can be represented in the rectangular form as λk. In this paper,
the k-th eigenvalue of a particular signal is described by two
states denoted as xk,t and xk+1,t, respectively. They can also
be expressed for an i-th sensor as:

xik,t=e
(−σk+j2πfk)tTs , xik+1,t=bk+1e

(−σk+1+j2πfk+1)tTs(8)

The term bk represents the complex amplitude of the k-th mode.
Thus, a signal consisting ofK number of exponentially damped
sinusoids is modeled by 2K number of states.

To find the damping factor σk and the corresponding oscil-
latory frequency fk, the individual oscillation state xt needs
to be determined. Note the direct computation of xt requires
the complete observability of the oscillation observation matrix.
This was achieved in [13] by recursively calculating the condi-
tional expectation, and maximizing the possible likelihood of
the unobserved latent oscillation variable Ht using the EM al-
gorithm. The distribution of the unobserved latent variable was
iteratively approximated. However, EM algorithm only guaran-
tees a convergence to a local maximum of the defined objective
function. Moreover, apart from its slower convergence rate due
to the data collected from multiple substations, EM is not able
to provide estimation to the asymptotic matrix of the maximum
likelihood for both variance and covariance respectively. This
asymptotic matrix can be defined as a case of random noise with
high variance. To achieve the robustness, while optimizing the
asymptotic matrix and improving the convergence rate, a con-
jugate direction method is required. This is achieved by incor-
porating augmented Lagrangian (AL) at the maximization step
of EM algorithm. AL has been chosen as it achieves the similar
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estimation accuracy in less number of iterations, while avoid-
ing ill-conditioning. In order to integrate AL into the proposed
method, a clear definition of the ML is required in the context
of EM.

C. Recursive ML Estimations using EALM-based ECKS

A two-step approach is proposed to recursively calculate
ML estimations. They comprise of: 1) Expected augmented
Lagrangian-based maximization (EALM), and 2) initial corre-
lation information using extended complex Kalman filter-based
smoother (ECKS). The purpose is to individually calculate the
maximum-likelihood at each step, while iteratively applying the
correlation information of estimation sequence between both
steps.

Subsequently, by using the definition of conditional prob-
ability, the joint density of observations from oscillations
pxt (z1, ...., zT ) for the ideal case can be written as:

Lxt(zt) = log pxt(z1, . . . ,zT )

=
T∑
t=2

log pxt(zt|zt−1)+ log pxt(z1) (9)

The variable Lxt is the log-likelihood function for oscillation
state xt. In addition, (z1, . . . zT ) refers to the measurement se-
quence zT0 at time-instant t, px is the probability density func-
tion of xt at time instant t. Since log is a strictly increasing
function, (9) is equivalent to:

x̂ML
t =arg max

xt

T∑
t=2

log pxt(zt|zT−1)+ log pxt(z1) (10)

where x̂ML
t =arg maxxt pxt(z1, . . . zT ). Although (10) can be

solved by knowing the observability of oscillations in Ht ma-
trix, it is not the case here. Therefore, EALM algorithm is re-
quired to maximize the log-likelihood function of nearby oscil-
lations.

1) Expected Augmented Lagrangian-based Maximization Al-
gorithm: The EALM algorithm has two internal steps: 1) E-
step, and 2) ALM-step. The E-step is implemented with re-
spect to the underlying unknown variables conditioned on the
observations, thus maximizes the likelihood with respect to the
oscillation states. This is done by applying the conditional prob-
ability on the observation of unknown variables. As a result, the
effects of random load changes and noisy conditions is reduced.
In contrast, the ALM-step maximizes the likelihood function
with respect to the modal parameters to get a new state esti-
mate. This is achieved by first maximizing using M-step with
respect to the oscillation fluctuation parameters, and then fur-
ther converging to a local minimum using AL algorithm.

The key idea of calculating maximum likelihood using
EALM is to consider a joint log-likelihood function containing
both the observed variable zt, and the unobserved latent variable
Ht. Note Ht is assumed to be available. Hence,

Lxt(Ht,zt) = log pxt(Ht,zt) (11)

According to the definition of conditional probability, the resul-
tant joint density function of (11) can be expressed as:

pxt(Ht|zt) =
pxt

(Ht,zt)

pxt(zt)
(12)

By combining (9) and (11), we now attempt to solve the func-
tion outlined in (10). Firstly, the resultant log-likelihood func-
tion becomes:

Lxt(zt) = log pxt(zt) = log pxt(Ht,zt)− log pxt(Ht|zt)(13)

The conditional distribution px̂t(Ht|zt) outlined in (12) is inte-
grated to complete the formulation of the E-step. This gives:

log pxt(zt)=

T∑
t=2

log pxt(Ht,zt) px̂t(Ht|zt)−
T∑
t=2

log pxt(Ht|zt)

px̂t(Ht|zt)
Lxt(zt) = IEx̂t [log pxt(Ht,zt)|zt]− IEx̂t [log pxt(Ht|zt)|zt]

=W (xt, x̂t)−V (xt, x̂t) (14)

where W (xt, x̂t) = IEx̂t [log pxt(Ht,zt)|zt]. The term x̂t de-
notes the estimated oscillation state xt at t-th instant. Mean-
while, V (xt, x̂t) is assumed for the expectation value of the
conditional distribution, i.e. IEx̂t [log pxt(Ht|zt)|zt]. Note that∑N
t=2 log pxt(zt)px̂t(Ht|zt) = log pxt(zt) is used to derive

(14).
The maximum likelihood (ML) is then applied to the E-step

in order to determine the convergence of the oscillation estima-
tion. This is done by taking the difference between Lxt(zt) and
Lx̂t(zt), which is found by substituting (14) into (11) such that:

Lxt(zt)−Lx̂t(zt)=[W (xt, x̂t)−W (x̂t, x̂t)]

+ [V (x̂t, x̂t)−V (xt, x̂t)] (15)

In (15), V (x̂t, x̂t)−V (xt, x̂t) can be solved by Kullback-
Leibler (KL) information distance [15]. This results to:

V (x̂t, x̂t)−V (xt, x̂t) =
T∑
t=2

log

(
pxt

(Ht|zt)
pxt(Ht|zt)

)
= px̂t(Ht|zt)IEx̂t

[
− log

(
pxt(Ht|zt)
px̂t(Ht|zt)

)
|zt
]

(16)

Note the divergence of the negative algorithm creates an aux-
iliary convex function, which can be generalized by Jensen’s
inequality [16]. Therefore, the expectation term of (16) can be
expressed as:

IEx̂t

(
− log

pxt(Ht|zt)
px̂t(Ht|zt)

|zt
)
≥− log IEx̂t − x̂t

(
pxt(Ht|zt)
px̂t(Ht|zt)

|zt
)

=− log
T∑
t=2

pxt(Ht|zt) = 0 (17)

Based on the inequality constraint outlined in (17), the differ-
ence term in (16) will satisfy the following condition:

V (x̂t, x̂t)−V (xt, x̂t)≥ 0 (18)

According to the relationships derived from (16) to (18), if (15)
is used to choose a new parameter xt such that W (xt, x̂t) ≥
W (x̂t, x̂t), it will increase the estimation likelihood as,

Lxt(zt)≥ Lx̂t(zt) (19)

It should be noted that the computation ofW (xt, x̂t) in (14) will
maximize the ML with respect to xt. As a result, the new esti-
mate x̂t+1 could be obtained. This completes the E-step deriva-
tion.

We will now formulate the ALM-step. Using the definition in
(17), and applying the Bayes rule, the augmented Lagrangian-
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based maximization can be incorporated in the moments. These
moments are calculated using the normal distribution. As a side
note, the augmented Lagrangian also defines the co-states and
penalty functions with respect to the derived smoother in the
initial correlation step. They are explained later in the next sub-
section, and summarized in (28) to (37). Coming back to the
topic on ALM-step, the Karush-Kuhn-Tucker (KKT) first-order
optimality necessary conditions is implemented for augmented
Lagrangian [17]. It requires Rie,t, Kt, xit|t, x

i
t|t−1, P it|t and

P it|t−1 to be the solution of the minimization problem based on
Lagrangian function minHt f

[
|Hi

t(l)|2|zit(l),xit(l)
]
, such that:

IE
[
|Hi

t(l)|2|zit(l),xit(l)
]
=

∑n
χ=1 |Aχ|2e

−|z(l)−xi(l)Aχ|2

σ2
n∑n

χ=1 e
−|z(l)−xi(l)Aχ|2

σ2
n

−a1,t[Rie,t

−1−Hi
tP

i
t|tH

i∗

t ]− rt[R
i
e,t− 1−HtP

i
t|tH

i∗

t ]2 − a2,t[Kt−P it|t

Hi∗

t R
i−1

e,t ]− rt(Kt−P it|tH
i∗

t R
i−1

e,t )
2 − a3,t[x

i
t− (1−KtH

i
t)

xit|t−1 −Ktzt]− rt[x
i
t− (1−KtH

i
t)x

i
t|t−1 −Ktzt]

2 − a4,t

[xit+1 − f(xit|t)]− rt[x
i
t+1 − f(xt|t)]

2− a5,t[P
i
t|t−1 −Ft(P

i
t

−KtR
i
e,tKt

∗)F ∗
t ]− rt[P

i
t|t−1 −Ft(P

i
t −KtR

i
e,tK

∗
t )F

∗
t ]

2 (20)

where a1,t, . . . a5,t are the co-states and rt is the penalty co-
efficient. The symbol ⊤ is the transpose operator and σ2

n

is the noise variance. The variable xit|t is the local updated
a− posteriori state estimate, and xit|t−1 is the local predicted
a− priori state estimate. Furthermore, Rie,t denotes the local
covariance matrix of the estimation error et of the i-th sensor,
P it|t−1 represents the local predicted a−priori estimate covari-
ance matrix, and P it|t is the local updated a− posteriori esti-
mate covariance. Finally, Ft is the state transition matrix of the
oscillation state xt. Note that KKT assumed thatHi

t(l) is drawn
from Aχ = A1, A2, ...., An. It represents the oscillation data
from different local substations. According to the augmented
Lagrangian (AL) thereom from [17], KKT conditions general-
ize the method of Lagrange multipliers. They become neces-
sary when the problem is convex, i.e. handling the convergence
of M-step with AL and holding Slater’s conditions to maintain
convexity. Thus, there must exist some positive-Lagrange mul-
tipliers and penalty coefficients such that,
∂M

∂Rie,t
=0,

∂M

∂Kt
=0,

∂M

∂xit
=0,

∂M

∂xit|t−1

=0,
∂M

∂P it|t−1

=0 (21)

The partial derivatives outlined in (21) can be individually eval-
uated as:

∂L

∂Rie,t
= 2rt(1−Rie,t+Hi

tP
i
tH

i∗

t −Kt−
P i

2

t H
i2

t

∗

Ri
3

e,t

−P it|t−1

+Ft(P
i
t −KtR

i
e,tK

∗
t F

∗
t )(FtKtK

∗
t F

∗
t )) (22)

∂L

∂Kt
= −a2,t−a3,tKtx

i
t−1zt−a5,t(FtKtK

∗
t F

∗
t )+ 2rt

(−Kt+P itH
∗
t R

i−1

e,t −xit+xit|t−1 −P it|t− 1+Ft(P
i
t

−Kt)R
i
e,tK

∗
t F

∗
t )(FtKtK

∗
t F

∗
t ) (23)

∂L

∂xit
=

|Aχ|2e

(
−|z(l)−x(l)Aχ|2

σ2
n

)2

−2|z(l)−x(l)Aχ|σ2
n

σ2
n

(e
−|z(l)−x(l)Aχ|2

σ2
n )2

−Aχe
−|z(l)−x(l)−x(l)Aχ|4

σ4
n

−2|z(l)−x(l)Aχ|
σ3
n

−a3,t

−2rt(xit−xit|t−1+x
i
t|t−1KtH

i
t−Ktzt) (24)

∂L

∂xit|t−1

=−a3,t(1−KtH
i
t)−a4,t−2rt(x

i
t−xit|t−1KtH

i
t

−Ktz
i
t(1+KtH

i
t)+xit|t−1 − f(xt)) (25)

∂L

∂P it|t−1

=−a5,t−2rt

(
P it|t−1−Ft(P

i
t−KtR

i
e,tK

∗
t)F

∗
t

)
(26)

Here, the co-states at are determined by a backward integration
of the adjunct state equations yielding:a1...
a5


t−1

=−2τs
∂Lxt

∂xt
−F ∗

t at−τs

[
N∑
t=1

∇xtψrtst(xt,υt, τs)

]
(27)

where xt+1 = f(xt, υt, τs), and τs is the sampling time such
that τs = xt+1 − xt =

xT−x0

N , for t = 1, 2, . . . T − 1. Mean-
while, ∇xt is the gradient of penalty function, and ψrt is the
penalty function defined for the unobserved latent variable Ht

since ψrt(Lxt ,at) = (Lxt +
rt
2 at)

∗at, st(xt,υt, τs) = 0. Lastly,
st is the equality constraint parameter. The development of
these conditions enable us to derive the iterative formulas to
solve the maximization step by adjusting the Lagrange multi-
pliers and penalty functions. This is the core of the ALM step.

However, as shown in the previous subsection and Section I,
to achieve an optimum oscillation estimate, an initial estimation
step is required.

2) Initial Correlation Information using ECKF-based
Smoother (ECKS): Referring to (1) and (2), recall the measure-
ment sequence (t= 0,1, ...,T ) of the input and output measure-
ments HT

t and zTt , respectively. Although ECKF can calcu-
late the ML initial correlation information of a given observa-
tion Ht, the aim however is to calculate the initial ML estimate
of xt given the whole sequence HT

0 . To improve on the sub-
optimal correlation information provided by ECKF, an ECKF-
based smoother is applied to find the initial oscillation state es-
timate x̂t|T . This estimate is superior to that obtained when the
final sub-optimal ECKF estimate is extrapolated backwards in
time.

The proposed ECKS scheme starts with an initial distribu-
tion of the latent variable, and the first observation px(x1|z1) =
px(z1|x1)px(x1). It also assumed that z1 has a Gaussian distri-
bution, where px(z1) is approximatelyN(µ0,σ

2
0) with mean µ0

and variance σ2
0 . For the forward recursion, the initial condition

starts from P0|−1 = var(zT0 ), and x0|−1 = 0. This shows the
availability of the a−priori information at the previous instant
of time. For t= 1, ....T , the oscillation state and covariance can
be determined by:

Re,t = σ2
nIp+r +Hi

tPt|t−1H
i∗

t (28)

eit = zit −Hi
t x̂
i
t|t−1 (29)

x̂it|t = x̂it|t−1 +Kte
i
t (30)
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x̂it+1|t = f(x̂it|t) (31)

Kt = P̂ it|t−1H
i∗

t [Hi
t P̂

i
t|t−1H

i∗

t +Rie,t]
−1 (32)

P̂ it|t = P̂ it|t−1KtH
i
t P̂

i
t|t−1 (33)

P̂ it|t−1 = FtP̂
i
t|tF

∗
t +Qt (34)

Ft =
∂f(xit)

∂xit
|xi

t=x̂
i
t|t

(35)

The forward run, i.e. ECKF, is calculated from (28) to (35).
To implement the smoother run, i.e. the backward recursion,
the sequence of T observations from ECKF is required. This
is based on the principle that the smoothed property of the la-
tent variable is the probability at time instant t after a sequence
of T observations, i.e. p(xt|zT0 ). Note initial values of the state
and a−posteriori estimate covariance in (36)-(37) are the final
values of x̂t and Pt|t in the sequence calculated by ECKF, re-
spectively, i.e. t= T . Moreover, assume that Ft =

∂f(xt)
∂xt

|xt=x∗
t

in (35) and ft is linearized around x∗t . Thus, xt|t−1 = Fx̂t|t.
For t = T, T − 1, ...., 0, the smoothed error covariance and

states are:

P i
S

t|T = FtP
iS

t−1|TF
∗
t +

(
KtH

i
tP

iS

t−1|T +KtR
i
e,t

)
(
KtH

i
tP

iS

t|T−1 +KtR
i
e,t

)∗
(36)

x̂it|T = x̂it|t−1 +P i
S

t|T (37)

where Qt is the process noise correlation factor. The term P i
S

t|T
is the local smoothed-updated a− posteriori estimate covari-
ance. Meanwhile, the desired initial estimate is x̂it|T , which
estimates the state at t instants of time while the time sequence
T is known.

Based on the formulated ECKS, a considerable amount of
storage and latency is required. Additionally, the algorithm
needs to wait for all T + 1 instances before it can execute the
backward run to obtain the state estimate. Therefore, one alter-
nate option is to reduce the time size T . Else, the filter can be
run in the forward direction only, i.e. run (28)–(35) for both the
initial estimation and the EALM iteration with no latency.
Convergence of ECKF: This is proved in the Appendix.
Proof of ECKF Smoother: The proof structure follows Ap-
pendix of [13].

3) Convergence of the EALM Algorithm:
The convergence of the proposed EALM algorithm can be

proved by the following theorem (II.1).
Theorem II.1: In EALM algorithm, the ALM-step can also

be formulated such that xt+1 is chosen to be any value of se-
quence xT0 ∈ zt that maximizes Q(xT0 ,xt):

Q(xt+1,xt)≥Q(xT0 ,xt),∀xT0 ∈ zt (38)

where xt+1 = xt+ψrt , zt is the parameter space containing the
unknown parameters in the postulated form for the moments of
the observation output as calculated in (20).

Once the oscillation observations and their respective
maximum-likelihood estimates are determined among the local
i-th sensors, they are collectively processed using a distributed
architecture. Here, the master information filter collects all sen-
sor observations at a central location. Subsequently, the updated
covariance matrix and state estimates from the master filter are

Fig. 2. Single-line diagram of the IEEE-68 Bus system [18]

fed back to all local metering locations. Such approach results
in enhancing the modal estimations at those locations that are
contaminated by noise and system perturbations. It is adopted
here due to the uncertainty developed because of the random
load fluctuations. This resultant data fusing architecture is used
to quantitatively evaluate the role of synchrophasor measure-
ments collected from each substation, and their overall tracking
performance of electromechanical oscillations on the system.
Detailed formulation is described in the next subsection.

Proof: This is proved in the Appendix.

4) Distributed Filtering Fusion:
According to the derivation of distributed filtering outlined

in [13], the master filtering measurement is stated in the infor-
mation form as:

P−1
M,t|tx̂M,t|t = P−1

M,t|t−1x̂M,t|t−1 +H∗
M,tR

−1
M,tzM,t

P−1
M,t|t = P−1

M,t|t−1 +H∗
M,tR

−1
M,tHM,t (39)

The variable PM,t|t is the updated a− posteriori estimate co-
variance oscilltion matrix. Whereas PM,t|t−1 is the updated
a− priori estimate covariance matrix of the oscillations.

5) Convergence of the Distributed fusion: The proof of the
convergence can be seen in Appendix of [13].

III. IMPLEMENTATION AND EVALUATION

The proposed method was exhaustively tested under different
network operating conditions. Two of the studies are presented
in this paper. Test Case I analyzed synthetic synchrophasor
measurements collected from IEEE 68 Bus system, which were
simulated in DIgSILENT Power Factory ver.15 [19]. Monte
Carlo simulations based on random noise variance were also
generated to evaluate the tracking robustness of the proposed
method. The proposed method is referenced with two main-
stream techniques: 1) Kalman Filter [5], 2) Prony Analysis [6],
and 3) EM-based KLPF [13]. Test Case II examined recorded
synchrophasor measurements gathered from the New Zealand
grid. All detections are computed using voltage phase angles
sampled at 50 Hz.
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A. Test Case I: IEEE 68-Bus System

The purpose of this study was to examine the monitoring ca-
pability of the proposed method under a mix of ringdown and
ambient dynamics. The simulated system was based on a re-
duced order model of the New England and New York intercon-
nection as shown in Fig. 2. There were sixteen synchronous
generators, where generator 1 to 13 were each equipped with
an exciter (DC1A) and a first order governor providing 4%
droop. The reminding three generators were aggregated equiv-
alent models of neighboring networks. To highlight the lightly
damped inter-area oscillations, only generator 4 was installed
with a power system stabilizer (STAB1). From modal analysis,
three dominant electromechanical modes were identified. Their
initial values were: 1) an inter-area mode with a frequency of
0.79 Hz and a damping ratio of 1.53%, 2) a local mode with a
frequency of 1.08 Hz and a damping ratio of 1.55%, and 3) an-
other local mode with a frequency of 1.12 Hz, with a damping
ratio of 1.82%. A 60 second simulation was then conducted of
which the network suffered the following two disturbances:

• Line 4-14 opened at 1 second and reclosed at 8 second.
• Load 18 and 51 both increased their active power demand

by 10 % over a linearly ramped period of 5 second at 15
second interval.

To create a realistic operating environment, all loads were con-
tinuously perturbed with small-magnitude random fluctuations
of up to 10 MW every second. Note instantaneous oscillatory
parameters would vary slightly based on the system operating
conditions. The grid dynamics captured at Bus 10 is shown in
Fig. 3. For this test case, synchrophasor measurements captured
from Bus 2, 3, 6, 10, 19, 23, 25, 29, 31, 33, 37, 41, 42, 45, 48,
and 52 were utilized for EM-based FB-KLPF and the proposed
method. Meanwhile, the predecessor Kalman Filter and Prony
Analysis evaluated measurements collected from Bus 10, which
exhibited dynamics of all three dominant modes.

The averaged estimated oscillatory parameters over a 10 sec-
ond window size are listed in TABLE I. The comparatively
higher estimation errors for all three methods in the first win-
dow were due to the transient line event. Overall, all meth-
ods were able to monitor the inter-area oscillation accurately as
it was distinctly visible throughout the entire simulated time-
frame. Since Kalman Filter and Prony Analysis were not origi-
nally designed to monitor multiple electromechanical modes of
nearby frequencies, they suffered from mode-mixing issue dur-
ing the entire simulation. The two local oscillations were treated
as one mode in the curve fitting step. This was also reflected in
the relatively higher MSE in comparison to the other two meth-
ods. In contrast, both EM-based FB-KLPF and the proposed
method were able to track local oscillations with reasonable ac-
curacy. The proposed method provided more accurate estima-
tions than EM-based FB-KLPF. The statistical properties of the
two schemes were also evaluated. In this case, random noise
of various variances were applied of which two of the studies
are shown in Fig. 4. Note the MSE values were averaged over
a 5 second window. Referring to Fig. 4, EM-based FB-KLPF
was less accurate under noisy condition. The error fluctuations
throughout the monitoring windows indicated the method was
less capable of dealing with random noisy conditions. This is
due to the linear approximation of the unobserved latent vari-
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Fig. 3. Test Case I: Voltage phase angle profile of Bus 10
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Fig. 4. Statistical tests showing MSE comparison for Test Case I

able. On the other hand, the non-linear nature of the proposed
scheme allowed it to be less influenced by random noise. This
owes to its property of handling the asymptotic covariance ma-
trix by interpreting the indices of precision of estimation. Es-
timation errors of the proposed EALM-based ECKS were rel-
atively smaller and constant as shown in Fig. 4. These statis-
tical results also correlates with those in TABLE I, where the
MSE errors of the proposed method are always lower than its
predecessors; EM-based FB-KLPF and Kalman Filter. To fur-
ther evaluate the statistical properties of the proposed method,
Monte Carlo simulations were also conducted. Simulations
were setup based on the procedures outlined in [20]. For this
study, the 50 to 60 second window shown in Fig. 3 was used
as there were no significant transient events during this period.
Therefore, a total of 1200 Monte Carlo runs were performance
for EM-based KPLF and the proposed method. Results are il-
lustrated in Fig. 5 and 6. Both methods estimated all elec-
tromechanical modes quite accurate in the presence of random
noise. However, the population of the proposed method was
more concentric to the true values “o” than EM-based KLPF.
Note the averaged true values over this time period were com-
puted using non-parametric spectral analysis [20]. Therefore,
the proposed EALM-based ECKS scheme demonstrated to im-
prove the tracking resilience under noisy and ambient condi-
tions.

B. Test Case II: New Zealand Network

The backbone of the New Zealand transmission infrastructure
is based on 220 kV lines that are interconnected by HVDC links
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TABLE I
TEST CASE I − IEEE 68 BUS SYSTEM: DETECTING MULTIPLE

ELECTROMECHANICAL OSCILLATIONS1

Time 0 s–10 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.1 0.76 1.4 0.75 1.4 0.74 1.5 0.75
− − − − 1.4 1.01 1.5 1.03
1.6 1.10 1.5 0.95 1.7 1.13 1.8 1.14

MSE 7.3× 10−2 9.5× 10−2 5.4× 10−3 1.4× 10−3

Time 10 s–20 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.2 0.74 1.4 0.70 1.4 0.76 1.5 0.79
− − − − 1.5 0.97 1.5 1.01
1.1 1.09 1.4 1.12 1.7 1.12 1.8 1.14

MSE 7.2× 10−2 4.1× 10−2 2.9× 10−3 6.5× 10−4

Time 20 s–30 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.5 0.75 1.5 0.79 1.2 0.77 1.5 0.78
− − − − 1.4 0.99 1.5 1.01
1.4 1.04 1.5 1.04 1.5 1.09 1.8 1.15

MSE 7.2× 10−2 5.4× 10−2 1.3× 10−3 4.4× 10−4

Time 30 s–40 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.4 0.74 1.4 0.74 1.3 0.75 1.5 0.78
− − − − 1.4 0.99 1.5 0.96
1.7 1.03 1.5 0.96 1.8 1.15 1.8 1.16

MSE 7.3× 10−2 6.0× 10−2 8.8× 10−3 3.7× 10−4

Time 40 s–50 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.3 0.70 1.5 0.72 1.3 0.76 1.5 0.79
− − − − 1.4 1.02 1.5 1.02
1.5 0.91 1.5 0.91 1.7 1.07 1.8 1.12

MSE 7.3× 10−2 6.0× 10−2 7.0× 10−3 3.7× 10−4

Time 50 s–60 s

ζPA fPA ζKF fKF ζD fD ζP fP

1.0 0.74 1.4 0.71 1.3 0.78 1.5 0.80
− − − − 1.5 1.02 1.5 1.03
1.5 1.09 1.5 1.09 1.7 1.12 1.8 1.14

MSE 7.2× 10−2 8.7× 10−3 1.2× 10−3 5.3× 10−4

1In this table, ζ is the damping ratio i.e. ζ = −σ√
σ2+(2πf)2

× 100. The

variable f is the frequency in hertz, and MSE is the mean-square error.
Meanwhile subscripts PA, KF, D and P are the acronyms for Prony Analy-
sis, Kalman filter, distributed and the proposed scheme, respectively.

between the North and South Islands. Recorded synchropha-
sor measurements, collected from North Makarewa (NMA) and
Twizel (TWZ) substations between 11:14:40 to 11:19:20 on 30
July 2008, were used to evaluate the estimation capability of
the proposed algorithm. In contrast to the previous test case,
this study focused on the performance under distinct ringdown
and ambient conditions. The active power dynamics captured at
NMA over 280 second window is illustrated in Fig. 7. Measure-
ments from 11:14:40 to 11:16:32 were considered as ringdown,
while measurements from 11:16:32 to 11:19:20 were ambient.
Based on non-parametric spectral analysis, four electromechan-
ical oscillations were identified for each situation. The aver-
aged ringdown oscillatory parameters over the 112 second time-
frame were:

• Mode 1: A 0.44 Hz frequency with a 6.5% damping ratio.
• Mode 2: A 0.61 Hz frequency with a 6.1% damping ratio.
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Fig. 5. Test Case I: Mode estimations of EM-based KLPF over 1200 Monte
Carlo simulations

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Damping Ratio (%)

F
re

qu
en

cy
 (

H
z)

Mode Estimations for 50−60 second time window using Monte Carlo Simulations

Fig. 6. Test Case I: Mode estimations of EALM-based ECKS over 1200
Monte Carlo simulations
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Fig. 7. Test Case II: Recorded active power at North Makarewa (NMA)
substation

• Mode 3: A 0.75 Hz frequency with a 5.6% damping ratio.
• Mode 4: A 1.71 Hz frequency with a 2.3% damping ratio.
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TABLE II
TEST CASE II − NEW ZEALAND GRID: ESTIMATION RESULTS OF

MULTIPLE ELECTROMECHANICAL OSCILLATIONS

Time 11:14:40–11:16:32 11:16:32–11:19:20

ζD fD ζP fP ζD fD ζP fP

5.9 0.42 6.1 0.42 13.0 0.42 15.8 0.42
5.4 0.61 5.8 0.60 9.8 0.63 13.6 0.65
5.0 0.71 5.2 0.75 7.2 0.73 12.2 0.77
2.9 1.69 2.3 1.71 5.2 1.73 7.3 1.76

MSE 1.7× 10−3 1.9× 10−3 8.9× 10−2 1.9× 10−3

Likewise, the averaged values of the ambient condition over the
168 second time-frame were:

• Mode 1: A 0.42 Hz frequency with a 16.0% damping ratio.
• Mode 2: A 0.64 Hz frequency with a 15.5% damping ratio.
• Mode 3: A 0.77 Hz frequency with a 12.1% damping ratio.
• Mode 4: A 1.76 Hz frequency with a 8.2% damping ratio.

Note that instantaneous oscillatory parameters would differ
from these values due to continuous changing grid dynamics.
The averaged results of ringdown and ambient conditions are
listed in TABLE II. Although both methods achieved similar
monitoring precisions under the ringdown condition, the more
non-linear grid dynamics during the ambient situation caused
EM-based KLPF to struggle. This could be observed in the less
accurately estimated damping ratios of Mode 2 and 3, which led
to an increased MSE. Nevertheless, the dominant Mode 4 could
still be precisely monitored. In contrast, the estimation accuracy
of the proposed method was maintained during the ambient sit-
uation. This demonstrated the proposed EALM-based ECKS
is capable of monitoring electromechanical oscillations under
both ringdown and ambient dominated conditions.

IV. CONCLUSIONS

In this paper, the tracking accuracy of the existing Kalman
filter and the distributed EM-based FB-KLPF was improved
by maximizing the estimation convergence in ALM and ECKS
steps of the proposed algorithm. These enhancements provide
more resistance and robustness against load fluctuations and
random noise variance conditions. As a result, the ability to
detect oscillations with similar frequencies could be further im-
proved than its predecessors. One observed limitation of the
proposed method is the computational complexity, which is in-
creased by calculating the maximum likelihood at two stages.
However, this may be resolved by assigning initial steady-state
parameters to the algorithm and conduct both computations us-
ing high performance computing (HPC).

APPENDIX

1) Convergence of ECKF:

Assumption IV.1: There exists a known positive constant L0

such that for any norm bounded x1,t,x2,t ∈ Rn, the following
inequality holds:

∥f(zt,x1,t)− f(zt,x2,t)∥ ≤ L0∥x1,t−x2,t∥ (40)
Assumption IV.2: Assume that

At =
∂f(xt)

∂xt
|xt=x∗

t
, Bt =

∂f(vt)

∂vt
|vt=v∗t (41)

Note that ft is linearized around x∗t and v∗t , respectively.

Assumption IV.3: The transfer function matrixHt[sI−(At−
KtHt)]

−1Bt is strictly positive real, where Kt ∈ Rn×r is cho-
sen such that At−KtHt is stable.
For a given positive definite matrixQt > 0 ∈ IRn×n, there exists
matrices Pt = P ∗

t > 0 ∈ IRn×n and a scalar Rt such that:

(At−KtHt)
∗Pt(At−KtHt) = −Qt (42)

PtBt = H∗
t Rt (43)

To estimate the state without process and measurement noises,
the following equations are derived:

x̂t = Atx̂t+ g(zt,xt)+Btξf(zt, x̂t)+Kt(zt− ẑt) (44)
ẑt = Htx̂t (45)

where x̂t ∈ IRn is the state estimate, and the observation output
is zt ∈ IRr. Note the pair (A,H) is observable. The non-linear
term g(zt, xt) depends on zt and xt, which are directly avail-
able. The term f(zt, x̂t) ∈ IRr is a nonlinear vector function
of zt and x̂t. Lastly, ξt ∈ IR is a parameter that changes unex-
pectedly when a noise occurs. Since it has been assumed that
the pair (A,H) is observable, a gain matrix Kt can be selected
such that At−KtHt is a stable matrix. It is defined as:

ext = xt− x̂t, ez,t = zt− ẑt (46)

Then, the error equations can be given by:

ex,t+1 = (At−KtHt)ex,t+B[ξtf(ut,zt,xt)

−ξH,tf(zt, x̂t)], (47)
ez,t = Htex,t (48)

The variable ξH,t ∈ IR is a measured parameter of the unex-
pected noise. Meanwhile, the convergence of the above filter is
guaranteed by the following theorem IV.1:

Theorem IV.1: Under the assumption (IV.3), the filter is
asymptotically convergent when no noise occurs (ξt = ξH,t),i.e.
limk→∞ez,t = 0.
Proof: Consider the following Lyapunov function,

V (et) = e∗x,tPex,t (49)

where P is the solution of (42). The variable Q is chosen such
that ρ1 = λmin(Q)− 2∥H∥.|R|ξH,tL0 > 0 is along the trajec-
tory of the noise-free system of (47). Therefore, the correspond-
ing Lyapunov difference along the trajectories et is:

∆V = E{V (et+1|et,pt)}−V (et)

= E{e∗t+1Ptet+1}− e∗tPtet

= (Aeet+BLue)
∗Pt(Aeex,t+BLue)− e∗x,tPtex,t

= e∗t [(Pt(At−KtHt)+ (At−KtHt)
∗Pt)

+PtBξH [f(zt,xt)− f(zt, x̂t)]]et (50)

From assumption (IV.1) and the system described by (42), one
can further obtain that:

∆V ≤ −e∗x(t)Qex(t)+ 2∥ey(t)∥.|R|ξHL0∥ex(t)∥
≤ −ρ1∥et∥2 < 0 (51)

Thus, limk→∞ ex(t) = 0 and limk→∞ey(t) = 0. This com-
pletes the proof.

A. Proof of theorem II.1

Suppose the observed data output zt has a probability density
function and a penalty function ψrt for the unobserved latent
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variable Ht, i.e. Ht = f(zt,ψrt). The objective here is to max-
imize the likelihood Lxt = f(zt,ψrt). First, let t(xt|zt,ψrt) =
f(xt,ψrt )

f(zt,ψrt )
be the conditional density ofX = xt given Z = zt and

ψrt . The function f(xt,ψrt) represents the probability density
function of the random vectorX corresponding to the complete-
data vector. Similarly, f(zt,ψrt) represents the probability den-
sity function of the random vector Z containing the unobserved
parameters, which corresponds to the observed data output zt.
Based on these assumptions, the complete-data log likelihood
can be expressed as:

logLxt(ψrt) = logf(xt,ψrt)

= logLxt(ψrt)+ log t(xt|zt,ψrt) (52)

The expected value on both sides of (52) is applied with respect
to the conditional distribution xt|zt. An estimate ψ̂rt for ψrt is
assumed such that:

Q(ψrt , ψ̂rt) = logL(ψrt)+Ht(ψrt , ψ̂rt) (53)

where Ht(ψrt , ψ̂rt) = IEψ̂rt
(log t(X|zt, ψrt)|zt). It follows

from (38) and (53) that

logLxt(ψ̂rt+1)− logLxt(ψ̂rt) = [Q(ψ̂rt+1 , ψ̂rt)

−Q(ψ̂rt , ψ̂rt)]− [Ht(ψ̂rt+1 , ψ̂rt)−Ht(ψ̂rt , ψ̂rt)] (54)

where Ht(ψ̂rt+1 , ψ̂rt) ≤ Ht(ψ̂rt , ψ̂rt). From (38) and Jensen’s
inequality, the first difference on the right-hand side of (54) is
non-negative. Thus, the likelihood function is not decreased to
logLxt(ψ̂rt+1) ≥ logLxt(ψ̂rt). The convergence of EALM-
based ECKS algorithm is logLxt(M(xt)) ≥ logL(xt). The
variable M is a mapping function defined by ψrt . This can be
represented with equality if and only if:

Q(M(xt+1),xt) =Q(xt,xt),and
t(xt|zt,M(xt)) = t(xt|zt,xt) (55)

As a result, the likelihood function increases at each iteration
of the EALM-based ECKS algorithm with a defined mapping
function and penalty coefficients until the condition for equality
is satisfied. A fixed point of the iteration is reached.
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