
1

Pack-Level Current-Split Estimation for Health
Monitoring in Li-Ion Batteries

Haris M. Khalid, Member, IEEE , Qadeer Ahmed, Member, IEEE Jimmy C.-H. Peng, Member, IEEE,
and Giorgio Rizzoni, Fellow, IEEE

Abstract—Due to the complicated structural hierarchy and electrochem-
ical processes, lithium-ion battery packs are often monitored by numerous
number of sensors. The performance of a pack is highly dependent on the
health of these sensors. However, sensors may encounter faults due to man-
ufacturing defects, external shocks or long exposures to high temperatures.
A faulty current sensor in particular, may affect the estimation accuracy
of the state-of-charge and state-of-health. This may cause the battery to
suffer from charging and aging issues. Therefore, a scheme to monitor
health of these sensors has been proposed. The first step is to estimate the
current-split among parallel connected cells, followed by diagnosing the
health of sensors to improve the overall performance of battery at pack-
level. A median-expectation based covariance intersection diagnosis ap-
proach (MCIA) is proposed. MCIA evaluates the median of a possible set
of values by calculating the covariance of the interconnected cell structure
to estimate the current-split. This has been achieved by first deriving the
median-based covariance intersection filter-based smoother for predicting
the state vector of the current-split among cells. The scheme is further de-
veloped from the residuals of these estimates to isolate the faulty sensors.
Performance evaluations have been conducted by analyzing sets of real-
time measurements collected from Li-ion battery pack used in electric ve-
hicles (EV). Results show that the proposed filter accurately estimated the
battery parameters in the presence of temporary and permanent faults.

Index Terms—Battery powered vehicles, battery life issues, covariance
intersection, current-split, electric vehicles (EVs), energy management sys-
tem, estimation, expected value, hybrid electric vehicles, lithium ion (Li-
ion) batteries, recursive, renewable energy.

I. INTRODUCTION

EFFECTIVE health monitoring of Li-Ion batteries is crucial
for the automotive industry and other energy storage appli-

cations. Besides issues related to the internal chemical charac-
teristics of the battery, external physical malfunctions can also
deteriorate its performance. For example, from the point of view
of system engineering, a battery pack is composed of numerous
interconnected subsystems, i.e. battery cells. These subsystems
are equipped with voltage, current and temperature sensors, re-
sulting in an on-board complex network composed of hundreds
of sensors. Such complex system is controlled by an on-board
Battery Management System (BMS) that relies on sensors to
achieve the desired performance of the battery pack. BMS is
responsible for the State of Charge (SoC) estimation, State of
Health (SoH) estimation, thermal management of the pack, volt-
age equalization, battery current and voltage limits etc. It can
be seen that these functions are sensor dependent. Therefore,
health monitoring of sensors holds prime significance in the de-
velopment of the overall pack diagnostics scheme.
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To date, most of the efforts on battery health monitoring are
limited to cell level [1–3]. The nonlinear behavior of battery
cells connected in series and parallel makes it difficult to de-
velop a reliable diagnostic scheme [4, 5]. Furthermore, the cell
to cell variability makes the monitoring task more challenging.
The realization of a current-split among the parallel cells is very
critical to have a reliable diagnostic scheme [6–8]. The contri-
bution of each sensor at cell level to the pack level can be identi-
fied if the current-split information is accessible along with volt-
age sensor information. Since most of the diagnostics schemes
focus at cell level, little effort has been invested to resolve this
challenge.

The focus of this paper is on the development of the system-
atic diagnostics scheme for a battery pack. At first, the impact
of the sensors faults on the parameters of the battery have been
generated to show the complexity of pack level diagnostic prob-
lem. Later on, a current-split estimation scheme has been de-
vised to realize the current flows among the cells connected in
parallel. Once all of the information has been made available
we then develop residual to diagnose and Isolate the faults. The
benefits associated with this approach is that SoC, SoH and ca-
pacity false estimation can be avoided and thus BMS can make
more intelligent and reliable decisions to deliver the desirable
performance. We have analyzed a 2P3S pack with a perma-
nent and intermittent fault to test and validate the algorithm.
The main contribution of this paper is to enhance the reliability
of Li-ion battery packs. This was accomplished by estimating
the current-split between the parallel cells connected in a se-
ries circuit, in the presence of temporary and permanent faults.
As the faults may have the form of random glitches and spikes,
the proposed scheme has been developed based on median fil-
ters [9–12].

The paper is organized as follows: The problem is formulated
in Section II. In Section III, the implementation and evaluation
of the scheme are discussed, and finally conclusions are drawn
in Section IV.

II. PROPOSED METHODOLOGY OF CURRENT-SPLIT
ESTIMATION

An overview of the formulation framework of this section is
illustrated in Fig. 1. It summarizes the procedures for estimat-
ing the current-split and diagnostics of the battery-pack. Note
that only two parallel cells are connected in a module ofN num-
ber of series are considered here. Each cell is equipped with a
current sensor and there is a voltage sensor at module level. The
sensors signal are collected via bus for further analysis. The
presented configuration is the standard structure used in Li-ion
battery packs [5].
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Fig. 1. Proposed MCIA scheme for pack-level health diagnosis

A. Battery Pack State Model and Conductivity Relationships

Consider a discrete-time dynamical model of a battery-pack
involving Cells i and j connected in parallel with a voltage sup-
ply to N number of in-series connections. It can be represented
by a state difference equation and an observation model at time-
instant t as:

Iijt+1 = F ij
t I

ij
t +

αij
t

2
(Γ i

t +Γ j
t )+βij

t (zit + zjt )+Gij
t w

ij
t (1)

yijt = Hij
t F

ij
t I

ij
t + νijt (2)

where superscript ij presents the fused form of cells i and j.
The Iij0 ∈ IRr is the initial condition of the state of current, and
F ij
t ∈ IRr×r is a model matrix of the state response of current,

such that it depends on the covariates. Meanwhile, αij
t ∈ IRr×r

is the transition matrix of temperatures Γ i
t ∈ IRr and Γ j

t ∈ IRr

of Cell i and Cell j, respectively. βij
t ∈ IRr×r is the impedance

transition matrix of impedances zit ∈ IRr and zjt ∈ IRr, respec-
tively. Also, Gij

t ∈ IRr×r is the noise transition matrix, which
can be defined as a probability vector. Its elements are non-
negative real numbers and sum to 1. wij

t ∈ IRr is the random
process noise, t is the time instant, where t= 0,1, ...., T , and T
refers to the number of time instants. In the observation model
of (2), yijt ∈ IRp is the observation output of state of current, p is
the number of simultaneous observations for estimation made at
time instant t, Hij

t ∈ IRp× r is the observation matrix of current
state, Iijt is the current state matrix, and νijt ∈ IRp is the obser-
vation noise. Note in (1), the state of current Iij is calculated at
time t+1, where it is evolved from its prior state at time t.

The noises wt and νt have been assumed initially uncorre-
lated zero-median white Gaussian based on [12]. Once the ob-
servation model is extracted from the measurements of the bat-
tery pack, the relation between different parameters of the bat-
tery collected from sensors are formulated by considering cells

as conducting bodies only. Therefore, the known parameters of
parallel cells connected in a series string are: the string voltages,
temperature and current.

At the time instant t, Iit is the current of Cell i. This can
be represented as the difference between input voltage V ij

1,t and
output voltage V ij

2,t to the parallel connected cells:

Iit =
V ij
1,t −V ij

2,t

zit
(3)

Similarly, Ijt is the individual reading from the current sensor at
Cell j, and is defined as:

Ijt =
V ij
1,t −V ij

2,t

zjt
(4)

Also, impedances zit and zjt for cell i and j are:

zit = zi
0

t +
[
1+αij

t (Γ
i
t −Γ i0

t )
]
, (5)

zjt = zj
0

t +
[
1+αij

t (Γ
j
t −Γ j0

t )
]

(6)

Note in (5)–(6), the standard relation between impedance and
temperature is considered for Cell i and Cell j according to [13].
In addition, the terms zit

0 and zjt
0

are the standard values of
impedance at room temperature Γ i

t
0 and Γ j

t

0
, respectively. αij

t

is the transition matrix of temperature at Cells i and j. To have
an explicit expression for the temperature, (5) can be expressed
for temperature Γ i

t of Cell i as:

Γ i
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αij
t z

i0
t

− 1

αij
t

+Γ i0

t (7)

Similarly, temperature Γ j
t of Cell j is:

Γ j
t =

zjt

αij
t z

j0

t

− 1

αij
t

+Γ j0

t (8)
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Since Γ ij
t is assumed to be the average value of temperature for

Cells i and j. Therefore, the general relation between battery
parameters can be represented as:

Γ ij
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zitz
j0

t +zjt z
i0

t −2zi
0

t z
j0

t

2αij
t z

i0
t z

j0

t

+
αij
t Γ

i0

t z
i0

t z
j0

t +αij
t Γ

j0

t zi
0

t z
j0

t

αij
t z

i0
t z

j0

t

(9)

Once the dynamic relationships between battery parameters
are determined, the current-split estimation is calculated.

B. Current-State Prediction using Median-Based Covariance
Intersection Filter

Based on the formulated system and observation models, the
median-based covariance intersection filter can then be derived
for the current-split to enhance the estimation in the presence of
outliers and small sample size. This required some additional
properties of the median expectation, which have been consid-
ered from [12]. Suppose the estimated state at time-instant t
for the time-sequence T is Îijt|t. Given the information of (2)
and time-sequence T − 1, the state prediction of current can be
defined linearly with a conditional probability as:

Îijt|t−1 = IEµ1/2
[Iijt |yijT−1] = F ij

t argmin
Iij

[Iijt−1 −µ1/2,t−1]

+
αij
t

2
(Γ i

t +Γ j
t )+βij

t (zit + zjt )(10)

Note the process noise is assumed to have a zero median. Taking
the difference between (1) and (10) gives:

Iijt −Îijt|t−1=F
ij
t (Iijt−1−argmin

Iij
[Iijt−1−µ 1

2 ,t−1])+G
ij
t w

ij
t (11)

Here Iijt − Îijt|t−1 is equal to the covariance matrix P ij
I,t|t−1 as

followed by standard KF. Taking the median-based expected
value for (11) gives:

P ij
I,t|t−1 = F ij

t P
ij
µ1/2,t−1|t−1

F ijT

t +Gij
t Q

ij
t G

ijT

t (12)

The measurement updated equations for the estimated state
Îijt and the covariance matrix P ij

I,t have been derived from
the first principles based on (10) to (12). However, the de-
rived covariance matrix assumes that both cells have the same
impedance, operating temperature, and other cell dynamics.
This leads to the motivation to consider the problem for bat-
tery pack with dynamic in-cell variations. Variations in the
individual cells are primarily due to its total capacity, in-
ternal resistance, and the initial value of SOC. These fac-
tors give the reason to derive a covariance matrix that can
represent the dynamical situation of current-split estimation.
Let P i

I,t|t be the conservative covariance estimate of cell i,

such that P i
I,t|t ≥ IEµ1/2

[(
µi
1/2,t|t − IEµ1/2,t|t(I

ij
t|t)

)(
µ1/2,t|t −

IEµ1/2,t|t(I
ij
t|t)

)′]
, where µi

1/2,t|t is the median vector for cur-
rent at cell i. Note to achieve convergence, the estimated co-
variance of Cell i P i

I,t|t is always an over-estimate of the ex-
pected squared difference between the true median of the un-
known distribution function of Cell i µi

1/2, and its estimate
argmin[Iit−1 − µi

1/2,t−1]. The proposed solution is to assign
a weight ω to calculate the current-split among the parallel con-
nection. This weight is then computed in order to determine
the trace of current-split and assigns an estimate value to the

individual current estimates Îit|t and Îjt|t respectively.

Îijt|t = P ij
I,t|t

(
ωP i−1

I,t|tF
ij
t Î

i
t|t +(1−ω)P j−1

I,t|tF
ij
t Î

j
t|t

)
(13)

where the difference between Îit and Îjt can be expressed by δijt
as follows:

δijt = Îit|t − Îjt|t (14)

The expression (14) can be normalized further using median-
based expectation operator as:

IEµ1/2
[δijt δ

ij
′

t ] = IEµ1/2
[Îit|t − Iijt|t − (Îjt|t − Iijt|t)][Î

i
t|t

− Iijt|t − (Îjt|t − Iijt|t)]
′
=P i

I,t|t+P
j
I,t|t−P

ij
I,t|t−P

ij
′

I,t|t (15)

The term P ij
I,t|t refers to the associated covariance of fused cur-

rent with its estimate Îijt|t. Also,

P ij
I,t|t = IEµ1/2

[(Îit|t−I
ij
t )(Îjt|t−I

ij
t )

′
]

= IEµ1/2
[Ĩit|tĨ

j
t|t]=P

ij
′

I,t|t (16)

where P ij
I,t|t is the correlation between the two current estimates

Îit and Îjt , respectively. Also, according to (13), P ij
I,t|t can be

represented in the form of P i
I,t|t and P j

I,t|t as:

P ij
I,t|t =

P i
I,t|tP

j
I,t|t

ωP i
I,t|t +(1−ω)P j

I,t|t
(17)

However, there is a value for the trace of the current-split,
which is dependent on variants of the temperature change, volt-
age fluctuations and external disturbances. Let the current at
Cell i Ii consists of a correlated component IiC and an un-
correlated component IiUC with respect to Cell j, such that
Ii = IiC + IiUC , then the estimated covariance matrices for IiC
and IiUC will be P i

I,C and P i
I,UC respectively. This gives a new

definition of the covariance matrices for Cell i and Cell j as:

P i
I,t|t =

P i
I,C,t|t

ω
+P i

I,UC,t, P
j
I,t|t =

P j
I,C,t|t

1−ω
+P j

I,UC,t (18)

where ω belong to the interval [0,1]. Note ω can also be deter-
mined by optimizing an objective function in terms of ω, such
as the determinant of new covariance [14]. This gives the fused
form of covariance matrices for Cell i and j in the form of cor-
related and uncorrelated current estimate measurements:

P ij
I,C,t|t=P

ij
I,t|t −P ij

I,UC,t|t (19)

P ij
I,UC,t|t=P

ij
I,t|t

(
P i−1

I,t|tP
i
I,UC,t|tP

i−1

I,t|t

+ P j−1

I,t|tP
j
I,UC,t|tP

j−1

I,t|t
)
P ij
I,t|t (20)

Considering the correlated and uncorrelated measurements
from Cell i and Cell j (18), (13) becomes:

Îijt|t=P
ij
I,t|t

[
(

ω2Îit|t

P i
I,C,t|t+P

i
I,UC,t|t

)+(
(1−ω)2Îjt|t

P j
I,C,t|t+P

j
I,UC,t|t

)
]

(21)

(21) can be further expressed as:

Îijt|t =
( ω2F ij

t|tÎ
i
t|tP

ij
I,t|t

P i
I,C,t|t+P

i
I,UC,t|t

)
+
( (1−ω)2F ij

t|tÎ
j
t|tP

ij
I,t|t

P j
I,C,t|t +P j

I,UC,t|t

)
(22)



4

Considering feedback for the update of current-split estimate
gives,

P ij−1

I,t|t Î
ij
t|t = −(N − 1)P ij−1

I,t|t Î
ij
t|t +

( ω2F ij
t|tÎ

i
t|tP

ij
t|t

P i
I,C,t|t +P i

I,UC,t|t

)
+

( (1−ω)2F ij
t|tÎ

j
t|tP

ij
I,t|t

P j
I,C,t|t +P j

I,UC,t|t

)
(23)

where current-split estimate can be iteratively updated at each
time-instant t. N is the number of cells, which is 2 for this for-
mulation. This completes the updated measurement equations
of the filtering step.

To improve the initialization procedure, a smoother process
has been introduced. It analyzes a sequence of T observations
from the previous filter measurements. Here, the time sequence
was turned backwards such that t = T, T − 1, . . . , 0. This se-
quence updates the smoothed a− posteriori estimate covari-
ance, P ijS

I,t|T . The subscript S denotes the smooth operator. Tak-
ing the difference between (22) and (1), and then its update with
respect to the state estimate of (22) gives:

PS
I,t|T =F

ij
t f(P̃

iS

I,µ1/2,t−1|T
)ω2P ij

I,t|t(P
i
I,C,t|t+P

i
I,UC,t|t)

−1

+F ij
t f(P̃

iS

µ1/2,t−1|T)(1−ω)
2P ij

t|t(P
j
I,C,t|t+P

j
I,UC,t|t)

−1

+
αij

2
(Γ i

t +Γ j
t )+βij

t (zit + zjt )+Gij
t w

ij
t (24)

Îijt|T =Î
ij
t|t−1 +P ijS

I,t|T (25)

where using definition in [12], IEµ1/2
(Iijt − Îijt|t−1) =

f(P̃ iS

I,µ1/2,t−1|T
). The desired measurement update for the state

estimate is Îijt|T .
The median-based covariance intersection based-smoother

will provide estimation of the current-split. To detect the faults
in cells, it is required to generate the residuals from the esti-
mated current-split and voltage of each thread.

C. Residual Generation

The residuals of the estimated parameters are generated to
detect any variations caused by system-bias and sensor faults.
To detect variations of each measurement, expression (22) can
be constructed as:

Îijt|t =
( ω2F ij

t|tÎ
i
t|tP

ij
I,t|t

P i
I,C,t|t +P i

I,UC,t|t

)
+
( (1−ω)2F ij

t|tÎ
j
t|tP

ij
I,t|t

P j
I,C,t|t +P j

I,UC,t|t

)
+ ξf,t(y

ij
t , I

i
t|t, I

j
t|t)+ γt(yt − ŷt) (26)

where ξf,t ∈ IR is a parameter that changes unexpectedly when
a fault occurred, γ is the residual weighting matrix that is de-
pendent on the difference between yijt = Hij

t F
ij
t I

ij
t + νijt and

the residual rt = γt(yt − ŷt).

D. Residual Evaluation using Cross-Covariance

Once the residual is found, evaluations are required to de-
termine the threshold selection for identifying a sensor fault.
The residual evaluation is performed by calculating the cross
covariance between the nominal and faulty measurements for a
threshold region th between 0 and 1. Let P iif

I,t|t be the cross-

covariance between the current at Cell i and faulty cell if ,
respectively. Using median expectation properties from [12]
gives:

P
iif
I,t|t = IEµ1/2

[
Iit|tI

if
t|t − Iit|tIEµ1/2

(I
if
t|t)− IEµ1/2

(Iit|t)I
if
t|t

+ IEµ1/2
(Iit|t)IEµ1/2

(I
if
t|t)

]
(27)

The test statistic teststat has been chosen to be the median
value of the cross-covariance between the nominal measure-
ments and the faulty measurements:

teststat = µ1/2(P
iif
I,t|t),where teststat =

{
≤ th fault
> th no fault

(28)
where 0≤ th≤ 1 is a threshold value. Note (27)-(28) show the
computation of the cross-covariance for Cell i. It has also been
derived for Cell j accordingly.

However, in the case of permanent faults, the covariance be-
tween the variables must be taken into account. Let Iijt is depen-
dent on temperature and impedance of Cell i and j, respectively.
Additionally, suppose ft(Iij(Γ i), Iij(Γ j), Iij(zi), Iij(zj)) is a
set of functions that the current-split is dependent on. Consider-
ing (1), the combination of all these functions can be expressed
as:

ft = χIijt (29)

Let the variance-covariance matrix on Iijt be denoted by ψI :

ψI =

[
σi2 σij

σji σi2

]
=

[
ψiI ψijI

ψjiI ψjI

]
(30)

Then, the variance-covariance ψf of fault f is given by:

ψijf = χiψijIχj (31)

which is the general expression to calculate the fault propaga-
tion with impact on the interaction variables. The evaluation
output can be treated as a detection signal for fault isolation and
location.

E. Fault Isolation using Energy Density

After calculating the current-split estimation, (2) can be rep-
resented for each Cell i and j as:

yit = Hi
tF

i
t I

i
t + νit , y

j
t =Hj

t F
j
t I

j
t + νjt (32)

Based on (32), observations of N numbers of cells can be com-
puted. The difference between the predicted output and the ob-
servation for Cell i as:

Υ i
t+1 = [yit+1 − ŷit+1] =ΣT

t=1ψ
′

t−1θ
I(1)

t ∆Iit + νit (33)

where the vector Υ i
t+1 is the innovation calculated for Cell i.

∆It = Ift −It is the perturbation in Ii ; yit and yi
f

t are the fault-
free (nominal) and faulty outputs, respectively. θi

(1)

t = δθt
δIi

t
, and

ψ are the data vector generated from past outputs and past ref-
erence inputs of Cell i. The gradient θi

(1)

t can be estimated by
performing a number of offline experiments for Cell i, which
consists of perturbing the recognition parameters one at a time.
The input-output data from all the perturbed parameter experi-
ments are then used to identify the gradients θi

(1)

t . The outcome
can be represented in the form of a density function between the
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Fig. 2. Li-ion battery pack in-cell setup for current-split estimation for (a)
nominal case, (b) with random-noise variance, and (c) with fault-injection
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Fig. 3. Measurements of a) total voltage, b) total temperature, c) total current,
d) Cell 1 and 2, e) Cell 3 and 4, f) Cell 5 and 6 of Li-ion battery pack

faulty data and fault-free data.

III. IMPLEMENTATION AND EVALUATION

To validate the proposed methodology, evaluations have been
exhaustively conducted on a Li-ion battery-pack under differ-
ent operating conditions. The experiments were conducted at
the battery laboratory of the Center for Automotive Research
(CAR) [15]. They are based on the guidelines in the test manual
issued by United States Department of Energy battery [16, 17].
Two test cases are presented in this paper. Each test case is de-
pendent on the setup of parallel cells connected in a string of
series configuration as shown in Fig. 2. The online values of
all the cells connected in this structure are plotted in Fig. 3. It
comprises of the sampled current given to cells, individual cur-
rent of each cell for testing and verifying the estimation scheme,
and the corresponding voltage profile as well as the temperature
during the battery charging/discharging operation. Test Case I
examined the temporary fault shown in Fig. 2 with effect on
Cell 5. The proposed method is referenced with the mainstream
technique of Unscented Kalman filter (UKF) [18]. Meanwhile,
Test Case II considers a current-split estimation in the presence
of an injected permanent fault in Cell 1. The focus of this paper
is to estimate the current-split followed by the voltage.

A. Test Case I: Current-split Estimation under a Temporary
Fault

The objective of this test case is to examine the estimation
capacity of the proposed scheme in the presence of a temporary
fault. This fault has been generated in the form of a glitch in
the current profile at 16.0-16.5 hour as shown in Fig. 4. It has
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Fig. 4. Test Case I: Comparison of Cell 5 current estimates for temporary
fault
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Fig. 5. Test Case I: a) Cell 5 current sensor residual, and b) fault isolation
for the temporary fault

no impact on other parameters of the circuit. The dynamics of
voltage are captured well by the regular UKF. However, it was
not able to estimate the fault thoroughly. UKF may have suf-
fered as it considers a Gaussian-noise uniformity in the model
profile, which is not the case here. Furthermore, the fault de-
tection has been made by calculating cross-covariance between
the fault-free and fault profile of the Cell 5. The threshold se-
lected for current was ±2. Referring to Fig.5(a), the fault was
detected using the threshold selection by the cross-covariance
approach. As observed in Fig.5(a), there was a wiggle at 5.0-
6.2 hour, which correlates to the dynamics of the real-time data.
However, this could be mistaken as faults if an inappropriate
threshold is selected. Fault isolation can be seen from Fig.5(b).
The operator can clearly analyze that the fault is occurred in
Cell 5.

B. Test Case II: Current-split Estimation with Permanent Fault

This test case has been generated to evaluate the performance
of the proposed filter in the presence of a permanent fault. Cell
1 was short circuited at 8.0-10.0 hour. The current profile of the
shorted cell can be seen in Fig.6(a). This results in a high elec-
trical leakage among the cells and the circuit. This also impacts
other parameters of the circuit as seen from the current profile
of Cell 3 in Fig.6(b) and voltage profile of V3 in Fig.6(c). From
these figures, UKF is not able to estimate the kinks and outliers
accurately in the current and voltage profiles.

Once the estimation accuracy has been achieved, the resid-
uals were generated. Referring to Fig.7(a), the short circuit
has been detected using the threshold selection by the cross-



6

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6

Time window (h)
(a)

C
ur

re
nt

 (A
)

 

 Proposed Scheme
Current I

11
 with fault 

UKF [18]
Current I

11
 with no fault impact

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

Time window (h)
(b)

C
ur

re
nt

 (A
)

 

 

Proposed Scheme
I
22

 with fault impact

UKF [18]
 I

22
 with no fault impact

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time window (h)
(c)

Vo
lta

ge
 (V

)

 

 
Proposed scheme
V

3
 with fault impact

UKF [18]
V

3
 with no fault impact

Fig. 6. Test Case II: Comparison of a) Cell 1 current estimates for per-
manent fault, b) Cell 3 current estimates for permanent fault, c) voltage V3
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Fig. 7. Test Case II: a) Cell 1 current sensor residual, b) fault isolation for
the permanent fault

covariance function. The selected threshold is ±3. As observed
in Fig. 7(a), some wiggles in the residual are seen at 1.0-2.0
hour and 10.1-11.2 hour. These wiggles correlates well with the
actual dynamics in the real-time data. However, they can also
be mistaken as faults if an inappropriate threshold is selected.
In this case, the threshold selection algorithm is good enough
to detect the fault while avoiding false alarms. Subsequently,
an accurate detection signal is generated for the fault isolation.
Fault isolation and localization can be seen from Fig.7(b). The
operator can clearly analyze that the fault is occurred in Cell 1.

IV. CONCLUSIONS

The proposed MCIA-based current-split estimation has been
effectively demonstrated to estimate current-split in the pres-

ence of sensor faults. The median-expectation property of the
scheme helped to correctly estimate the profile of parameters in
the presence of permanent and temporary faults. The covari-
ance intersection has been incorporated in the filter to enhance
the performance of the filter. Furthermore, cross-covariance be-
tween the fault-free and faulty cells are supported by calculat-
ing the energy density function in the fault isolation. In the
future, an adaptive scheme to estimate the current-split of cells
and fault propagation analysis will be proposed. This will bene-
fit the cell-balancing control of each individual cell and improve
the service life of the battery-pack.
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