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Abstract—1In this paper, an efficient scheme has been proposed to model,
detect and classify the fault. The modeling of fault has been proposed with
the fuzzy logic using membership function. Fault detection of the unprece-
dented changes in system reliability and find the failed component state
by classifying the faults is proposed using kalman filter and hybrid neuro-
fuzzy computing techniques respectively. A fault is detected whenever the
moving average of the Kalman filter residual exceeds a threshold value.
The fault classification has been made effective by implementing a hybrid
genetic neuro-fuzzy Inference system (GANFIS). By doing so, the critical
information about the presence or absence of a fault is gained in the short-
est possible time, with not only confirmation of the findings but also an
accurate unfolding-in-time of the finer details of the fault, thus completing
the overall fault diagnosis picture of the system under test. The proposed
scheme is evaluated extensively on a two-tank process used in industry ex-
emplified by a benchmarked laboratory scale coupled-tank system.

Keyword: Kalman filter; hybrid neuro-fuzzy; soft comput-
ing; ANN; genetic algorithm; ANFIS; GANFIS; fault detection;
fault classification; benchmarked laboratory scale two-tank sys-
tem.

I. INTRODUCTION

In recent times, the advancements in fault diagnosis systems
are facing a heavy challenge of design problems. The main rea-
son behind this issue is that the classical analytical techniques
often cannot provide a feasible and acceptable solution to tasks
and problems which are difficult and other than the textbook this
affecting the efficiency of system operation and reduces eco-
nomic benefit to the industry. This promotes the reason of using
soft computing techniques such as fuzzy logic, neural networks
and evolutionary algorithm which are more robust in tackling
real time industrial applications of fault diagnosis. The main
objective of fault detection and isolation (FDI) is to provide
early warnings to operators, such that appropriate actions can
be taken to prevent the break down of the system after the oc-
currence of faults. By using the soft computing patterns, an
improvement can be made in the reliability and safety of the
system, and avoid unnecessary and costly stoppages. Complete
reliance on human operators to monitor the conditions of the
systems is often difficult, especially as engineering systems are
becoming more complex.

For example, in chemical process control industry, several
kinds of failures may compromise safety and productivity. A
chemical or process control engineer has to tackle and monitor
various critical issues of faults which, if worsen can prove fatal
and lead to swear accident, for example, temperature run-away
with injuries to personnel, environmental pollution, equipments
damage. Major failures to be considered in chemical processes
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are: actuator failures (e.g., electric-power failures, pump fail-
ures, valves failures), process failures (e.g., abrupt variations of
some process parameters, side reactions due to impurities in the
raw materials) and sensor failures. To tackle these difficulties,
FDI techniques are developed.

The model-based approach is popular for developing FDI
techniques ([1];[2]). It mainly consists of two stages [3]. The
first one is to generate residuals by computing the difference
between the measured output and the estimated output obtained
from the model of the system [3]. Any departure from zero of
the residuals indicates a fault has likely occurred [4]. However,
these methods are developed mainly for linear systems assum-
ing that a precise mathematical model of the system is avail-
able which is not always the case in industries [5]; [6]. R. Do-
raiswami ([7]; [8]) has done considerable work in the detection
and identification of faults and tuning parameters. M.A.Rahim
[39] has done a work of integration of industrial system tech-
niques with the development of model-based adaptive control
charts for quality monitoring.

To overcome these problems of fault diagnosis, soft comput-
ing is considered as an emerging approach, which parallels the
remarkable ability of the human mind to reason and learn in
circumstances characterized by uncertainty and imprecision.

The paper is organized as follows: in Section II the related
work is presented and Fault Diagnosis problem statement is
considered in Section III. Section IV discusses the implementa-
tion and simulation results. Finally some conclusions are given
Section V.

II. RELATED WORKS

In recent years, a prominent related work has been done in the
field of fault diagnosis and isolation using soft computing tech-
niques. Among these techniques, neural networks are used for
their capability of approximating nonlinear functions and their
learning ability [9] and also to generate residuals for fault detec-
tion [10]. However, due to their black box nature, it is very diffi-
cult to employ them for isolating the faults. Moreover, it is also
required that fault diagnostic system should be able to incorpo-
rate the experience of the operators [11] and provide fuzzy rea-
soning while considering their experience [12]. An up-to-date
presentation of motor fault detection and diagnosis methods was
recently published in a special section in [13]. The literature re-
view is being subdivided into three sections comprising of fault
diagnosis using expert systems, fuzzy logic, neural network and
Genetic Algorithm.

In recent years, the application of fuzzy logic to model-based
fault diagnosis approaches has gained increasing attention in
both fundamental research and application. Initial attempts at



the application of expert systems for fault diagnosis can be
found in the work of Henley [14] and Niida [15]. Structuring
the knowledge-base through hierarchical classification can be
found in [16]. Ideas on knowledge-based diagnostic systems
based on the task framework can be found in [17]. A rule-based
expert system for fault diagnosis in a cracker unit is described in
[18]. More work on expert systems in chemical process fault di-
agnosis can be found in [19] and [20]. Wo et al. [21] presented
an expert fault diagnostic system that uses rules with certainty
factors. Leung and Romagnoli [22] presented a probabilistic
model-based expert system for fault diagnosis. An expert sys-
tem approach for fault diagnosis in batch processes was dis-
cussed in Scenna [23].

There is also great work done while considering the applica-
tion of ANN in the area of fault diagnosis. A number of papers
address the problem of fault diagnosis using back-propagation
neural networks. In chemical engineering, Watanabe et al. [24],
Venkatasubramanian and Chan [25], Ungar et al. [26] and
Hoskins et al. [27] were among the first researchers to demon-
strate the usefulness of neural networks for fault diagnosis. A
detailed and thorough analysis of neural networks for fault di-
agnosis in steady-state processes was presented by Venkatasub-
ramanian et al. [28]. This work was later extended to utilize dy-
namic process data by Vaidyanathan and Venkatasubramanian
[29]. A hierarchical neural network architecture for the detec-
tion of multiple faults was proposed by Watanabe et al. [30].
Most of the work on improvement of performance of standard
back-propagation neural networks for fault diagnosis is based
on the idea of explicit feature presentation to the neural net-
works by Fan et al. [31], Farell and Roat [32], Tsai and Chang
[33], and Maki and Loparo [34]. Modifications to the selec-
tion of basis functions have also been suggested to the standard
back-propagation network. For example, Leonard and Kramer
[35] suggested the use of radial basis function networks for fault
diagnosis applications.

Genetic Algorithms (GAs) are a special type of evolution-
ary algorithms, algorithms that simulate biological processes to
solve search and optimization problems. GAs have been im-
plemented for a wide variety of problems, both real-world (e.g.
Fault diagnosis, fault tolerant) and abstract (e.g. solving NP-
complete problems [36]. The bulk of the GA literature is con-
cerned with practical applications. For a very complete bibliog-
raphy, see [36], which contains a comprehensive survey. Fault
Diagnosis with the perspective of reliability issues, and imple-
mentation of neural networks with genetic algorithm can also
seen in ([37]-[38]).

In this paper, a fault diagnosis problem using hybrid neuro-
fuzzy computing techniques is proposed to meet the require-
ments for a quick and reliable fault detection and isolation
scheme. The proposed scheme has been evaluated on a labora-
tory scaled based two-tank system. It is the most used prototype
applied in the wastewater treatment plant, the petro-chemical
plant, and the oil/gas systems. The main contribution of the
paper is the implementation of genetic neuro-fuzzy systems on
fault diagnosis problem for accuracy and reliability of Fault De-
tection and Isolation.

III. THE FAULT DIAGNOSIS PROBLEM STATEMENT

In process control industry, fault is a harsh and unaffordable
factor. It merely hits the efficiency of system and this reduc-
ing all the growth and production capacities. The early detec-
tion and diagnosis of faults in mission critical systems becomes
highly crucial for preventing failure of equipment, loss of pro-
ductivity and profits, management of assets, reduction of shut-
downs.

To have an effective fault diagnosis of highly non-linear sys-
tems, hybrid techniques have been introduced here by showing
the genetic neuro-fuzzy Based- FDI.

A. System Description

The Benchmarked laboratory-scale process control system
has been used to collect data. The data has been collected at
a sampling time of 50 milli second. The different data sets have
been generated for PI Control based water level control. Differ-
ent fault scenarios have also been considered for the generation
of the data sets.

The proposed scheme has been evaluated on the above- cited
process control system. The scheme is carried out by jointly
interpreting model outputs. The implementation plan for the
proposed scheme is shown in the Fig 1. It should be noted that
hybrid genetic neuro-fuzzy technique is applied to the fault di-
agnosis of the system.

B. Experimental Setup

Process Data has been generated through an experimental
setup as shown in Fig. 2. A two tank system has been used
in order to collect the data with the introduction of actuator, and
sensor faults through the system as can be seen in the labview
circuit window. An amplified voltage of 18 volts has been used
to handle the controller effectively for the changes/fluctuation
produced in the system. So, the fault diagnosis was done over
here in a closed loop identification where in the same time, the
controller is suppressing the faults.

C. Process Data Collection and Description

The process data has been collected at 50 milli-seconds sam-
pling time. The main objective of the benchmarked dual-tank
system is to reach a reference height of 200 ml of the second
tank. During this process, several faults have been introduced
such as the leakage faults, sensor faults and actuator faults.
Leakage faults have been introduced through the pipe clogs of
the system, knobs between the first and the second tank etc.
Sensor faults have been introduced by introducing a gain in the
circuit as if there is a fault in the level sensor of the tank. Ac-
tuator faults have been introduced by introducing a gain in the
setup for the actuator that comprises of the motor and pump. A
PI controller has been employed in order to reach the desired
reference height. Due to the inclusion of faults, the controller
was finding it difficult to reach the desired level. For this rea-
son, the power of the motor has been increased from 5 volts to
18 volts in order to provide it the maximum throttle to reach
the desired level. In doing so, the actuator performed well in
achieving its desired level but it also suppressed the faults of the
system. So, it made the task of detecting the faults. After the
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Fig. 1. Implementation plan for the evaluation of the proposed scheme

Fig. 2. A — The two tank system interfaced with the Labview through a DAQ
and the amplifier for the magnified voltage , B — The labview setup of the appa-
ratus including the ciruit window and the block diagram of the experiment.

collection of data, techniques such as settling time, steady state
value, and coherence spectra can help us to give an insight of
the fault.

D. Model of the Coupled Tank System

The physical system under evaluation is formed of two tanks
connected by a pipe. The leakage is simulated in the tank by
opening the drain valve. A DC motor-driven pump supplies the
fluid to the first tank and a PI controller is used to control the
fluid level in the second tank by maintaining the level at a spec-
ified level, as shown in Fig 3.

A step input is applied to the dc motor- pump system to

.g_-_
g
g

Fig. 3. Process control system: A Lab-scale two-tank system

fill the first tank. The opening of the drainage valve introduces
a leakage in the tank. Various types of leakage faults are in-
troduced and the liquid height in the second tank, Ho, and the
inflow rate, (Q;, are both measured. The National Instruments
LABVIEW package is employed to collect these data.

A benchmark model of a cascade connection of a dc motor
and a pump relating the input to the motor, u, and the flow, @;,
is a first-order system:

Qi = —amQi + b d(u) (1

where a,, and b,, are the parameters of the motor-pump sys-
tem and ¢(u) is a dead-band and saturation type of nonlinearity.
It is assumed that the leakage (), occurs in tank 1 and is given
by:

Qe = Caen/29H,

With the inclusion of the leakage, the liquid level system is

©))



modeled by:

dH;

Ay —— 7 =Q; —Cira¢(H1 — Hy) — Cyp(Hy) 3)
dH

Ay dt2—012<P(H1—H2)—CO<P(H2) 4

where ¢(.) = sign(.)\/29(.),Q¢ = Cyp (Hy)is the leakage
flow rate, Qo = Cop (Hs)is the output flow rate, H; is the

height of the liquid in tank 1, Hsis the height of the liquid in
tank 2, A; and Ao are the cross-sectional areas of the 2 tanks,
2=980cm,/ sec? is the gravitational constant, C'15 and C,, are the
discharge coefficient of the inter-tank and output valves, respec-
tively.

The model of the two-tank fluid control system, shown above
in Fig. 3, is of a second order and is nonlinear with a smooth
square-root type of nonlinearity. For design purposes, a lin-
earized model of the fluid system is required and is given below
in (5) and (6):

dh
dtl brq; — (a1 + Oé) hi+aihs ®))
dh
(752 = aghy — (a2 — ) hs (6)

where h; and hy are the increments in the nominal (leakage-
free) heights HY and HY:

by = 1 0 = Cap . Co
Ay’ 2v/29(H? — HY)’ 2v/2gHY’
ay=ayt Gl o Ca
2/2gHY 2/2gH?

and the parameter « indicates the amount of leakage.
A PI controller, with gains k,and k7, is used to maintain the
level of the Tank 2 at the desired reference input 7 as:

fkg —e=7r— hg
u=kpe+krxs )
The linearized model of the entire system formed by the motor,
pump, and the tanks is given by:

t=Ax+Br y=Cx )
where
hy —a1 —« a1 0 by
Sl B e I T S
qi —bmkp 0 bk —am

T
=[0 0 1 byky, |, C=[1 0 0 0]

where ¢;, q¢, qo, h1 and hg are the increments in @Q;, Q¢, Qo,
HY and HY, respectively, the parameters a; and ay are associ-
ated with linearization whereas the parameters « and 3 are re-
spectively associated with the leakage and the output flow rate,

ie. go = ahy, qo = Bho.
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Fig. 4. Various Height Profile Scenarios

IV. IMPLEMENTATION AND SIMULATION RESULTS
A. Modeling of Fuzzy Logic-Based Fault Diagnosis

Model of fuzzy Logic-Based Fault Diagnosis is being made
by considering the dynamics and behavior of the physical sys-
tem. As mentioned earlier, various types of leakage faults were
introduced by opening the drainage valve and the liquid height
profiles in the second tank were subsequently analyzed.

Rules of the input has been defined as per by expert anal-
ysis. The type of membership functions used are the tr-bel-s,
triangular and gbelf as it was matching the dynamics of the sce-
nario. On the Universe of Discourse, the height profile and flow
profile, being the input of the system defined with considering
the variation of the steady state values of the profile. The pro-
files are being categorized as per their variation in the height as
well as the steady state values. On Basis of the conditions men-
tioned above, the Fuzzy Logic is modeled on Matlab on both
Sugeno and Mamdani-Based Functions as shown in the Fig. (4-
11). Various height profiles are shown in Fig. 4. Then flow
profile input and height profile input for different fault scenar-
ios defined with membership functions are shown in Fig. 5 and
Fig. 6 respectively. Rules defined for different scenarios are
shown in Fig. 7. Flow and height profile with g-belf function is
shown in Fig. 8 and Fig. 9 respectively. Based on Sugeno type
and Mamdani type, rules vewers can be seen in Fig. 10 and Fig.
11 respectively.

Case-I: Model of Fuzzy Logic using triangular-Shaped, Gen-
eralized Bell-shaped and S-Shaped Membership Functions:

Mathematical Representation:

Equation (9) is representing the triangular membership func-
tion which is used for designing the transition state of the height
profile as shown in the Fig. 4.

Osrv<atf
sarp <z, < by,

th atf
b = 9
f(x,,atr,bpt,cey) ,fﬁbﬂr b <z, <c, ©)]

0

<z,

71f,
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where v stands for vector, Pt stands for transition-feet, ¢f
stands for transition-feet.

Equation (10) is representing the generalized bell function
which is used for designing the settling state of the height profile
as shown in the Fig. 4.

1
2b
14 |2

f(xmapsabsccacps) = (10)

aps

where v stands for vector, ps stands for parameter-settling, scc
stands for settling curve center.

Equation (11) is representing the S-shaped function which is
used for designing the steady state of the height profile as shown
in the Fig. 4.

f(xvvasspabssp) ==

O’xvector
Ly —Gssp_ Assptbssp
2 (bssp—(lssp> aa‘ssp S x“ S 2
2
o Z, —bssp Assptbssp
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17zv Z bssp

< Qssp

1)

where v stands for vector, ssp stands for steady state parameter.

Equation (12) is representing the final combination of the
three function in order to transform the complete state of height
profile as shown in the Fig. 4.

f(xwacum.ybcum.accum.) -
B . _ C,.—T, 7
(mln (7;” uf e ),0)
pt —Atf T Cop—Opy
min
T, —a 2 z, —b 2
min | 2| —~—>) 1-2(—~—2) 0
bssp_assp bssp_assp

(12)

max

where v stands for vector, cum. stands for cumulative, ¢ f stands
for transition-feet, pt stands for peak-transition, ssp stands for
steady state paramter, ps stands for parameter settling.

The tasks of our fault diagnosis scheme, GANFIS system as
shown in Fig. 12 are executed with an increasing precision ac-
companied with a more detailed fault picture. Firstly, the data
collected from the plant has been initialized and the parameters
are being optimized which comprises of the pre-processing and
normalization of the data. Then, the optimal cluster centering
has been done through ANFIS using the subtractive clustering
technique. Then, the genetic optimization of the sensitive pa-
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rameters of the subtractive clustering such has radius has been
performed and the performance has been validated by checking
the root mean square error and the performance targets of the
performance targets.

B. ANFIS Based Fault Diagnosis using Subtractive Clustering

The Subtractive Clustering technique has been applied here
in order to form hybrid versions of Neuro-Fuzzy. The proce-
dure for the Subtractive Clustering seeks the optimal data point
by defining a cluster center based on the density of surrounding

data points. All the data points within the RADII of this point
are then removed, in order to determine the next data cluster and
its center. This process is repeated until all the data is within the
distance RADII of a cluster center. SUBCLUST finds the opti-
mal data point to define a cluster center based on the density of
surrounding data points. All the data points within the distance
RADII of this point are then removed, in order to determine the
next data cluster and its center. This process is repeated until all
of the data is within the distance RADII of a cluster center.

The scheme has been followed and employed to get a final
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trained ANFIS. It has been shown that the Predicted ANFIS
is performing better in following the Original output when the
radius is 0.7 rather than when the radius is 0.2 as shown in the
Fig. 13 and Fig. 14 respectively.

C. Fault Detection Using Kalman Filter

The Kalman filter is designed for the normal fault-free opera-
tion. The model of the system for a fault-free, which is obtained
from the system identification process described in the previous
section, is given by:

z(k+1) = Aox(k) + Bou(k — d) + w(k)
y(k) = Coz(k) +v(k)

13)
(14)

Where y(k) is the output, e.g., the height of the water in a
tank, (Ag, Bo,Cy) are obtained from the discretized model of
(A, B,C)for the ideal fault-free case,w(k) and v(k) are zero-
mean white plant and measurement noise signals, respectively,

I 1
0.045

1.905

with covariances:

Q = E[w(k)w” (k)] ,and R=E [v(k)w"(k)] (15)

The plant noise,w(k), is a mathematical artifice introduced
to account for the uncertainty in the a-priori knowledge of the
plant model. The larger the covariance @ is, the less accurate
the model (Ag, By, Cp)is and vice versa.

The Kalman filter is given by:

#(k+1) = Agz(k) + Bou(k — d) + Ko (y(k) —

Co(k)
e(k) =y(k) — Coz(k)

(16)
a7

where d is the delay and e (k) the residual.

The system model has a pure time delay which is incorpo-
rated in the Kalman filter formulation. The Kalman filter es-
timates the states by fusing the information provided by the
measurement y(k) and the a-priori information contained in the
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model,(Ag, By, Cy). This fusion is based on the a priori infor-
mation of the plant and the measurement noise covariances, Q,
and R, respectively. When Q is small, implying that the model
is accurate, the state estimate is obtained by weighting the plant
model more than the measurement one. The Kalman gain, K,
will then be small. On the other hand, when R is small imply-
ing that the measurement model is accurate, the state estimate is
then obtained by weighting the measurement model more than
the plant one. The Kalman gain, K, will be large in this case.
The larger K is, the faster the response of the filter will
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Predicted ANFIS fault classification —y,

Fault Classification rung for faults

1 W 1
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Fig. 13. Predicted ANFIS using Subtractive Clustering when radius: 0.7

be and the larger the variance of the estimation error becomes.
Thus, there is a trade-off between a fast filter response and a
small covariance of the residual. An adaptive on-line scheme is
employed to tweak the a- priori choice of the covariance ma-
trices so that an acceptable trade-off between the Kalman filter
performance and the covariance of the residual is reached.

Evaluation of Fault Detection using Kalman Filter: First the
fault-free model of the system is identified using a recursive
least-squares identification scheme. The order of the estimated
model was iterated to obtain an acceptable model structure us-
ing a combination of the AIC criterion and the identified pole
locations.

The identified model is essentially a second-order system
with a delay even though the theoretical model is of a fourth
order. Using the fault-free model together with the covariance
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of the measurement noise, R, and the plant noise covariance, Q,
the Kalman filter model was finally derived. As it is difficult
to obtain an estimate of the plant covariance, Q, a number of
experiments were performed under different plant scenarios to
tune the Kalman gain, K.

#(k+1) = Ao (k) + Bou(k — d) + Ko(y(k) —
Coi (k)
e(k) = y(k) — Coi(k)

(18)
(19)
The Kalman filter was evaluated under different fault scenar-

ios for an On-Off controller, a Proportional(P) controller, and a
Proportional-Integral(PI) controller, as shown in Fig. (15-16).

D. GANFIS Based Fault Diagnosis using Genetic Optimiza-
tion of Subtractive Clustering

As can be seen in the previous section that a slight change
in the radius of subtractive clustering has showed in the change
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Fig. 16. Kalman filter results for an On-Off Controller for Flow and Height
under various leakage magnitudes
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of results. So, the genetic optimization of the parameters is re-
quired in order to get the optimal shape of the fault prediction.
Table I given below shows the performance selection of genetic
algorithm at various generations. At various sizes of epochs,
the linear parameters and non-linear parameters are changing
and also adapting themselves by predicting the number of rules
and nodes which can best fitted for the problem and the set of
data points.

Fig. (17-20) shows the four random phases in which the per-
formance of genetic optimization can been seen. The original
graph is drawn in red which is showing step sizes indicating dif-
ferent levels of faults. The green graph is showing the predic-
tion with the subtractive clustering technique followed the blue
graph in each of all the four phases which is showing the ge-
netic optimization of the radius parameter of the sub-clustering
technique implied.



TABLE I
PERFORMANCE SELECTION OF GENETIC ALGORITHM AT VARIOUS GENERATIONS

PERFORMANCE SELECTION OF GA| OPTIMAL PARAMETER SELECTION BY GA
AT VARIOUS GENERATIONS AT VARIOUS GENERATIONS
Performance Selection of Genetic | GANFIS info: Number of nodes: 29
Algorithm at Epoch 9 Number of linear parameters: 12
Number of nonlinear parameters: 16
Number of fuzzy rules: 4
Performance Selection of Genetic | GANFIS info: Number of nodes: 41
Algorithm at Epoch 30 Number of linear parameters: 18
Number of nonlinear parameters: 24
Number of fuzzy rules: 6
Performance Selection of Genetic | GANFIS info: Number of nodes: 65
Algorithm at Epoch 65 Number of linear parameters: 30
Number of nonlinear parameters: 40
Number of fuzzy rules: 10
Performance Selection of Genetic | GANFIS info: Number of nodes: 23
Algorithm at Epoch 90 Number of linear parameters: 9
Number of nonlinear parameters: 12
Number of fuzzy rules: 3
Performance Selection of Genetic | GANFIS info: Number of nodes: 41
Algorithm at Epoch 110 Number of linear parameters: 18
Number of nonlinear parameters: 24
Number of fuzzy rules: 6
Performance Selection of Genetic | GANFIS info: Number of nodes: 53
Algorithm at Epoch 125 Number of linear parameters: 24
Number of nonlinear parameters: 32
Number of fuzzy rules: 8
Performance Selection of Genetic | GANFIS info: Number of nodes: 23
Algorithm at Epoch 170 Number of linear parameters: 9
Number of nonlinear parameters: 12
Number of fuzzy rules: 3
Performance Selection of Genetic | GANFIS info: Number of nodes: 65
Algorithm at Epoch 210 Number of linear parameters: 30
Number of nonlinear parameters: 40
Number of fuzzy rules: 10
Performance Selection of Genetic | GANFIS info: Number of nodes: 47
Algorithm at Epoch 243 Number of linear parameters: 21
Number of nonlinear parameters: 28
Number of fuzzy rules: 7
Performance Selection of Genetic | GANFIS info: Number of nodes: 65
Algorithm at Epoch 300 Number of linear parameters: 30
Number of nonlinear parameters: 40
Number of fuzzy rules: 10

These function when implemented in the genetic algorithm
gives the best fitness function value as follows:
FITNESS FUNCTION VALUE: 0.187462

E. ANN-Based Fault Diagnosis

The analysis of the ANN is a difficult task and it requires an
expert opinion with a hit and trial scenario by putting different
types training sets and functions and finding the final outcome
of the best possible hidden layers and activation layers as per
according to the problem at hand. A generic model of the ANN

in fault diagnosis is as follows in Fig. 21 and a generic activation
evaluation on a sigmoid activation function is shown in Fig. 22.

F. Discussion

In this paper, three modeling techniques have been used,
a fuzzy-logic based fault modeling, a kalman filter-based ap-
proach for fault detection and the hybrid techniques have been
implemented for the fault classification. A good comparison of
the techniques can been in the histographs shown in Fig. 23 and
Fig. 24. The chart in Fig. 23 shows the comparison with the er-
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ror rates between fuzzy, ANN, ANFIS and the present method
of genetic neuro-fuzzy. It is to no worthy that the error rate for
the GANFIS is the least one because the genetic algorithm has
performed well in optimization the subtractive clustering. In
Fig. 24, it can be seen, that when the radius of the subtractive
clustering chosen randomly, it is showing improvements in the
results.

V. CONCLUSION

In this paper, we presented a model-free approach to the fault
diagnosis problem, based on a combination of different learn-
ing strategies like modeling with fuzzy logic, ANN, ANFIS
and optimized Neuro-fuzzy. This model-free approach classi-
fies a presence of a possible fault from the profiles of the sensor
outputs. Changes in the fault signatures such as settling time,
steady-state value, and the coherence spectral changes give a

Phase # 4: Fault-Level Prediction - Predicted Sub-Clustered ANFIS with GA
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Fig. 20. (Phase 4: Four random Phases for predicted sub-clustered ANFIS with
GA

90
80
70
60

Error Rates P
percentage 20 4

40
30
20
10

Fuzzy ANN ANFIS GANFIS

Performance Analysis

Fig. 23. Comparison of error rates

Subtractive Clustering
Radius Tuning

Performance Analysis for Optimized Radius

Fig. 24. Comparison of subtractive clustering radius tuning



quick indication that a fault may be in the making. An abrupt
change in the sensor output profile indicates a possible onset of
a fault. As such, this model free approach can be made an ef-
fective part of an overall integrated approach that tackles both
fault classification and detection where detection part would be
handled by an additional section using a model-based approach
comprising of Kalman Filter, thus completing the structure of
fault detection and classification.
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