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A Bayesian Algorithm to Enhance the Resilience
of WAMS Applications Against Cyber Attacks
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Abstract— Monitoring critical infrastructures is highly dependent on
the accuracy of the installed sensors and the robustness of estimation al-
gorithms. Data-injection attacks can degrade the operational reliability
and security of any cyber-physical infrastructures. An attacker can com-
promise the integrity of the monitoring algorithms by hijacking a subset of
sensor measurements and sending manipulated readings. Such approach
can result to wide-area blackouts in power grids. This paper considers sev-
eral cases of severe data-injections with high probabilities of information
loss. To achieve an accurate supervision, a Bayesian-based approximated
filter (BAF) has been proposed at each monitoring node using a distributed
architecture. To maintain a reduced communication overhead and time
complexity, upper and lower bound methods have been developed. The
performance of the proposed technique has been demonstrated in a ma-
ture synchrophasor application known as the oscillation detection. Two
test cases have been generated to examine the immunity of the proposed
estimation scheme in New Zealand and Oman power grids. The tests were
conducted in the presence of harsh data-injection attacks and multiple sys-
tem disturbances. Results show the proposed BAF method can accurately
extract the oscillatory parameters from the contaminated measurements.

Index Terms—Bayesian, cyber-physical systems, cyber security, data-
injection attacks, inter-area oscillations, phasor measurement unit (PMU),
power system monitoring, power system stability, real-time measurements,
situational awareness, smart grid, synchrophasor, wide area monitoring
system (WAMS).

I. INTRODUCTION

DEPENDENCY of digital measurements for monitoring
and control applications is increasing among the electri-

cal power grids. The design of wide-area monitoring system
(WAMS) has been recently introduced to improve the situa-
tional awareness of complex networks with the aim to further
increase their transmission efficiency [1, 2]. The main purpose
is to monitor network dynamics such as line loadings, voltage
stability margins, and power oscillations [3,4]. Due to the com-
plexity of the interconnected networks, the fast-changing oper-
ating conditions make the WAMS-based applications difficult
to scrutinize the health of the incoming information. Such lim-
itation makes a cyber-attack on the collected measurements as
a potential threat [5]. In the meantime, the required energy and
cost constraints restrict the deployment of the tamper-resistant
hardware for the whole network. If a sensor is successfully at-
tacked, its stored information can be compromised without any
warnings. In the general literature, many methods have been
proposed to mitigate the impacts of data-injection attacks in net-
worked systems [6–8].

Given the importance of power systems in the context of na-
tional security, WAMS applications can be identified as an at-
tractive attack target. It is far more challenging to detect ma-
licious data-attacks as an adversary can choose the site of at-
tack judiciously and design the attack data carefully [4, 9–11].
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ACRONYMS AND ABBREVIATIONS OF MATHEMATICAL FORMULATIONS

BAF Bayesian-based Approximated filter
DFC Distributed Fusion Center
EO Electromechanical Oscillation

PMU Phasor measurement unit
WAMS Wide-area monitoring system
xt state variable
IR subspace
r size of the state vector
Ft model matrix of the state response
Gt noise transition matrix
w random process
t time-instant
T number of time-instants
χij
t Bernoulli random variable
N number of PMU nodes
z observation vector
p number of synchrophasor observations
h(.) nonlinear function
x state matrix containing the system parameters
υ observation noise
K number of electromechanical oscillations
a complex amplitude
σ damping factor
f oscillatory frequency
Ts sampling time
bk complex amplitude of the k-th mode
p(x) probability of distribution on oscillation state
p(H) probability of distribution on observation matrix
z data-injection free observation outputs
zpr predicted affected observation outputs
∆H perturbation in H
θ gradient used to identify the perturbation
ψ data-vector
Kpr predicted gain matrix
Re Covariance of noise
K̃ optimal gain matrix
B matrix of compatible dimensions

Pt+1|t estimated covariance matrix
Υ covariance matrix of xt
Π covariance matrix of x̂
U unitary matrix
D diagonal matrix

A, U , C, V matrices of correct size
λmax maximum eigenvalue

In the recent literature, several methods have been proposed
to identify abnormal data segments and isolate attacked sen-
sors [12, 13]. However, most techniques have been published
to enhance state estimation operations [14–18]. Few have been
proposed for WAMS applications, and thus is the scope of this
paper. Note state estimation updates the steady-state parame-
ters of the grid, whereas WAMS applications focus on moni-
toring transient situations. False information could be given to
delay control actions, which can result to system-wide black-
outs [12, 19, 20]. Therefore, the motivation is to improve the
capability of WAMS applications for mitigating and tolerating
data-injection attacks.

Among WAMS applications, oscillation detection is one of
the most mature and widely adopted function [2,3,21,22]. It has
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Fig. 1. Proposed data-injection immunity framework for WAMS application:
an oscillation detection example

been installed in the control centers of many transmission util-
ities to monitor the damping of electromechanical oscillations
in critical tie-lines. The damping dynamics are highly complex
in any interconnected systems, and often the resultant damp-
ing ratio of oscillations are unknown due to the large number
of involved equipment [22, 23]. It is therefore challenging to
identify falsely extracted information from malicious measure-
ments, and thus making oscillation detection an attractive target
to attack. Furthermore, injecting measurements to hide unstable
inter-area oscillations can potentially lead to wide-area black-
outs and system breakups as seen in the Northwestern blackout
in the USA in 1996 [23]. Hence, oscillation detection serves
as an ideal candidate example. In this paper, data-injection at-
tacks are assumed to take place in a metering device known
as Phasor Measurement Units (PMUs) installed in transmission

substations. PMUs are the foundation of WAMS, where their
measurements are used for WAMS applications. Comparisons
have been made with Prony Analysis, which is one of the most
widely adopted techniques. It was first proposed in [24] and is
currently implemented in countries like Canada, USA and many
other European nations [25].

In an event of an attack, the following two negative conse-
quences can occur due to inaccurate monitoring and time com-
plexity of the algorithms. 1) If the data is altered in a way that
is not detectable as false dynamics by monitoring schemes, the
perceived observable state of the system will be wrong. This
will then lead to improper control actions, which may endanger
the security of the system. 2) The malicious intent might not
be to hide the attack, but to force part of the system to become
unobservable due to the collective behavior among the network
of nodes. This can blind the system operators and increase the
vulnerability of the grid to further attacks or inappropriate op-
erations. More importantly, regardless to any consequences, the
impacts of acting on incorrect or missing information will have
already propagated into the rest of the system. At this stage,
it may already be too late to avoid a wide-area power outage
within the grid.

Therefore, this paper proposes a way to minimize the poten-
tial damages of multiple data-injection attacks through novel
processing of information collected from a set of distributed
PMU sensors. A recursive Bayesian filter-based solution is for-
mulated to enhance the observability of monitoring methods
with resilience against contaminated measurements. This ap-
proach does not require additional physical upgrades of exist-
ing PMU sensors, which minimize the necessary investments
for utilities. The proposed Bayesian filter-based method also
utilized the architecture of the latest distributed oscillation de-
tection method proposed in [26]. This is due to its recent break-
through on a recursive platform [27, 28].

An overview of the proposed methodology is shown in Fig.
1. It summarizes the formulations and equations involved at
each step. The considered scenario assumes an attacker is smart
enough to inject data that imitates regular variations of small-
signal system dynamics in the electrical grids. In the context of
the presented example application, the perceived aim is to gen-
erate or hide lightly damped inter-area oscillations. Moreover,
the possibility of adding a bias to cancel the critical information
from some monitoring nodes has been studied. In this paper, a
monitoring node refers to a site where Bayesian-based approx-
imated filter (BAF) is applied to extract oscillation parameters
from PMU measurements. It begins by developing the mea-
surement models, which involve the dynamical and observation
models, followed by the state representation of electromechani-
cal oscillations. The proposed scheme is further enhanced based
on characterizing the unobservable attack using the Bayesian in-
ference, which determines the relative loss of information. This
concern is further tackled by BAF by manipulating estimated
oscillation parameters from all monitoring nodes. This is done
by generating the attack vectors and a rank matrix for fault in-
jection detection. The properties of the rank matrix are highly
dependent on the amount of information loss due to the attack.
Furthermore, upper and lower bounds have also been developed
to reduce the computing time. The distributed fusion center
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(DFC) is then developed to compute and minimize the errors
of filtering and estimation within each monitoring node. This
results to improving the monitoring accuracy of oscillatory fre-
quencies.
Notations: In this paper, E is the expectation operator. A sym-
bol ˆ over a variable indicates an estimate of that variable e.g.
x̂ is an estimate of x. A symbol ∗ is a transpose operator. The
individual entries of a variable like x are denoted by x(l). When
any of these variables become a function of time, the time index
t appears as a subscript e.g. xt. When any of these variables are
collected from a node i or j, it will appear also as a part of su-
perscript e.g. xit, x

j
t . The notation xT0 is used to denote the time

sequence e.g. x0, x1, ...., xT . Similarly, x denotes the upper
bound and x denotes the lower bound respectively.

II. DISTRIBUTED MONITORING OF A POWER GRID IN THE
PRESENCE OF SEVERE DATA-INJECTION

Consider a power grid having multiple buses, where each bus
is monitored by a PMU that is proned to data-injection attacks.
Note a PMU installed site is also referred as a node, and all
PMUs operate at the same sampling rate. It has been initially as-
sumed that there is no information loss between the PMU nodes.
Additionally, perturbations and random fluctuations are part of
noise-induced transitions. As a result, a general discrete-time
dynamic model of i-th node can be represented as:

xit+1 =

N∑
j=1

F ij
t x

j
t +Gi

tw
i
t, t= 0,1,2, ....T (1)

where xt ∈ IRr is the state variable at the i-th node, superscript
r is the size of the state vector in the subspace IR. Ft ∈ IRr×r is
a model matrix of the state response from i-th node to j-th node
for i ̸= j. F ij

t x
j
t is a control input from the node i to the node j

for i ̸= j. Meanwhile, Gi
t ∈ IRr×r is the noise transition matrix,

which can be defined as the probability vector whose elements
are the non-negative real numbers and sum to 1. wi

t ∈ IRr is the
random process noise, t is the time-instant, and T refers to the
number of time-instants. In this context, PMU nodes do share
the information between themselves over a communication net-
work such that a packet of information sent by the i-th node is
correctly received by the j-th node with a probability pij . Sup-
pose χij

t be a Bernoulli random variable representing such situ-
ation. This can be defined as χij

t ∈ {0,1}, such that χij
t = 1, if

the packet of information sent by i-th node is correctly received
by j-th node at t-th instant. Similarly, χij

t = 0 if the pack of
information at i-th node is not received at j-th node. Thus, the
general dynamic model in (1) can be further represented as:

xit+1 =
N∑
j=1

χij
t F

ij
t x

j
t +Gi

tw
i
t (2)

However, the state variable at i-th node shall be an explicit rep-
resentation of discrete-time variant while involving the interac-
tion between i-th and j-th nodes. To determine the represena-
tion, let xit = [x1t

∗
, ......, xNt

∗
] and wi

t = [w1
t
∗
, ......, wN

t
∗
] while

Gi
t be a block diagonal matrix ofG1

t , ....., G
N
t that represents the

transition of the random process noise. Note that F̄ ij
t is an IRr×r

block matrix, where its entries are all zero except for the (ji)-
th element of which contains the interaction between i-th and

j-th nodes. Then (2) can be represented for an explicit discrete-
time representation of xit+1 as (

∑N
i=1

∑N
j=1χ

ij
t F̄

ij
t )xit+G

i
tw

i
t.

Let ij = N(i− 1) + j, then, the dynamical model in (1) can
be rewritten as xit+1 = (

∑N2

ij=1χ
ij
t F̄

ij
t )xit +Gi

tw
i
t. It should be

noted that the model matrix of the state response F̄ ij is time-
varying, where its values are determined by the probability of
Bernoulli’s random variable χij

t . Hence, χij can be considered
as a function of F̄ ij , and xit+1 can now account for the random
system perturbations as:

xit+1 = χij(F̄ ij
t )xit +Gi

tw
i
t (3)

Now, suppose the power grid described in (3) is monitored
by collecting information from N number of PMU nodes in a
distributed environment. Furthermore, parametric computation
is conducted at a central station, i.e. a distributed fusion center
(DFC), which involves information from each local node and
estimated sequences are generated in the presence of random
noise fluctuations. The observations vector for extracting the
states at the i-th node possibly affected by the attack can be
defined as:

zit = hit(xt)+ υit, i= 1, ..., N (4)
where zit ∈ IRpi

, pi is the number of synchrophasor observations
made by the i-th PMU, hi(.) is a nonlinear function represent-
ing the local observation matrix of i-th PMU, xt is the state
matrix containing the system parameters, and υit ∈ IRpi

is the
observation noise of the i-th PMU. Note that the noises wt and
νt are all initially assumed to be uncorrelated zero-mean white
Gaussian.

Once the observation model is constructed from collected
synchrophasor measurements, the corresponding state represen-
tation of the desired application can be formulated in the fre-
quency domain. As discussed in the introduction, the applica-
tion example used in this paper is the oscillation detection. Its
problem formulation will be presented in the next section, fol-
lowed by the mathematical development of the Bayesian-based
immunity scheme.

A. Electromechanical Oscillation Model Formulation

Suppose a measured noise-induced signal containingK num-
ber of electromechanical oscillations. Referring to (4), the ob-
servation output signal zit from an i-th PMU at time t can be
modeled in the frequency domain as:

zit =
K∑

k=1

ake
(−σk+j2πfk)tTs + υit, t= 1,2, ....., T (5)

where ak is the complex amplitude of k-th mode, σk is the
damping factor, fk is the oscillatory frequency, and Ts is the
sampling time [26]. For convenience, the term −σk + j2πfk is
represented in the rectangular form as λk. In this paper, the k-th
oscillation or eigenvalue within a mentioned signal is described
by two states denoted as xk,t and xk+1,t, respectively. They can
also be expressed in the context of an i-th PMU as:

xik,t=e
(−σk+j2πfk)tTs , xik+1,t=bk+1e

(−σk+1+j2πfk+1)tTs(6)
The term bk represents the complex amplitude of the k-th mode.
The damping factor σk and the corresponding frequency fk of
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each oscillation can be computed from the state xt. Estimating
oscillatory parameters for an accurate WAMS will require the
complete observability of the observation matrix. This is quiet
challenging in the presence of data-injection attacks. Locational
awareness for each node is required, considering the fact that in-
stalled PMUs may also malfunction during an attack. Consider-
ing imperfect PMU measurements, a statistical tool is required
to handle the situations of uncertainty during power system op-
erations. The property of Bayesian filter to probabilistically es-
timate a dynamic system prone to data-injection attacks is pre-
sented here. Moreover, its abstract concept to provide proba-
bilistic framework for recursive estimation in the presence of
high noise or uncertainty will assist in achieving a more accu-
rate WAMS. The derived Bayes filter is proposed to provide in-
ferences that are conditional on the health of the measurements
without reliance on asymptotic approximations.

B. Characterization of Attack using Bayesian Inference

An initial characterization about the unobservable attacks can
be made by Bayesian inference. Assume the probabilities on
a-prior distribution over the oscillatory states at i-th node are
p(xit), and the observation matrix is p(Hi

t |xit). The resultant
posterior distribution over the observations can be represented
by the Bayesian inference as:

p(xit|zit) =
p(xit)p(z

i
t|xit)

p(zit)
(7)

To quantify the uncertainty of possible data-injection attacks,
the density of the predicted synchrophasor observations is re-
quired to be computed. This can be obtained by averaging over
the uncertainty of data-injection attacks on the oscillatory states
and the observation matrix. Let zipr,t represent the predicted
synchrophasor observations at i-th node, then zipr,t can be pre-
sented in the form of predictive distribution as:

p(zipr,t|zit)=
∑
xi
t

∫
dHi

tp(z
i
pr|Hi

t ,x
i
t,z

i
t)p(H

i
t |xit,zit)p(xit|zit)(8)

where the posterior distribution about the data-injection attack
is learnt by the predicted synchrophasor observations. This dis-
tribution will further assist in the development of the probability
of the attack vectors and the identification of the parameters as
well as the natural noise manipulation. In general, the natu-
ral system noise and its colors have a constant or integral power
spectral density with a sequence of serially uncorrelated random
variables. Having said that, once a new unseen synchrophasor
observation comes in at time-instant t+1, the distribution over
the possible predicted synchrophasor observations is calculated
given the learnt posterior distribution about the data-injection
attacks. This fact will be further verified by the scheme in
the later stage by assuming the unobservability in the measure-
ments. Such an assumption will direct towards estimating the
latency and noise distribution of the local nodes. When all the
information are gathered at the distribution fusion center, the
method can then detect critical variations in the noise of any lo-
cal nodes. As a result, the difference between the signature of
the natural system noise and the attack manipulation can be de-
termined accordingly. Note that the attacks on the neighboring
nodes have no impact on such detection approach.

C. Detecting Data-Injection using Initial Observation Analysis

Once the probability of attack vectors is developed, the at-
tack can be detected by doing an initial observation analysis of
the measurements using the calculation of gradient between the
measurements. This can be achieved by taking the difference
between the given and predicted observation of the oscillation
state:

Zi
t+1 = [zit+1− zipr,t+1] =

T∑
t=1

ψ∗
t−1θ

i
t∆H

i
t + νit (9)

where the vector Zi
t+1 is the innovation calculated for i-th

node. zit+1 and zipr,t+1 are the data-injection free (nominal) and
predicted affected observation outputs, respectively. ∆Hi

t =

Hi
d,t−Hi

t is the perturbation in Hi
t . θit =

δzi
t

δHi∗
t

is the gradient
used to identify the perturbation due to data-injection attacks.
ψt is the data vector formed from past outputs and reference in-
puts at each node.

Once, the PMU nodes affected by the data-injection attacks
have been characterized, a Bayesian filter with an assumption
of no prior information can be derived.

D. Bayesian Filter with no Prior Information

Consider the worst case scenario of information loss to be
very high. This means there is no regular prior information
about the oscillatory states. The possibility can be either the
prior covariance is not known or information does not exist due
to the impact of an attack. Therefore, the calculation of innova-
tion for the state prediction will not involve the a-prior knowl-
edge. Considering (4) with known ν̄it = IE[νit ] at i-th node,
an oscillation state prediction x̂it+1|t exists if and only if the
observation matrix Hi

t has a full column-rank, or equivalently
det(Hi∗

t H
i
t) ̸= 0. Since there is no prior knowledge of involved

states, the resulting state-prediction will be:

x̂it+1|t = IE[xit+1e
i∗

t ]Ri−1

e,t e
i
t

= IE[xit+1e
i∗

t ]Ri−1

e,t (z
i
t − νit) (10)

where νit ⊥ zit, (IExt+1e
∗
t )R

−1
e,t can be defined as a predicted

gain matrix denoted by Ki
pr,t, where the subscript pr indicates

that Ki
pr,t is used to update the predicted oscillation state at i-th

node. Re,t is the covariance of noise. The estimated state can
then be expressed as:

x̂it|t =Ki
pr,t[z

i
t − νit ] (11)

From (3), F i
pr,i for prediction can be stated as F i

t −Ki
pr,tH

i
t .

Thus (10) becomes:

x̂it+1|t=(F
i
t−Ki

p,tH
i
t)x̂

i
t|t−1+K

i
p,t(z

i
t−νit)

=F i
t x̂

i
t|t−1−K

i
pr,tH

i
t x̂

i
t|t−1+K

i
pr,tz

i
t−Ki

pr,tν
i
t (12)

Since at i-th node,

Ki
pr,t = IE[xt+1e

∗
t ]R

i−1

e,t

= IE[(χij(F ij
t )xit +Gi

tw
i
t)e

∗
t ]R

i−1

e,t (13)
Given x̃it|t−1 = xit+1 − x̂it|t−1, it can rearrange into xit+1 =

x̂it|t−1 + x̃it|t−1 and make IE[xite
i∗

t ] becomes:

IE[xite
i∗

t ] = IE[x̃it|t−1e
i∗

t ] (14)
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Knowing eit ⊥ x̂it|t−1, thus,

IE[xite
i∗

t ] = IE[x̃it|t−1(H
i
t x̃

i
t|t−1 + νit)]

= IE[x̃it|t−1(H
i
t x̃

i
t|t−1 +0)] (15)

Also νit ⊥ x̃it|t−1, which shows,

IE[xite
i∗

t ] = P i
t|t−1H

i∗

t (16)

From (13), IE[wi
te

i∗

t ] can be calculated as:

IE[wi
te

i∗

t ] = IE[wi
t(H

i
t x̃

i
t|t−1 + νit)

∗] (17)
Since wi

t ⊥ x̃it|t−1, thus,

IE[wi
te

i∗

t ] = 0+ IE[wi
tν

i∗

t ] = Si
t (18)

Therefore, (13) becomes,

Ki
pr,t = IE[xit+1,e

i∗

t ]Ri−1

e,t

= (χij(F ij
t )P i

t|t−1H
i∗

t +Gi
tS

i
t)R

−1
e,t

= [cov(xit)H
i∗

t + cov(xit,ν
i
t)]cov(y

i
t)

−1 (19)
In case of no a-priori information, oscillatory states xit ex-

ists if and only if Hi
t has full column rank such that Hi+

t =
(Hi∗

t H
i
t)

−1Hi∗

t , where superscript + denotes the full rank. As
a result, Ki

pr,t becomes:

= Hi+

t [I −χij(F ij
t )P i

t|t−1(I −H
i
tH

i∗

t )χij(F ij
t )P i

t|t−1(I

−Hi
tH

i∗

t )+] (20)
In addition, the gain matrix could prove to be very vulner-
able in the presence of no a-priori information. Therefore,
an optimal gain K̃i

t at i-th node is required to be gener-
ated to ensure stability of the system by considering this a
quadratic optimization problem, which gives (20) as Ki

pr,t =

argmin
Hi+

t Kpr,t
(K∗

t χ
ij(F ij

t )P i
t|t−1K

∗
t ). Using the general-

ized inverse theory in [29], (20) can be represented in the form
of optimal gain K̃i

t as:

K̃i
t = [I − (I −Hi

tH
i∗

t )χij(F ij
t )P i

t|t−1(I −H
i
tH

i∗

t )+

χij(F ij
t )P i

t|t−1]

(H+
t )∗ +(I −Hi

tH
i∗

t )Bi
t

K̃i
t = Ki

t +(I −Hi
tH

i∗

t )Bi
t (21)

where Bi
t is any matrix of compatible dimensions satisfying

P
1/2i

∗

t|t−1 (I −H
i
tH

i∗

t )Bi
t = 0, P i1/2

t|t−1 is any square-root matrix

of P i
t|t−1. The optimal gain matrix K̃i

t is given uniquely by:

K̃i
t=H

i+

t [I −χij(F ij
t )P i

t|t−1(I −H
i
tH

i+

t )1/2(I −Hi
tH

i+

t )1/2
∗

χij(F ij
t )P i

t|t−1(I −H
i
tH

i+
1/2

t )−1(I −Hi
tH

i+

t )1/2
∗
] (22)

The optimal gain matrix is true if and only if [Hi
t , P

i1/2

t|t−1] has

full row-rank, where (I −Hi
tH

i+

t )1/2 is a full-rank square root
of (I −Hi

tH
i∗

t ). This is due to the information collected from
each node.

Once the optimal gain is calculated, the covariance matrix to
calculate the error of estimation is required for i-th node. Let
P i
t denote the covariance matrix of xit, such that IE[(xit|t−1 −

x̂it|t−1)(x
i
t|t−1 − x̂

i
t|t−1)

∗]. Since, eit ⊥ x̂it|t−1, it can be seen
that x̂it+1|t = F i

t x̂
i
t|t−1 −K

i
pr,tH

i
tx

i
t+1|t +Ki

tz
i
t −Ki

tν
i
t . The

covariance matrix of x̂it|t−1 should satisfy the recursion with no
a-priori information as νit = IEx̂it|t−1x̂

i∗

t|t−1. This gives covari-
ance matrix to be:

P i
t+1 = cov(xit)−Ki

tcov(z
i
t)K

i∗

t (23)
Since there is no a-priori information and orthogonal decompo-
sition of xit has x̂it|t−1 ⊥ x

i
t− x̂it|t−1, the estimated covariance

matrix P i
t+1|t is the difference between covariance matrix of xit,

Υ i
t+1 and x̂it|t−1, Πi

t+1. Since, there is no a-priori information,
therefore,

P i
t|t−1 = Υ i

t+1−Πi
t+1

= 0+Ki
pr,tR

i
e,tK

i∗

pr,t

= Ki
pr,tR

i
e,tK

i∗

pr,t (24)
Thus, the parameters like estimated states, predicted gain ma-
trix, optimal gain, and covariance matrix of Bayesian filter with
probability of no a-priori information are derived. Note the pro-
posed scheme can also be applied to other dynamic monitoring
applications using PMU measurements. The user can simply re-
place the problem formulation of Section II-A with the desired
one. Subsequent formulation of the Bayesian filter will be the
same.

E. Modified Filter with no a-priori Information

Based on the power grid model expressed in (3), an optimal
filter is derived given χij is a function of the transition state F ij

t .
Let x̂it|t and P i

t|t be the estimated states and covariance matrix at
time-instant t. To calculate measurement at time-instant t+1, a
measurement zit+1 is received to estimate x̂it+1|t from x̂it|t, and
P i
t+1|t from P i

t|t respectively. x̂it+1|t will be computed as:

x̂it+1|t = IE[xit+1|zit]

= IE[χij(F ij
t )xit +Gi

tw
i
t|zit] = χ̂ij

F x̂
i
t|t (25)

where χ̂ij
F,t is the expected value of χij(F ij

t ), such that χ̂ij
F,t =∑

Ft∈IR pF ij [χij(F ij
t )]. The prediction covariance can be com-

puted for an i-th PMU as:

P i
t+1|t=IE[eit+1|te

i∗

t+1|t|z
i
t]=−Ki

pr,tR
i
e,tK

i∗

p,t

+
∑
Ft∈R

pF ij [χij(F ij
t )x̂i

∗

t|t](χ
ij(F ij

t )−χ̂ij
F,t) (26)

Given x̂it+1|t and P i
t+1|t, the updated a-posteriori estimate

x̂t+1|t+1 and Pt+1|t+1 are computed similar to the standard
Kalman filter:

x̂it+1|t+1 = Ki
t+1[z

i
t+1− νit ]

P i
t+1|t+1 = Ki

t+1H
i
t+1P

i
t+1 (27)

where Ki
t+1 =Hi+

t+1[I −P i
t+1(I −Hi

tH
i∗

t )P i
t+1].

F. Reducing the Time Complexity using Approximate Filter

The modified filter proposed for the power grid expressed in
(3) is an optimal filter. However, if data-injection attack occurs
frequently in nodes, the time complexity of the modified filter
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can be exponential in N since the size of the state transition
matrix F ij

t isO(2N(N−1)) in the worst case, when all the nodes
suffered with data-injection attacks. There is a need to approx-
imate the filter to reduce the computational load on the system.
As a result, two bounds have been introduced for the power grid
model in (3) to avoid the enumeration on F ij

t . Since the com-
putation of P i

t+1|t is the only time consuming process, bounds
have been introduced into P i

t+1|t, which are generated from i-th

monitoring node. Note the notation χij
F,t ≥ 0 is used if χij

F,t is a
positive semi-definite matrix, and χij

F,t ≥ 0 if χij
F,t is a positive

definite matrix.
1) Lower Bound for Reducing Time Complexity: As the

bounds are applied on the covariance matrix collected from each
node, P i

t+1|t would be approximated by P i
t+1|t and P i

t|t would
be approximated by P i

t|t at i-th PMU respectively. The covari-
ances are updated as:

P i
t+1|k = Ki

t+1R
i
tK

i∗

t+1 (28)

P i
t+1|t+1 = Ki

t+1H
i
tP

i∗

t+1|t (29)

where Ki
t+1 =Hi+

t [I −P i
t+1|t(I −Hi

tH
i∗

t )P i
t+1|t].

However, the conditions of semi-positiveness should be en-
sured for feasibility of the lower bound, which says that:

• Condition 1: If P i
t|t ≤ P i

t|t, then P i
t+1|t ≤ P i

t+1|t.
• Condition 2: If P i

t+1|t ≤ P i
t+1|t, then P i

t+1|t+1 ≤
P i
t+1|t+1.

In the case of Condition 1 expressed at i-th PMU, the prediction
covariance matrix in (26) becomes:

P i
t+1|t−P

i
t+1|t=E[χij(F ij

t )x̂it|tx̂
i∗

t|tχ
ij(F ij

t )∗]−Ki
pr,tR

i
e,tK

i∗

pr,t

− χ̂ij x̂it|tx̂
i∗

t|tχ̂
ij∗ −Ki

pr,tR
i
e,tK

i∗

p,t

= P i
1,t +P i

2,t (30)
where,

P i
1,t = Ki

pr,tR
i
e,tK

i∗

pr,t,and (31)

P i
2,t = IE[χij(F ij

t )x̂it|tx̂
i∗

t|tχ
ij(F ij

t )∗]− χ̂ij x̂it|tx̂
i∗

t|tχ̂
ij∗

− Ki
pr,tR

i
e,tK

i∗

pr,t. (32)
Since P i

t|t is a symmetric matrix, it can be decomposed into P i
t|t

= U i
1,tD

i
1,tU

i∗

1,t, where U i
1,t is a unitary matrix and Di

1,t is a di-
agonal matrix at i-th node. As there is no P i

t|t for P i
1,t here, P i

1,t

= −Ki
pr,tR

i
e,tK

i∗

pr,t.
For Condition 2, matrix inversion lemma can be used,

which defines that (Ai
t+U

i
tC

i
tV

i
t )

−1 =Ai−1

t −Ai−1

t U i
t (C

i−1

t +

V i
t A

i−1

t U i
t )

−1V i
t A

i−1

t where Ai
t, U

i
t , Ci

t and V i
t are the matri-

ces of correct size at i-th node. Applying the matrix inversion
lemma to (27), it gives P i

t+1|t+1 = (P i−1

t+1|t +Hi∗

t R
i−1

e,t H
i
t)

−1.

Let P i
t = P i

t+1|t and P i
t = P i

t+1|t. Then P i
t ≥ P i

t, P
i−1

t

≤ P i−1

t . Also, P i−1

t + Hi∗

t R
i−1

e,t H
i
t ≤ P i−1

t + Hi∗

t R
i−1

e,t H
i
t ,

(P i−1

t +Hi∗

t R
i−1

e,t H
i
t)

−1 ≥ (P i−1

t +Hi∗

t R
i−1

e,t H
i
t)

−1. This gives
P i
t+1|t+1 ≥ P

i
t+1|t+1.

The feasibility of Condition 1 and Condition 2 is generated to
prove that the state error covariance is maintained by the lower-
bound of the modified filter. To further elaborate, let P i

0|0 de-
notes the initial covariance on lower bound, such that P i

0|0 ≥

P i
0|0, then P i

t|t ≥ P i
t|t for all t ≥ 0.

2) Upper Bound for Reducing Time-Complexity: Similar
to the lower bound, the upper-bound has been applied on
the covariance matrix to reduce time-complexity. P

i

t+1|t ap-

proximates P i
t+1|t and P

i

t|t approximates P i
t|t. Let λmax =

λmax(P
i

t|t + λmax(x̂
i
t|tx̂

i∗

t|t), where λmax represents the max-
imum eigenvalue. The covariances are updated as follows:

P
i

t+1|t=λmaxIE[χij(F ij
t )χij(F ij

t )∗] +Ki
pr,tR

i
e,tK

i∗

p,t(33)

P
i

t+1|t+1=K
i

t+1H
i
tP

i

t+1|t (34)

where K
i

t+1 =Hi+

t [I −P i

t+1|t(I −Hi
tH

i∗

t )P
i

t+1|t]. In the up-
per bound, IE[χij(F ij

t )χij(F ij
t )∗] can be computed in advance.

Whereas, λmax has to be computed at each step of the algo-
rithm.

Similar to the lower bound, the feasibility condition of semi-
positiveness shall be ensured for upper bound as:

• Condition 3: If P
i

t|t ≥ P i
t|t, then P

i

t+1|t ≥ P i
t+1|t.

For Condition 3 at i-th PMU node, let M i
t = x̂it|tx̂

i∗

t|t and I be
an identity matrix. Then using (26),

P
i

t|t−P i
t|t = λmaxIE[χij(F ij

t )χij(F ij
t )∗]

− IE[χij(F ij
t )M i

tχ
ij(F ij

t )∗]− IE[χ̂ijM i
t χ̂

ij∗ ]

= IE[χij(F ij
t )(λmaxI −M i

t )χ
ij(F ij

t )∗]

+ IE[χ̂ijM i
t χ̂

ij∗ ] +K
i

p,tR
i

e,tK
i∗

p,t

− Ki
p,tR

i
e,tK

i∗

p,t (35)

Since P
i

t|t ≥ P i
t|t and λmax(Y

i
t )I −Y i

t ≥ 0 for any symmetric

matrix Y i
t , P

i

t|t−P i
t|t ≥ 0.

The feasibility of Condition 3 generates to prove that the up-
per bound maintains the oscillation state error covariance of the
modified filter. If the upper bound starts with an initial covari-
ance P

i

0|0, such that P
i

0|0 ≥ P i
0|0, then P

i

t|t ≥ P i
t|t for all t ≥ 0.

3) Convergence: Theorem II.1 shows a simple condition
when the oscillation state error covariance is unbounded.

Theorem II.1: If (E[χij(F ij
t )]∗, E[χij(F ij

t )]∗Hi∗

t ) is not
stabilizable, or equivalently, (E[χij(F ij

t )],Hi
tE[χij(F ij

t )]) is
not detectable, then there exists an initial covariance P i

0|0 such
that P i

t|t diverges as t→∞.
Proof: This is proved in the Appendix.

G. Distributed Fusion Center (DFC)

Once all the information about the covariance and estimated
states are collected from local PMU nodes, they will be treated
at the DFC. Its purpose is to improve the accuracy of the co-
variance and estimated states in the presence of data-injection
attacks. Similar to (4), the corresponding observation model
and noise vector for DFC is HDFC

t , and wDFC
t respectively. Al-

ternatively, they can be expressed as an array of information col-
lected from all the PMU nodes, such that zDFC

t = [z1t , ....z
N
t ]∗,

HDFC
t = [H1

t , ....H
N
t ]∗, and wDFC

t = [w1
t , ....w

N
t ]∗. Recall that

N is the number of sensors. Considering the DFC-based esti-
mation variables zDFC

t , HDFC
t , and wDFC

t , the estimated states at
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DFC can be formulated as:

x̂DFC
t|t = PDFC

t|t

N∑
i=1

P i−1

t|t x̂
i
t|t (36)

where PDFC
t|t = [

∑N
i=1P

i−1

t|t ]−1. Moreover, considering the in-
teractions between local nodes, the covariance matrix for i-th
and j-th nodes is:

P ij
t|t = IE[x̃it|tx̃

j∗

t|t] = [1−wi
tH

i
t ]P

ij
t|t−1[1−w

j
tH

j
t ]

∗ (37)
where x̃t|t = xt|t− x̂t|t.

Once the formulation has been defined, the pseudo code is
represented for the implementation.

H. Summary of Pseudo Code Representation:

The presented method can also be transformed into a pseudo
code as seen in Algorithm 1. The variables used in the code are
defined from Line 1 to 13. This is followed by the extraction
of model from the PMU measurements at each i-th location. A
for loop is applied to calculate the information about the model
information, electromechanical oscillations, developing attack
vectors, data injection detection, and the Bayesian-based ap-
proximation filter from each location. These loops can be seen
in Line 14 to 17, 18 to 20, 21 to 23, and 24 to 27 respectively.
Once the information is collected from each PMU, a for loop for
the distributed fusion center is applied to compute all the local
measurements. This requires a cumulative for loop as shown in
Line 28 to 31. The final model extraction takes place in Line
32–33, where results about the estimated eigenvalues, oscilla-
tory frequencies, and damping factors are then calculated.

III. EVALUATIONS OF THE PROPOSED SCHEME

A. Test Case I: New Zealand Grid

The operation of the Bayesian-based approximation filter
(BAF) is first evaluated using recorded measurements collected
from the New Zealand transmission grid. The network con-
sists of a combination of 400 kV, 220 kV, and 110 kV lines
that are interconnected by HVDC links between the North and
South Islands. Recorded measurements were collected from
North Makarewa (NMA) and Twizel (TWZ) substations be-
tween 11:14:40 to 11:15:40 on 30 July 2008. From the recorded
normal operation, the system exhibits the following electrome-
chanical oscillations:

• Mode 1: A 0.61 Hz frequency with a 6.1% damping ratio.
• Mode 2: A 0.75 Hz frequency with a 5.6% damping ratio.

Note oscillatory parameters do not vary significantly under such
ambient situation.

The aim of this test case is to validate the fundamental capa-
bility of the proposed scheme. Therefore, the implemented at-
tacks will be limited to random and controlled data injections at
North Makarewa substation. The random scenario injects white
noise, whereas the controlled situation is a smarter attack mak-
ing one oscillation exhibits a higher damping ratio. The inten-
tion is to mislead the operators of believing the grid is more
stable, and thus delaying the supplementary damping actions.
Meanwhile, the assumption is data-injection attacks intercept
communication transmission or tempering the PMU with the
objective to replace original measurements with manipulated
values. The resultant simulated attacks are:

Algorithm 1 Pseudo code of the proposed schemes
1: N→ number of substations,
2: MI→ model information,
3: PMU→ phasor measurement unit,
4: EO→ electromechanical oscillations,
5: CUA→ characterizing unobservable attacks,
6: DAV→ developing attack vectors,
7: DID→ data injection detection,
8: BAF→ Bayesian-based approximated filter,
9: LB→ lower bound,
10: UB→ upper bound,
11: OF→ oscillation frequency,
12: DR→ damping ratio,
13: DFC→ distributed fusion center,
14: for i=1 to N+1 //including DFC
15: MIi←PMUmeasurements(Ni);
16: EOi←extract(MIi);
17: end for
18: for i=1 to N
19: DAVi←bayesianinference(CUAi);
20: end for
21: for i=1 to N
22: DIDi←impactofattack(MIi);
23: end for
24: for i=1 to N
25: BAFi←timecomplexityreduction(UBi);
26: BAFi←timecomplexityreduction(LBi);
27: end for
28: forj=1 to DFC
29: for i=1 to N
30: MIDFC←update(MI)
31: MIDFC , DAVDFC , DIDDFC = localFilter(MIDFC ,

DAVDFC , DIDDFC);
32: end for
33: eigenvalues, OF, DR←extract(MI);

• First injection: A random noise attack from 11:15:00 to
11:15:05.

• Second injection: A system parameter attack to replace the
damping ratio of 0.74 Hz to 8% from 11:15:20 to 11:15:28.

In this test case, Prony analysis is used as a comparative ref-
erence. It is the mainstream technique used in power oscilla-
tion detection, and has been installed in major power utilities
in North America, South America, Europe, and Asia [2, 22].
However, Prony analysis was not originally formulated to con-
sider data-injection attacks. This is due to the fundamental
nature of Prony analysis, which is totally different to the pro-
posed method. Note examining the monitoring capability dur-
ing healthy conditions is not the emphasis of this study. Instead,
the purpose is to gain useful insights to the potential disruptions
it may suffer during data-injection attacks.

Extracted oscillatory parameters are presented in Table I.
Note the results are averaged values of a 10 second time win-
dow. Referring to Table I, BAF demonstrated adequate re-
silience against both attacks. Its ability to manage the informa-
tion loss after identifying abnormal measurements minimized
the impact of an attack on extracted oscillatory parameters.
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This is due to the property of designed filter, which can handle
the probability densities of information even with less samples.
Furthermore, MSE values are fairly consistent throughout the
monitoring windows and are in the magnitude of 10−3. The
consistent accuracy during the first and second attack shows
the injected measurements generate little threats to the relia-
bility and security of the monitoring solutions. The recursive
nature of BAF algorithm with its novelty to tackle the informa-
tion loss allows it to reconstruct the original profile of the NMA
as shown in Fig. 3. The initial mismatch during the second
injection event was due to the recursive nature of the proposed
scheme, which requires some a-priori information to provide
the inference about the attack. This time period can be short-
ened if more monitoring nodes are available to provide infer-
ence from a-priori information of different locations.

In contrast, the estimated results of Prony analysis are less
reliable. The first random attack caused incorrect estimation
of both oscillations as seen in Table I. The primary advantage
of Prony analysis is its ability to estimate oscillatory param-
eters using curve-fitting approach without prior knowledge of
the system. Such merit becomes its limiting factor in the pres-
ence of an attack, where it does not have the capability to dis-
tinguish abnormal measurements. The abnormal measurements
are considered as true dynamics. Hence, incorrect information
will be fed to the operators as Prony analysis fits exponentially
damped sinusoids to any given measurements. In this case, the
false 8% damping ratio has been captured by Prony analysis and
presented to the operator as seen in the 11:15:20 to 11:15:30
window. This is also the reason why Prony analysis gave rea-
sonable MSE values despite the measurements have been sub-
jected to data-injection attacks. Referring to Table I, MSE val-
ues are slightly higher during the attacked windows, but are
not prominent enough to be considered as alarming activities.
One solution can be having an additional data-processing stage
like the proposed BAF to filter attacks and support the curve-
fitting property of Prony analysis. Such issue is beyond the
scope of this paper. Moreover, a time computation comparison
has been made with the standard Kalman filter [28], BAF and
implementation of upper and lower-bounds as shown in Table
II. Note Kalman filter (KF) is preferred here for comparison of
time computation over Prony as KF is another mainstream re-
cursive approach similar to BAF and implementations of upper
and lower bounds. Whereas Prony is a block processing tech-
nique. The results show the computation time over the entire
monitoring period of 60 seconds. Comparing to the proposed
BAF scheme, the upper and lower bound schemes are able to
reduce the time computation by 20.91 % and 18.25 %, respec-
tively.

B. Test Case II: Oman Electricity Network

Since power utilities only began deploying PMUs in the last
decade, few grids possess large number of operational PMUs.
To further evaluate the performance of the proposed scheme, a
simulated transmission network of Oman has been used involv-
ing 231 Buses. The existing transmission network covers the
northern Oman, and is connected with the United Arab Emi-
rates grid. The backbone of Oman system consists of 132 kV
and 220 kV lines.

TABLE I
TEST CASE I − NEW ZEALAND GRID: DETECTING OSCILLATIONS IN THE

PRESENCE OF DATA-INJECTION ATTACKS

Time 11:14:40–11:14:50 11:14:50–11:15:00

ζBAF fBAF ζPR fPR ζBAF fBAF ζPR fPR

6.1 0.61 6.5 0.62 6.1 0.63 6.8 0.63
5.4 0.74 5.5 0.74 5.6 0.74 5.6 0.71

MSE 1.2× 10−3 4.2× 10−2 1.1× 10−3 4.3× 10−2

Time 11:15:00–11:15:10 11:15:10–11:15:20

ζBAF fBAF ζPR fPR ζBAF fBAF ζPR fPR

6.1 0.62 5.4 0.65 6.1 0.63 6.8 0.63
5.6 0.74 7.1 0.72 5.6 0.75 5.7 0.75

MSE 1.7× 10−3 5.7× 10−2 1.1× 10−3 4.2× 10−2

Time 11:15:20–11:15:30 11:15:30–11:15:40

ζBAF fBAF ζPR fPR ζBAF fBAF ζPR fPR

6.2 0.63 6.5 0.64 6.1 0.62 6.4 0.62
5.6 0.72 8.1 0.72 5.6 0.74 5.8 0.74

MSE 2.1× 10−3 7.9× 10−1 1.1× 10−3 4.1× 10−3

1In this table, ζ is the damping ratio, f is the frequency (Hz), and MSE
is the mean-square error. Subscripts BAF, and PR are the acronyms for
Bayesian-based Approximated Filter and Prony Analysis, respectively.
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Fig. 2. Test Case I: Corrupted NMA voltage angle with data-injection attacks
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Fig. 3. Test Case I: Original and restored voltage angles of NMA node

TABLE II
TIME COMPUTATION COMPARISON FOR BOTH TEST CASES

Time Kalman Filter BAF Upper Bound Lower Bound

Test Case I 47.32 49.74 39.34 40.66

Test Case II 43.84 45.1 38.86 32.38

In this study, the network parameters are based on the projected
2015 summer peak demand scenario [31]. A total of 25 PMUs
have been installed across the simulated grid. All loads are con-
tinuously being perturbed with small power fluctuations of up
to 1% of their nominal values. Meanwhile, the system suffered
the following disturbances over a duration of 60 seconds:

• 3-Phase Short Circuit occurred at Russail 132 kV at 5 sec-
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Fig. 4. Test Case II: Manipulated voltage angle at Barka substation
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Fig. 5. Test Case II: Original and restored voltage angles of Barka node

ond and cleared at 5.1 second.
• 3-Phase short circuit event occurred at SUR IPP at 25 sec-

ond and cleared after 0.1 second.
The oscillatory parameters prior to the disturbances are:

• Mode 1: A 0.64 Hz frequency with a 6.5% damping ratio.
• Mode 2: A 0.75 Hz frequency with a 5.4% damping ratio.
• Mode 3: A 0.85 Hz frequency with a 3.9% damping ratio.

On top of the system disturbances, four data-injection scenarios
are included. They are:

• First injection: System parameter attack at 15–20 seconds.
• Second injection: Data repetition attack at 35–40 seconds.
• Third injection: Total data loss at 44–50 seconds.

Attack vectors are usually designed by the hackers to sat-
isfy the observation model of (4). This would help them to
by-pass attack detection in the control center. Additionally,
attackers would tend to compromise as few measurements
as possible in the effort to launch the attacks with the least
effort. To successfully infiltrate the monitoring systems and
the metering instrumentations, the attackers should have a
detailed knowledge of the installed communication network
protocols, substation automations, and physical design of
digital relays [32–34]. The attack strategies are expected to be
able to construct highly sparse attack vectors. Details about
such stealthy sparse attacks were first discussed in [35]. In
this paper, two methods are introduced to construct the sparse
attack vectors under two typical scenarios: 1) random attacks
in which arbitrary measurements can be compromised, and 2)
targeted attacks in which the specific state variables need to
be biased. Cyber-attacks can be generalized into 1) deception,
and 2) denial of service. The deception refers to comprising
the measurements from installed PMU in the grid. These
examples include false data-injection and replay/repetition
of past recorded measurements [36]. On the other hand, the
denial of service is the action of jamming the communication
channel causing the node to become unobservable. In the

TABLE III
TEST CASE II − OMAN ELECTRICITY GRID: DETECTING MULTIPLE

OSCILLATIONS IN THE PRESENCE OF DATA-INJECTION ATTACKS

Time 0 s–5 s 5 s–10 s 10 s–15 s 15 s–20 s

ζBAF fBAF ζBAF fBAF ζBAF fBAF ζBAF fBAF

6.5 0.64 6.5 0.66 6.5 0.64 6.2 0.63
5.4 0.75 5.4 0.74 5.4 0.75 5.6 0.76
3.9 0.85 3.8 0.85 3.9 0.84 3.7 0.83

MSE 1.2× 10−3 1.2× 10−3 9.1× 10−3 1.8× 10−3

Time 20 s–25 s 25 s–30 s 30 s–35 s 35 s–40 s

ζBAF fBAF ζBAF fBAF ζBAF fBAF ζBAF fBAF

6.5 0.63 6.5 0.62 6.5 0.62 6.3 0.66
5.4 0.75 5.4 0.74 5.4 0.74 6.6 0.74
3.9 0.85 3.9 0.84 0.9 0.86 4.1 0.84

MSE 3.0× 10−3 2.8× 10−3 2.5× 10−3 2.7× 10−3

Time 40 s–45 s 45 s–50 s 50 s–55 s 55 s–60 s

ζBAF fBAF ζBAF fBAF ζBAF fBAF ζBAF fBAF

6.5 0.64 6.1 0.67 6.3 0.65 6.6 0.64
5.4 0.75 5.5 0.72 5.3 0.74 5.5 0.74
3.9 0.85 3.5 0.86 3.9 0.85 3.9 0.85

MSE 2.6× 10−3 8.7× 10−3 2.5× 10−3 2.4× 10−3

literature, the cyber-attacks are addressed through evaluating
a set of linear differential algebraic equations governed by the
physical laws [36]. In the context of the oscillation monitoring
application in WAMS, a signal-processing prospective of
treating the electromechanical swings as a sum of exponentially
damped sinusoidal waveforms was first proposed [37]. Such
approach is not limited to a particular system model as required
in the first option while allowing the system parameters to be
extracted using the time-series analysis. The evaluation of
detecting and identifying the cyber-attacks in WAMS has not
been addressed before, and is crucial to the future of system
operations.

This paper assumes a coordinated attack, where six PMUs
are simultaneously subjected to the same data-injection attacks.
Note the attacked PMUs are randomly selected, and are
scattered across the entire Oman network. These six PMUs are
Barka, Sur PS, Blue City, Al-Kamil, Filaj, and SPS substations.
Among the attacked PMUs, Sur PS is a neighboring bus of
the healthy PMU at Al-Kamil, Qurriyat is a neighboring bus
of the healthy PMU at Wadi Adai, and Nizwa is a neighboring
bus of the healthy PMU at Mannah. Since the distributed
architecture considers the interaction between the neighboring
nodes, the impact of the coordinated attacks on the neighboring
healthy PMUs does not affect the overall monitoring results.
This is also shown in our simulation results. The DFC will
provide enhanced estimations of the oscillation parameters in
the presence of data-injections. Note the number of healthy
nodes should always be greater than the attacked nodes for the
method to provide trust-worthy solutions. This assumption is
true in most cases as it is difficult to hack the entire national
grid at the same time.

Referring to Table III, high MSE errors are observed in
the first 10 seconds. They are primarily due to the nature of
the short-circuit fault. Here, the fault took place at a critical
network location, which caused the transient effects to be
felt throughout the entire system. Meanwhile, the second
short-circuit event caused regional transient. Therefore, the
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distributed nature of the proposed scheme is able to extract
more accurate results than the first fault. In terms of attack
mitigation, it demonstrates strong resistance against data loss
attacks. They are introduced to imitate denial-of-service
attacks, which are effective ways to make operators lose
network observability in certain regions. Although the system
parameter and data-repetition attack better camouflage itself
among actual measurements, the estimated oscillatory param-
eters from healthy PMUs allow these attacked PMUs to be
identified and removed at the distributed fusion center. As
a result, the MSE of the attacked windows is similar to the
previous not attacked windows. Among all simulated attacks,
the most threatening one is the injection of false damping ratio
to the dominant inter-area oscillation which occurred in 15-20
second window. In this case, the lightly damped oscillation
has been masked to exhibit adequate damping, thus damping
ratio of 0.85 Hz has been replaced to 8%. This can lead to
wide-area blackouts if the operators act on the false extracted
monitoring results. Nevertheless, the proposed scheme shows
decent rejection to this attack. The damping ratio of the 0.64
Hz oscillation was accurately estimated referring to Table III.
A comparison of original profile of Barka substation and its
recovery from attacks using the proposed scheme is illustrated
in Fig. 5. The additional healthy monitoring nodes contribute
to more accurate and prompt recovery of the attacked nodes.
Overall, the proposed scheme demonstrates the ability to filter
false system and recover parameters from any data-injection
attacks while providing accurate monitoring results of the
grid. The additional healthy monitoring nodes contribute to
more accurate and prompt recovery of the attacked nodes.
Overall, the proposed scheme demonstrates the ability to filter
false system and recover parameters from any data-injection
attacks while providing accurate monitoring results of the grid.
Furthermore, the utilization of the distributed fusion center
provides a global view for better Bayesian approximation of
unobservable attacks at each local node. This minimizes the
impacts of attacks on neighboring substations in the grid.

A time computation comparison has also been made with KF
as shown in Table II. It can be seen that the proposed upper and
lower bound schemes can reduce the computing time than KF.
Compared to BAF, the upper and lower bound schemes were
able to reduce the time computation by 13.84 % and 28.21 %
respectively. Based on the overall observations and results,
the upper and lower bound techniques have shown to improve
the computation time in both test cases. However, there are
no distinct advantages over each of the bounded techniques.
Therefore, it is recommended that the proposed scheme should
utilize both bounds of which can be implemented in a parallel
computing architecture. The parallelization of both lower and
upper bound can be made using multicore processors that are
widely available in the mainstream market. However, this is not
the scope of this work.

IV. CONCLUSIONS

In this paper, a Bayesian-based approximation filter has been
proposed and demonstrated to improve the immunity of the
monitoring applications against data-injection attacks. The pre-

dictive distribution property of the algorithm has helped to
monitor power oscillation even in the presence of information
loss. Mathematical derivations demonstrated the ability to iden-
tify attacks through interactions with neighboring monitoring
nodes. In this paper, the proposed scheme has been applied to
a mature wide-area monitoring application known as oscillation
detection. Manipulating recorded and simulated measurements
collected from Phasor Measurement Unit, the proposed method
was able to extract accurate oscillatory parameters in the pres-
ence of data-injection attacks. Integration of the proposed im-
munity scheme in other WAMS applications will be evaluated
in the future.

APPENDIX

A. Proof of Theorem II.1

Let us consider the lower bound at i-th node. Let P i
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Then based on Riccati difference equation [30], P t+1 can be
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Hence, if (χ̂ij∗

F,t + χ̂ij∗

F,tH
i∗

t Φ) is not a stability matrix, for some
P i

0 ≤ P i
0|0. P i

t|t diverges as t → ∞. Since the state error co-
variance of the lower bound diverges and P i

t|t ≤ P i
t|t for all t ≥

0, P i
t|t diverges as t→∞.
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